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Large manufacturers have been using simulation to support decision-making for design and production. However, with
the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data
analytics for associated performance gains. This requires not only significant model development expertise, but also huge
data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research
Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics
in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as
data analytics applications themselves and for supporting other data analytics applications by serving as data generators
and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and sim-
ulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capa-
bilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual
factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a
demonstration of the use of a virtual representation for manufacturing data analytics.

Keywords: simulation applications; performance analysis; process modelling; CNC machining; production modelling;
virtual factory; data analytics

1. Introduction

There have been multiple calls for increasing the use of Modelling and Simulation (M&S) for advancements in manufactur-
ing. Use of M&S has been identified as one of the major steps in achieving smart manufacturing (SMLC 2012). A report on
accelerating advanced manufacturing in United States calls for high fidelity M&S for reducing the design to manufacturing
lead time and for advanced control and optimisation (PCAST 2014). Both these reports also call for increased use of data
analytics for advancement in manufacturing. PCAST (2014) also notes links between analytics and simulation.

Data Analytics (DA) has been identified as a key to greater agility to react quickly to fluctuations in market demand
or supplies as well as production control (Dean 2013). DA applications for manufacturing, referred to as Manufacturing
Data Analytics (MDA), can be used to help improve manufacturing performance via insights into trends, patterns, areas
of inefficiency and potential risks to manufacturers. Data for such analytics is increasingly available from advancing
technology including sensors on machines and equipment, readers for radio-frequency identification tags and bar-codes,
and data harvesting applications tracking information across multiple sources including financial transactions, market
behaviour, and internet.

Currently, most of the manufacturing companies do not make good use of all the generated and collected data such
as data from computer-aided design, computer-aided manufacturing and digital manufacturing production systems (Dean
2013). Those who are making an effort mainly analyse the data for improving and fine tuning elements such as business
processes and customer service. MDA solutions can help collect, analyse and report the data dynamically. Many supply
chain professionals including manufacturers are overwhelmed by the vast amount of data (Hazen et al. 2014). Most
companies are struggling to get worthwhile returns from data analytics (Marchand and Peppard 2013). While many of
the manufacturers are new to MDA, large manufacturers generally appear to have experience with M&S based on
authors’ interactions with industry personnel via multiple consortiums and conferences in United States and Europe.
There is an opportunity to build on M&S use for MDA. This paper discusses multiple ways to use M&S to perform
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MDA and integration of M&S with other MDA applications for valuable decision support. In particular, the virtual
factory concept is utilised as a representation of the real factory created using M&S for MDA.

The concept of virtual factory as a multi-resolution representation across the hierarchical levels of a real factory was
proposed a number of years ago by Jain (1995) though other connotations of the phrase existed even earlier. Use of
multi-resolution modelling can allow the flexibility to represent the components at varying levels of detail appropriate to
the analysis of interest. Jain et al. (2001) attempted to create a multi-resolution virtual factory capability but found it
highly challenging due to limitations of technology and information availability at the time. This paper identifies the
technical advancements since then that make the implementation of the virtual factory vision within reach.

The primary contribution of the paper is the proposed path to implementation of the virtual factory concept and its
use for MDA. The path and the implementation are demonstrated using a prototype virtual machine. In addition, rele-
vant technologies and standards are identified to support the implementation of the virtual factory concept.

This work follows Design Science Research Methodology (DSRM) from the field of information systems (Peffers
et al. 2008) and prototyping from operations management (Meredith et al. 1989). Simulation models for decision sup-
port have to be deployed as part of manufacturing information systems. Use of DSRM allows consistency with extant
literature, guidance via a process model and template for presenting and evaluating design science in information sys-
tems. DSRM has six steps: problem identification, objectives definition, design and development, demonstration, evalua-
tion and communication. Prototyping involves building an exemplar of a selected subset of the attributes of the system.
Its use is motivated by the need to evaluate the proposed concept before embarking on a huge effort.

Following the discussion of the relevant efforts reported in the literature in the next section, Sections 3–8 are organ-
ised following the six DSRM steps discussed above. Sections 3 and 4 define the problem and objectives, respectively.
Section 5, first, discusses the concepts and technologies employed for the design and development. This is followed by
conceptual design of the virtual factory. The remaining steps of DSRM are carried out with a prototype of a virtual
machine that is a unit component of the envisaged virtual factory and simulates the operations of a real machine. The
prototype is evaluated for its applicability for use of M&S and MDA. The prototype presents a first step to implement
the virtual factory concept. Section 9 concludes the paper with discussion of future work.

2. Related work

Related efforts are briefly reviewed in two areas, simulation-based MDA and virtual factory.

2.1 Simulation-based manufacturing data analytics

LaValle et al. (2011) report based on a survey of nearly 3000 industry personnel that senior executives are looking to
make data-driven decisions based on scenarios and simulations. However, there are only a few examples reported of use
of simulation-based MDA. Pegden (2011) contends that the role of simulation is expanding to exploit information and
predict the impact of change at all levels of the business. Dudas, Hedenstierna, and Ng (2011) utilise stochastic simula-
tion to generate data that is mined to identify relationships among decision variables and objectives to support decision-
making. Zhou et al. (2012) used simulation models of manufacturing system together with search procedure to select
and evaluate green production strategies. Ng et al. (2011) introduce a novel methodology that integrates the concept of
innovisation with discrete-event simulation and data mining techniques for the analysis and optimisation of production
systems. Applying data mining to the data sets generated from simulation-based multi-objective optimisation allows
automatic or semi-automatic discovery and interpretation of the hidden relationships and patterns for optimal production
systems design/reconfiguration. Melouk et al. (2013) employ simulation and a search space based optimisation approach
for identifying improvements in inventory practices and process capabilities for steel manufacturing.

The few examples from the literature support the promise offered by simulation-based MDA, yet raises the question
of reason behind limited application. It is highly likely that the effort involved in building detailed simulation models of
manufacturing systems may be acting as a roadblock. Manufacturers need support for rapid development of detailed rep-
resentations of their manufacturing systems using simulation. Such representations can be provided by a generic virtual
factory that can be configured based on input data as discussed in this paper.

2.2 Virtual factory

The term virtual factory has been defined in multiple ways in the manufacturing research and application domains includ-
ing as a high fidelity simulation, a virtual organisation, a virtual reality representation and an emulation facility (Jain and
Shao 2014). This paper utilises the virtual factory definition as a high fidelity simulation of a manufacturing factory.
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The virtual factory concept has been implemented by leading manufacturing companies. Ford Motor Company
improves assembly line performance in its European facilities by evaluating and optimising the designs using virtual
factory systems (IMT Staff 2013). Volvo Group Global (2014) validates changes using virtual factories before their
implementation into actual plants and has the goal that ‘by 2020 all major Volvo Group plants will be virtually tested
before any major changes are done in the real world’. Major commercial software vendors support development of
virtual factories via integrated solutions for product, process and system design, simulation, and visualisation (Tolio
et al. 2013).

Virtual data management, automatic model generation, static and dynamic simulation, and integration and communi-
cation are paramount to realising a virtual factory (Choi, Kim, and Noh 2014). However, most software tools are, in
general, not supplied with these capabilities making it a challenge to develop a virtual factory. There are efforts address-
ing different aspects of the challenge. To enhance conventional simulations for a virtual factory, Bal and Hashemipour
(2009) use Product-Resource-Order-Staff Architecture for modelling controls while the Quest simulation tool models the
physical elements. To integrate models and enhance communication, Hints et al. (2011) developed a software tool
named Design Synthesis Module. Debevec, Simic, and Herakovic (2014) use a virtual factory model to test and improve
the schedules before implementation in the real factories of small and medium size enterprises. For production planning,
Terkaj, Tolio, and Urgo (2015) present an ontology for a virtual factory to aid planning decisions.

The recent concept of ‘Industry 4.0’ or the fourth industrial revolution from Germany includes Cyber-Physical
Systems (CPS) as a key component. The function of CPS has been identified as monitoring physical processes and cre-
ating a virtual copy of the physical world to support decentralised decision-making (Mario, Tobias, and Boris 2015).
The ‘virtual copy’ and ‘virtual plant models’ discussed in the context of Industry 4.0 closely match the concept of vir-
tual factory discussed in this paper. The virtual factory can support the factory design stage and once the factory is built
it can transition into a component of the CPS and support MDA and decision-making.

The need identified in the literature for simulation-based MDA can be ably met using the virtual factory representa-
tions as suggested by reported applications. Current applications generally utilise custom developments of virtual facto-
ries that require a large effort and expertise. The development of a capability to largely auto-generate virtual factories
rapidly using data from real factories in standard formats as proposed in this paper will significantly reduce the effort
and expertise requirement.

3. Problem identification

There is a recognition among leading initiatives for advancement of manufacturing that there are barriers to increased
use of data analytics and simulation (SMLC 2012; PCAST 2014). Large data collection efforts and significant model
development expertise are required for use of simulation and other data analytics applications. SMLC (2012) calls for
‘lower cost barriers for applying advanced data analysis, modelling, and simulation in core manufacturing processes’.
The problem of high cost and expertise barriers to use of simulation and data analytics in manufacturing is the identified
target for our effort.

4. Objectives definition

The objective of our effort is to support manufacturers in employing M&S and MDA to improve their performance.
The sub-objectives are:

• to develop a capability that allows largely auto-generation of a virtual factory model, and,
• to demonstrate the use of the model as a data analytics application itself and for supporting other data analytics
application.

The presented approach is anticipated to help in the long term to increase the use of M&S and MDA in multiple
ways. First, use of standard format interfaces will enable largely auto-generation of the virtual factory model thus lower-
ing the cost barrier of using M&S. Johansson et al. (2007) have used the Core Manufacturing Simulation Data (CMSD)
standard for generating majority of the model at the factory level. This approach will be extended to multiple levels of
the virtual factory. Second, with the increased interest in MDA, the past familiarity with M&S, and the presentation of
virtual factory as a MDA tool and a platform for other MDA tools, manufacturers may be motivated to use the virtual
factory once available as an initial entry path to use MDA. Third, the multi-resolution modelling capability is expected
to lead to better understanding and decisions and further motivate the use of M&S and MDA.
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5. Concept design and development

This section discusses the factors supporting the proposed development to increase M&S and MDA applications for
manufacturing followed by the presentation of the conceptual design of the virtual factory. The first subsection estab-
lishes the link between M&S and MDA. The second subsection identifies the recent advancements in M&S technology
and interface standards. The third subsection presents the virtual factory concept that builds on advancements in technol-
ogy and standards and is aimed at enabling rapid use of M&S and MDA.

5.1 Simulation roles for MDA

Manufacturers have used M&S to analyse design and operations for a long time. Simulation application includes analy-
sis of output data to generate insights and hence simulation itself is a tool for DA. A number of statistical analysis tools
are available for analysis of simulation input data and such tools are also DA applications. Thus, simulation is supported
by DA applications. Simulation can be used to generate realistic data to support the evaluation of DA applications and
for filling in missing data for use by DA. Simulation thus supports DA applications. Simulation roles for MDA hence
can be grouped in two categories, as a MDA application and as a support application for other MDA applications.
These roles are discussed in the following subsections.

5.1.1 Simulation as a MDA application

The Gartner Analytic Ascendancy Model (Laney and Kart 2012) defines four major applications of DA as shown in
Figure 1. These include descriptive (what happened?), diagnostic (why did it happen?), predictive (what is likely to hap-
pen?) and prescriptive (how can we make it happen?) analyses. A number of techniques may be used for the four major
applications including data mining, regression, Bayesian network analysis, classification and clustering algorithms,
machine learning algorithms, optimisation and data envelopment analysis. Simulation is useful for three of the areas,
namely, diagnostic, predictive and prescriptive as discussed below.

Figure 1. Role of simulation in major applications of data analytics.
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5.1.1.1 Simulation as a diagnostic analytics application. Sensitivity analysis of simulation models allows identifying
the factors that have an influence on the measure or patterns of interest. Such analysis can be used for diagnostic analyt-
ics. For example, one could investigate the causes of long cycle times for a certain product group by varying factors
identified to be the potential contributors using a designed experiment. The results of such analysis can help answer the
question of why the product group is experiencing long cycle times.

5.1.1.2 Simulation as a predictive analytics application. Predictive analytics is needed to understand the impact on per-
formance measures of interest of future planned and unplanned changes such as in policies, product mix, resource avail-
abilities and demands. Simulation can be used to effectively evaluate such impact via modelling of scenarios of planned
and unplanned changes in a manufacturing system. It can thus answer the question of what is likely to happen with
associated uncertainties.

5.1.1.3 Simulation as a prescriptive analytics application. Prescriptive analytics goes further than the predictive analyt-
ics and identifies the needed parameter settings and policies that will result in desired performance improvements. Simu-
lation can contribute in three ways to the role of a prescriptive analytics application. First, simulation models can be
exercised through a number of scenarios set up under a designed experiment to identify the parameter settings that
improve performance measurements of interest. For example, parameters such as lot release rates, dispatching rules and
resources per operation may be varied to identify the set that leads to improved due date performance.

Second, simulation can be used to take the output of another prescriptive analytics application such as an optimisa-
tion tool and fine tune it for implementation. It is generally highly cumbersome and at times not possible to include all
the real-life constraints and variabilities in an optimisation model. For example, optimisation models can be used to rep-
resent the major constraints such as number of major resources (machines, operators) and technical precedences to
generate a manufacturing schedule. Simulation can then be used to fine tune the solution using remaining real life con-
straints such as buffer spaces and transporters.

Third, simulation models can be interfaced with an optimisation procedure such as simulated annealing or genetic
algorithm to iteratively search for the set of parameter settings that provide the best achievable performance. The third
approach is generally referred to as a combined simulation optimisation approach. Also, combining simulation with opti-
misation as defined in the second and third approaches generally provides more accurate solutions than a standalone
optimisation application.

5.1.2 Simulation as a support application for other data analytics application

Simulation outputs can be used to support other DA applications in multiple ways discussed below.

5.1.2.1 Simulation as a data generator. Simulation can be used to generate the data streams that can be used to test
new DA applications. Manufacturing companies are generally understandably reluctant to provide access to data from
their factories to researchers and developers of MDA applications. The proposed virtual factory models can be set up
with hypothetical but realistic factory configurations to generate data streams that can be analysed by the DA applica-
tions under development. The virtual factory models should be able to generate data at the desired level of detail includ-
ing machine level data streams for testing machine health DA applications and factory level data streams for testing
factory performance DA applications.

5.1.2.2 Simulation to support evaluation and validation. It could be a challenge to ensure that the relationships identi-
fied by a MDA application are correct if the underlying true relationships are not known. Similarly, it could be a chal-
lenge to compare MDA applications based on the quality of their outputs if the corresponding true outputs are not
known. Simulation can provide valuable support to meet both these challenges. Simulation scenarios can be prepared
using known distributions for measures or patterns of interest and DA applications can be used to analyse outputs of
simulation models to identify the particular patterns. For example, machine breakdown patterns analysed by a DA appli-
cation being evaluated could be compared against the known distributions that were used in the simulation. In such use,
simulation has an advantage over real manufacturing data since the underlying distributions may not be known accu-
rately for the real data. Similarly, a manufacturer can use virtual factory representations of their specific manufacturing
facilities with known distributions for aspects of interest to evaluate DA applications across multiple scenarios as part of
an application selection exercise.

This subsection presented the multiple ways simulation can be used for MDA. In all the potential applications dis-
cussed, simulation models of the factory or its subsets are utilised as MDA applications themselves or in support of
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other MDA applications. A virtual factory representation of the real factory can hence serve to execute and support such
application.

5.2 Relevant technologies and standards

Technologies relevant to the proposed virtual factory concept have been rapidly developing in recent years. This
subsection briefly discusses technologies and standards that have now made the virtual factory concept implementation
feasible.

5.2.1 Simulation software technology

The implementation of virtual factory concept requires contributions of component models from multiple research teams.
Simulation software need to allow easy integration of such component models. Use of object-oriented programming can
facilitate the integration of independently developed component models. About 15 to 20 years ago, there were few simu-
lation software that offered the capability of object-oriented programming. Simple++ was one of the first object-oriented
simulation software that was used for implementing a prototype of the virtual factory concept (Jain et al. 2001). At the
time, all levels of resolution would have to be modelled in discrete event paradigm with Simple++ and all input data
interfaces would have to be custom developed. It would have required a large effort to develop the virtual factory under
those circumstances and hence it did not receive much interest.

Simulation software technology has developed at an accelerated rate similar to development in all fields of technolo-
gies. A few commercial simulation software are available currently that offer object-oriented development environments
and allow mixing multiple simulation paradigms in the same model. These software facilitate development and integra-
tion of multi-resolution models. An example is the integration of a system dynamics model of a supply chain with a dis-
crete simulation model of one of the manufacturing nodes using a commercial simulation software (Jain et al. 2013). It
is possible to have component models developed by different teams using the same software integrated together in one
executable file. However, integration of models developed in different simulation software still needs to utilise dis-
tributed simulation.

5.2.2 Distributed simulation technology

As simulation environments for manufacturing evolve to be more collaborative, open, and global, distributed simulation
technology is anticipated to become essential for implementing virtual factory concepts. The first standard mechanism
for distribution simulation was the High Level Architecture (HLA) (Kuhl, Weatherly, and Dahmann 1999) that required
advanced expertise and large effort for implementation. More recently, researchers are using web services technology
for integration of distributed simulation (Yoo et al. 2009). Recent updates in the HLA standard include web services
support (IEEE 2010). The recently developed Standard for Commercial Off-the-Shelf Simulation Package Interoperabil-
ity (SISO 2010) helps identify problems and evaluate approaches for integration of models developed using different
software. These recent developments have significantly facilitated the development of distributed simulation arrange-
ments. A web services based approach is envisaged for implementation of distributed simulation for realising the virtual
factory concept on a wider scale.

5.2.3 Data interface standards

The implementation of virtual factory will be facilitated by standard data interfaces that allow reading in and generating
data using the same formats as those used in a real factory. A wide range of formats are used for the data streams gener-
ated by a real factory in practice and that poses a challenge. Efforts have been made in recent years to develop stan-
dards for some of these interfaces including those identified below. Standards like these are being considered for
implementation of the open-standards-based interfaces identified in Figure 2 that is discussed in the next section.

• Open Applications Group Integration Specification (OAGIS) is a cross industry canonical model for defining busi-
ness messages. It is open standards based and uses eXtensible Markup Language (XML). It also addresses applica-
tion-to-application and business-to-business integration via business processes (Connelly and Hertlein 2010).

• Core Manufacturing Simulation Data (CMSD) defines neutral interface for sharing data between manufacturing
applications and simulation (SISO 2012). A number of case studies have used the CMSD model (e.g., Johansson
et al. [2007]).
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• ISA-95 developed by International Society for Automation (ISA) provides models and terminology to identify the
information to be exchanged between manufacturing systems (ANSI 2010).

• Business To Manufacturing Markup Language (B2MML) implements the ISA-95 data models through a set of
XML schemas. B2MML allows businesses to easily integrate their Enterprise Resource Planning (ERP) system
modules with their Manufacturing Execution System solutions.

• STEP-compliant data interface for Numerical Controls (STEP-NC) is a standard for representing process planning
data. STEP-NC uses the concept of working step to specify machining processes (IMS STEP-NC Consortium
2003).

• MTConnect (‘MT’ appears to refer to Machine Tools) is a XML based standard for extracting data from numeri-
cally controlled machine tools (AMT 2014).

In the above list, CMSD specifically includes information to support simulation models of manufacturing while the
rest of them are designed for operational use and can be exploited for realising virtual factories. The use of two of the
standards in the list, STEP-NC and MTConnect, for the virtual machine prototype in Section 6 demonstrates how they
can be used in implementation of the virtual factory concept.

5.3 Virtual factory concept

The virtual factory concept is presented in the context of its use as and in support of MDA in this subsection. Indeed
the recent high interest in MDA prompted another look and enhancement of the virtual factory concept defined a while
ago by Jain et al. (2001). Virtual factory can support MDA beyond the real factory since it allows generating hypotheti-
cal normal and extreme scenarios for deeper understanding of consequences of different strategies and decisions.

Figure 2. Virtual factory concept (adapted from Jain et al. [2001] and enhanced).
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The current focus of the effort is on modelling discrete manufacturing operations ranging from job shops to flow
shop configuration. The virtual factory should model the primary production process and associated supporting pro-
cesses including materials management, demand management, product and manufacturing engineering, and maintenance.
It should have multi-resolution modelling capability, that is, the ability to model all the processes at multiple levels of
detail with the level to be selected collectively or individually based on the problem to be analysed. The virtual factory
model with multi-resolution capability mimics the real factory as it allows analysis at the level of detail selected by ana-
lysts and decision-makers.

The multi-resolution modelling capability should be built on the ability to employ modelling paradigms appropriate
to the resolution level. The flow of parts through multiple production stages is generally best modelled using discrete
event simulation. Agent-based simulation may be recommended way to model the behaviour of individual machines and
operators. Modelling of machine component movements and associated forces may best be done using continuous simu-
lation of physical-sciences-based equations. Users should be able to select the paradigm for different component models,
validate the component models individually, integrate them together and validate the integrated models.

The multi-resolution capability may be utilised in two ways. First, all parts of the model may be set at a homoge-
nous level of detail. For example, the material flow may be modelled across all parts of the factory at low resolution
level, or it may be modelled at a high resolution level though that may be rarely found useful. Second, parts of the
model may be at heterogeneous levels of detail with the part of primary interest at a higher level of detail than others.
Analysts have been generally used to models with a single level of detail in the past and hence should be able to seam-
lessly move to use of the virtual factory model with a homogenous level of detail. An example of such use is employing
a discrete event simulation model to analyse the cycle times of various product types based on defined resource configu-
ration and operating policies.

Using the virtual factory model with its parts at heterogeneous levels of detail will take some additional effort to set
up, but it will provide for a more efficient use of analyst and computer time. The model set up should be based on
swapping of model components with one level of detail with a corresponding one with a higher level of detail. As an
example, a model with heterogeneous detail levels may be used to analyse an issue with the performance of a tightly
connected sub-assembly line in a factory. The virtual factory model may be set up to represent the sub-assembly line at
a higher level of detail than the rest of the factory. The sub-assembly line model should include representation of moves
within each work station to allow identifying issues within work stations contributing to the line’s performance. The rest
of the factory may be modelled without the detail inside the work stations with the purpose of modelling common
resources such as material handling, modelling flow of needed materials to the sub-assembly line, and for modelling
flows absorbing the output of the sub-assembly line at realistic rates. Modelling of rest of the factory in an integrated
manner with the detailed sub-assembly line model allows higher accuracy compared to the alternative of using only the
sub-assembly line model with distributions for arrival of materials and removal of products and assumptions on common
resource availabilities. It offers improved efficiency for analyst and computer execution compared to the alternative of
modelling the entire factory at high level of detail as it saves the time required to verify and import detailed data for
entire factory and for executing a much larger model.

A generic capability should be developed to allow the virtual factory model being largely auto-generated using
detailed data in standard formats from a real or a designed factory. The virtual factory model for a factory will be essen-
tially generated by instantiating the model with factory specific data. This will thus reduce the effort and the associated
cost required to implement virtual factories at successive factories and allow a large number of manufacturers to benefit.
Input files with data on factory and products configuration should be based on available standards as much as possible.
The CMSD standard included in the list in the preceding subsection is a good candidate for such configuration data at
factory flow level of detail that is typically modelled using discrete event simulation.

The summary and streaming outputs of the virtual factory model should also comply with available standards as far
as possible. The user should be able to select a standard if multiple standards can be used for any of the output informa-
tion. Among the standards listed in the preceding subsection, B2MML is a good candidate for reporting manufacturing
performance data at factory level while MTConnect is a good candidate for generating machine level data streams. In
addition to standard formats, capabilities should be available to customise the output formats.

Previously the virtual factory concept focused on the multi-resolution representation of a real factory. Availability
and use of open-standards based interfaces can provide a critical push to development and implementation of the virtual
factory concept. The ability to easily vary the scope and resolution levels of component models should provide a con-
siderable benefit to MDA applications. The enhanced concept of virtual factory is shown in Figure 2. The resolution
levels shown in Figure 2 traverse the manufacturing system hierarchy using factory specific terms and are in close
agreement with descriptions of such hierarchy in IEC 62264-3 standard (IEC 2007).
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Admittedly, it will take a joint effort of multiple teams of highly skilled simulation researchers to further develop
and implement the virtual factory concept as described here. The motivation for taking on such a large task comes from
the expectation that once the capability is available it can lead to a step jump in the use of simulation and DA in manu-
facturing. A good approach to develop the large capability is to proceed in a bottom-up manner starting with individual
component models at the machine level.

6. Demonstration via a virtual machine prototype

As a first step towards the proposed virtual factory, a virtual machine prototype is developed to generate machine level
data streams that can be used by a diagnostic analytics application. The conceptual design presented in the previous sec-
tion is being implemented in a bottom up manner and has been initiated with virtual machines capable of accurately
simulating operations of real machines. The verified and validated virtual machines can be integrated together as compo-
nent models into a virtual factory model. Factory level streams can be generated using an aggregation of machine level
streams generated by component virtual machines.

This section presents the virtual machine as a demonstration of a component of the virtual factory concept. The first
subsection introduces the design and implementation of the virtual machine and the second subsection describes the
extension of these virtual machines towards constructing a virtual work cell.

6.1 Virtual machine

The virtual machine has been developed using STEP-NC to MTConnect (STEP2M) simulator. The STEP2M simulator
simulates machining processes using process planning data as input. It utilises physical-sciences-based equations to
model the energy consumption during the machining process. It generates machine performance data that can be fed into
MDA applications.

6.1.1 Design of virtual machine

The simulator is composed of three major modules (1) STEP-NC processing, (2) machining estimation and (3) MTConnect
generation. The functional architecture of the simulator including simulation functions and data flows is shown in Figure 3.

The virtual machine simulator uses three main inputs. First, the capabilities of the machine are defined using the
machine tool specification. Second, the code scheme for a G-code programme, i.e. Numerical Control (NC) programme,
is described using the NC system. Third, the STEP-NC programme defines the process to be executed. The simulator
streams machine performance data in MTConnect standard format as its output.

The real NC machines process a part by translating a STEP-NC programme into machine-interpretable format. This
is modelled in the simulator using the STEP-NC processing module. First, the STEP-NC interpretation step parses the
STEP-NC programme to instantiate the STEP-NC objects using the defined data scheme. Next, the STEP-NC objects
are used by the tool path generation step to create a tool path with sequential tool movements and their instructions for
rapid or interpolation trajectory. The final step of the module, G-code generation, produces a G-code programme that
defines actions such as tool selection, spindle, and feed rates, and provides the tool path.

The G-code programme is used by the machining estimation module to determine movements and power consump-
tion over time. The event/time/position estimation step models time-dominant events experienced by the machine com-
ponents and uses this information to determine corresponding tool positions. The power estimation steps calculate the
power required to accomplish the machine component actions. The estimated events, tool positions and consumed power
over time are provided to the MTConnect generation module.

The MTConnect generation module creates the data streaming document based on MTConnect standard on demand.
Three steps are involved in this process (Shao, Jain, and Shin 2014): (1) machine specification registration, (2) collec-
tion of runtime data and (3) MTConnect data request. Further details on the STEP2M simulator are available in Shin
et al. (2016).

6.1.2 Implementation of virtual machine

A virtual machine prototype has been built for a two-axis turning machine using the architecture described in the previ-
ous sub-section. The prototype is developed in Java and utilises PrimeFaces for a web interface and Tomcat for a
MTConnect server. The machine tool specification and G-code instructions are defined using a turning machine tool and
a FANUC 0-series controller.

5458 S. Jain et al.



The prototype generates an MTConnect XML file as an output. The MTConnect standard format includes fields for
device, components and data items. The device is the machine tool generating the stream. The components are the main
physical modules of the machine tool including axes (X, Z and rotary), the coolant system, and the main body. The data
items include the monitoring data over time such as the tool position and the power consumed by the defined
components.

The accuracy of the virtual machine is validated via comparison of simulated results with actual measurements. Time
series data for simulated and actual power consumptions presented in Figure 4 shows considerable agreement. The vari-
ations in the time series data marked by numbers 1 through 4 in Figure 4 were analysed as follows: (1) a momentary
power peak occurs due to inertia to make the spindle start rotating; (2) when the coolant system is turned on there is a
step up in the power use; (3) the tool contact with the workpiece results in a small peak followed by the cutting power
that reduces with successive cuts corresponding to decreasing workpiece diameter; and (4) there is a reverse peak calcu-
lated in simulated power by the machining estimation module for stopping the spindle while the actual machine stops
with natural deceleration without requiring the reverse power.

6.2 Towards a virtual work cell

The purpose of implementing the STEP2M simulator above is to construct a virtual factory environment where such
simulator can be used as a component model at a detailed resolution level. The component models need to be integrated
successively into higher level models for this purpose. A virtual machine has been integrated into a virtual work cell
using agent-based simulation capabilities of AnyLogic, a commercial simulation software (Lechevalier et al. 2015).
Figure 5 shows the behaviour model of the virtual cell with a single virtual machine representing a milling machine.

Figure 3. Functional architecture of STEP2M simulator.
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The upper part of the figure represents the part flow in the cell while the lower part shows the machine behaviour using
a state diagram. This model can generate several performance metrics for the work cell, including time spent in idling,
batch set-up, part set-up, machining (modelled using STEP2M simulator), part ejection and batch ejection, as well as
the machine-level data streams presented in Figure 4. When multiple virtual machines are modelled and installed for the

(1)

(2)

(3)

(4)

Figure 4. Comparison of measured and simulated power over time.

Figure 5. An example of a virtual milling machine’s behaviour model (adapted from Lechevalier et al. [2015]).
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designated work cell, this simulation capability can provide multi-resolution modelling specifically for the device/station
and cell levels presented in Figure 2. The cell level is modelled at a lower resolution using discrete event simula-
tion capabilities of AnyLogic and the virtual machines are modelled using agent-based simulation capabilities of
AnyLogic for higher resolution modelling. Proceeding in such a bottom up manner, the holistic virtual factory environ-
ment proposed in Section 5 can thus become feasible.

7. Evaluation: role of the virtual machine in data analytics

The virtual machine prototype utilises M&S for MDA application as envisaged in the design and development section
albeit at a much smaller scale than the envisioned virtual factory. The virtual machine prototype can support the simula-
tion roles for MDA discussed earlier in Section 5.1 specifically as a diagnostics analytics application (Section 5.1.1.1)
and as a data generator (Section 5.1.2.1).

Traditional diagnostics analyses for machine performance using simulation typically use a NC programme as input.
This limits the analyses since the NC programme alone is not sufficient to determine the process sequence and parame-
ters for process planning. This limitation is removed in the presented virtual machine prototype using the process plan
data as input in place of a NC programme. Employing the STEP-NC standard allows use of object-oriented working
steps for precise specification of the process sequence and selected parameters. The output machine performance data
corresponds to the provided input. The virtual machine prototype can iteratively generate a set of input and output data
that can be used for diagnostics analytics thus meeting the role of simulation discussed in Section 5.1.1.1.

Machining monitoring data including tools status, events and movements have to be captured to assess the efficiency
of machining operations via data analytics (Muchiri and Pintelon 2008). Collecting such data on a real machine requires
additional effort and costs due to the need for placing measurement sensors and associated interfaces. The use of the vir-
tual machine prototype obviates the need for such physical measurement devices. It generates the monitoring data
needed for analytics thus meeting the role of simulation as a data generator discussed in Section 5.1.2.1. The current
prototype has been set up to generate power consumption and machining time measures. Other metrics, such as surface
roughness and machining error, are planned for future.

There are some limitations in reproducing real phenomena perfectly as indicated in Figure 4. These limitations may
arise from a lack of real data to be compared and limitations of simulation itself. These limitations may be overcome
with efforts for developing more realistic models and calibrating data by adjusting and tuning simulated data with refer-
ential real data.

The virtual machine prototype demonstrates the feasibility of generating machine-level data streams. The provided
example of integrating the virtual machine into a virtual cell demonstrates the feasibility of bottom up approach for build-
ing the virtual factory. The prototype also demonstrates the feasibility of bringing together M&S and MDA capabilities. It
provides confidence for building a virtual factory by developing and integrating several virtual machines with the identifi-
cation of different machine specifications and production planning data. Different machine specifications will allow mod-
elling of individual performances of the machines. Production planning data will allow modelling of virtual machines’
operations following a schedule and calculating factory-level metrics such as cycle times and resource utilisations.

8. Communication

This step of the DSRM focuses on communicating the problem and the solution together with its evaluation to research-
ers and practicing professionals. The problem has been recognised and has received attention in initiatives focusing on
advancements in manufacturing. A few different solution efforts are in progress as reported in Section 2. Given the
complexity of the problem, it behoves the researchers to mount a joint effort. Communication of the relevant develop-
ments will hopefully help bring the corresponding researchers together.

Publication of this paper in this leading scholarly journal is a key part of the execution of the communication step.
Parts of the concept and its development have been also presented earlier at conferences that attract researchers and
practicing professionals. The development and communication efforts are intended to continue towards realisation of the
virtual factory model.

9. Conclusion

This paper supports the progress towards envisioned smart manufacturing systems via increased use of M&S and MDA
to provide decision support. The effort is presented in the framework of DSRM from the information system field and
prototyping from operations management field. Multiple ways are identified in which simulation can support MDA.
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First, simulation can itself serve as an MDA application and used for diagnostic, predictive and prescriptive analyses.
Second, simulation can support other MDA applications in two primary ways, (a) by generating the data comparable to
that provided by real manufacturing systems, and (b) by providing the means to evaluate and validate the MDA applica-
tions. However, simulation and MDA require significant effort and expertise. Virtual factory modelling is proposed as
the primary vehicle to apply M&S and MDA and reducing the barriers to their application. The effort for developing
virtual factories can be reduced by utilising standard driven approaches to auto-generate the models using the data from
real factories. A first step in the bottom up approach to develop the virtual factory is the creation of a prototype virtual
machine. The evaluation of virtual machine indicates that it meets the envisaged roles of simulation as a diagnostic ana-
lytics application and as a data generator to support MDA applications.

This paper makes contributions in two areas, virtual factory and MDA. It presents an enhanced version of the virtual
factory concept and associated interfaces in the context of MDA. In addition, the paper provides a path to implementa-
tion of a generic virtual factory building on the advancements in technologies for simulation software and distributed
simulation and relevant interface standards. In the area of MDA, the paper presents multiple ways in which the virtual
factory can serve as a MDA application or support other MDA applications. The initial results from the prototype evalu-
ation are shared to motivate further development of the virtual factory capability by the research community.

Future research directions include development of additional machine models for different processes, development
of models at higher level of the manufacturing system hierarchy, and integration of component models across the hierar-
chy. While the near term directions are focused on developing the virtual factory component models within one software
environment for ease of integration, distributed simulation arrangements for integrating component models developed in
different software are anticipated in longer term. Near term objectives also include developing and interfacing a proto-
type virtual cell model to an MDA application.
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