
Received April 14, 2017, accepted May 4, 2017, date of publication May 29, 2017, date of current version June 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2708738

A Comparative Study of Programming
Environments Exploiting Heterogeneous Systems
BONGSUK KO1, SEUNGHUN HAN1, YONGJUN PARK2, MOONGU JEON1,
AND BYEONGCHEOL LEE1, (Member, IEEE)
1School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
2Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Byeongcheol Lee (byeong@gist.ac.kr)

This work was supported in part by the National Research Foundation of Korea Grant through the Korean Government (MSIP) under
Grant 2015R1C1A1A01052876 and in part by the Institute for Information and Communications Technology Promotion Grant through the
Korean Government (MSIP) under Grants R0190-16-2012 and 2017-0-00142.

ABSTRACT This paper compares programming environments that exploit heterogeneous systems to
process a large amount of data efficiently. Our motivation is to investigate the feasibility of the adaptive,
transparent migration of intensive computation for a large amount of data across heterogeneous programming
languages and processors for high performance and programmability. We compare a variety of programming
environments composed of programming languages, such as Java and C, memory space models, such as
distinct and shared memory, and parallel processors, such as general-purpose CPUs and graphics processing
units (GPUs) to examine their performance-programmability tradeoffs. In addition, we introduce a software-
based shared virtual memory that creates a view of the host memory inside GPU kernels to enable seamless
computation offloading from the host to the device. This paper reveals a programmability-performance
hierarchy in which programs increase their performance at the cost of decreasing programmability. The
experimental results suggest the desirability of a well-balanced system.

INDEX TERMS Big data processing, heterogeneous systems, programming environment.

I. INTRODUCTION
Big data processing programmers are increasingly confronted
by the software engineering challenge of writing and manag-
ing well performing programs that process a large amount
of data using multiple programming languages, frameworks,
and underlying parallel processors [1], [2]. Specifically,
such programmers spend a considerable amount of time
for choosing and integrating a combination of parallel pro-
cessors, programming languages, and libraries using for-
eign function interfaces such as Java Native Interface (JNI)
and Python/C [3], [4] and application programming inter-
faces (APIs) for heterogeneous platforms such as Compute
Unified Device Architecture (CUDA) [5] and Open Comput-
ing Language (OpenCL) [6]. This selection and integration
issue is becoming increasingly non-trivial due to the discrep-
ancy in diverse runtime environments for prevalent big data
processing frameworks such as Hadoop [7] and Spark [8] run-
ning on managed runtime systems (e.g., JVMs) and emerging
high performance accelerator processors such as graphics
processing unit (GPU), field-programmable gate
array (FPGA), and application-specific integrated circuit

(ASIC) optimized for native runtime environments [1]. For
instance, to offload computations in Java to these accelerator
processors, programmers need to write tedious and error-
prone code, which explicitly moves Java objects from the
Java heap to the C heap in the device memory through the C
heap in the host memory using JNI and CUDA subroutines.
In addition, the program risks low runtime performance due
to the overhead of crossing both language and processor
boundaries. In short, it is challenging to balance the program-
ming productivity and performance.

In order to discover these inefficiencies in more detail, this
article studies the performance and programmability trade-
offs in exploiting heterogeneous systems for big data process-
ing. We compare various programming environments com-
posed of programming languages such as Java and C, proces-
sors such as CPUs andGPUs, andmemory spacemodels such
as distinct and shared memory. We first focus on the efficient
processing of large amounts of data on the order of tens of
giga bytes that can be stored in the host memory of a single
server machine but cannot be accommodated in the local
memory of a modest GPU. We next introduce and evaluate

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10081



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

a software-based shared memory between the host and device
that is a key building block in distributing computation trans-
parently across programming languages and processors.

Our analysis suggests a programmability-performance
hierarchy in programming environments in which programs
increase performance at the cost of decreasing programmabil-
ity. For instance, our experimental result shows that the actual
computation of dense matrix multiplication achieves the best
performance in a complex CUDA program that partitions
the input matrices and overlaps the data transfer with the
GPU kernel execution using the asynchronous CUDA stream
API [5]. This optimization makes the program difficult to
maintain, although the computation could be expressed in a
few lines of Java code. Worse, when the matrices reside in a
Java heap memory, the programmust transfer the large matri-
ces from the Java heap to the native heap in the GPUmemory
through the native heap in the host memory using JNI and
CUDA API. Our software-based shared memory exhibits the
potential to balance programmability and performance in that
it can eliminate the programmability overhead of moving
large data sets manually with only a modest performance
degradation. We believe that integrating our software-based
shared memory with Java GPU JIT compilation [9] would
improve both programmability and performance.

II. BACKGROUND
This section overviews various big data frameworks, het-
erogeneous parallel processors, and programming interfaces,
including both potential advantages and potential challenges
for their efficient use.

A. BIG DATA FRAMEWORKS
Big data frameworks are extensible and reusable software
systems that can both store and process very large data sets.
They provide a variety of programming models including
map-reduce batch processing in Hadoop, stream processing
in Storm and Samza, and hybrid processing in Spark and
Flink. These frameworks are written in multiple high-level
programming languages such as Java, Scala and Clojure,
taking advantage of the automatic memory management and
concurrency constructs in Java virtual machines. They natu-
rally take advantage of the parallel execution of instructions
in conventional symmetric multi-core processors by distribut-
ing computations into dozens and hundreds of work threads
accessing the shared virtual memory space.

B. HETEROGENEOUS PARALLEL PROCESSORS
Heterogeneous parallel processors such as GPUs are attached
to conventional general purpose processors to accelerate data
parallel computations using more than thousands of paral-
lel hardware threads which access high-bandwidth device
memory. The discrete GPU structure and high bandwidth
requirement separate the device memory from the host mem-
ory and introduce twomemory spacemodels. A distinct mem-
ory space model asks programmers to allocate and copy data
manually and explicitly between the host and the device using

API subroutines (e.g., cudaMalloc). A shared memory
space model such as Unified Virtual Addressing (UVA) [10]
creates a view of shared memory between the host and the
device, and the hardware and runtime systems automatically
either redirect memory accesses or migrate data. For instance,
CUDA page locked memory redirects memory access from
the GPU to the CPU through direct memory access over
a PCIe interconnect, whereas the CUDA managed memory
migrates the data between the host and the device in the
CUDA managed heap [10].

C. PROGRAMMING INTERFACES
Many programming languages support multi-core and many-
core processors with modest extensions. OpenMP extends
C, C++, and Fortran with a few directives and clauses to
parallelize loop iterations using symmetric multiprocessors.
CUDA and OpenCL extend C, C++, and Fortran to offload
data-parallel computations to GPUs. These extensions do
not directly cover high-level programming languages such as
Java, Scala and Clojure, which are widely used in big data
frameworks. To take advantage of high-throughput GPUs,
programmers need to write boilerplate code for copying data
from the Java heap to the C heap in the host memory, and
to the C heap in the device memory through JNI and CUDA
subroutines. This incurs low programming productivity, and
the overhead of moving data across language and hardware
boundaries could be also substantial.

III. COMPARING PROGRAMMING ENVIRONMENTS
This section compares several programming environments
that exploit heterogeneous systems for big data processing.
Each programming environment is composed of processor
types (including CPUs and GPUs), programming languages
(including Java and C with parallelization extensions), and
memory space models (including distinct and shared mem-
ory). Programming environments exhibit various degrees
of programmability, performance, and device memory lim-
its. Programmability expresses programming effort, which
is mainly influenced by the selection of programming lan-
guages and memory space models, whereas performance
compares computation’s execution times. The device mem-
ory limit expresses whether a programming environment
allows programs to process a large data set in the host mem-
ory, which in practice is significantly larger than the device
memory.

Table 1 presents and compares programming environ-
ments in order of increasing performance at the cost
of decreasing programmability and being limited by the
capacity of the device memory. General-purpose CPUs
and high-level programming language constructs in Java
offer high programmability, whereas special purpose GPUs
and low-level constructs in CUDA C/C++ allow the
programmers to exploit many performance optimization
opportunities.

We characterize each programming environment using
the dense matrix multiplication computation. Dense matrix

10082 VOLUME 5, 2017



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

TABLE 1. Performance-programmability tradeoffs in programming environments exploiting heterogeneous systems.

multiplication takes two input matrices A and B with N rows
and columns and produces an output matrix C of N rows
and columns such that each entry in C at ith row and jth
column is the inner product of the ith row in A and jth
column in B. Figure 1 presents code snippets representing
the dense matrix multiplication in the six programming envi-
ronments. The two representations in Figures 1(a) and 1(b)
utilize the host parallel CPU processors with a few lines of
very concise statements in part from using parallel language
constructs such as Java 8 Stream API and lambda expres-
sions and OpenMP directives. The two representations in
Figures 1(c) and 1(d) utilize GPUs, separate the host and
device codes, and illustrate asymmetric shared memory
models in which both the host and kernel codes access
the three matrices without any explicit data move opera-
tions. cudaMallocHost in Figure 1(c) allocates a page-
locked memory that is resident in the host memory so that
all memory accesses from the GPU kernel are redirected
to the host memory through the PCIe channel, whereas
cudaMallocManaged allocates a managed memory that
is resident in the device memory in practice. The last two rep-
resentations in Figures 1(e) and 1(f) exhibit source lines for
allocating device memory and transferring matrices between
the host and device memories when the shared memory
model is not used. They are distinguished by the degree of
concurrency exploited. The pure distinct memory asks the
programmers to transfer matrix objects between the CPU
memory and GPU memory using cudaMemcpy, whereas
the use of CUDA Stream API offers fine-grained control
allowing the overlap between the data transfer and kernel
execution.

The six parallel programs exhibit a programmability-
performance hierarchy in which programmers increases
performance at the cost of decreasing programmability.
Low-level programming languages such as C/C++ and APIs
such as CUDA Stream decrease the programmability. For
instance, the matrix multiplication program increases the
number of source lines containing low-level constructs such
as a separate GPU kernel code, scheduling parameters (e.g.,
schedule(dynamic) in OpenMP), the numbers of grids
and threads, and concurrent memory transfer, all of which
require careful examination for correct use. However, these
constructors exploit low-level hardware constructors (e.g.,
PCIe bandwidth and the massive number of cores in GPUs)

as much as possible and increase the computation throughput.
For instance, the programming environment illustrated in
Figure 1(f) exploits parallelism and concurrency in compu-
tation and communication, but it is non-trivial or infeasible
to employ the CUDA Stream API for arbitrary programs.

Device memory limit is another critical issue in process-
ing a large amount of data in a balanced environment in
which the host memory is significantly larger than the device
memory. All programming environments with only CPUs are
free from any device memory limit because they process the
data in the host memory. Programming environments with
GPUs show different degrees of device memory limit. Page
locked shared memory does not have a device memory limit
because the device code directly accesses the data objects res-
ident in the host memory. Managed shared memory exhibits
mixed results, where legacy GPU devices generate an out-
of-memory error upon allocating a large data object that
exceeds the device memory size, whereas the recent high-
end Tesla P100 enables such memory oversubscription [11].
The CUDA Stream API relaxes this device memory limit by
asking the programmers to partition the large input data into a
set of small data and copy these pieces of data asynchronously
with the kernel execution.

For processing arbitrary big data, the first three environ-
ments in Table 1 are feasible at the cost of under-utilizing
the high-throughput GPUs. The first two environments just
exclude GPUs, and the third one shows prohibitively low per-
formance because all data accesses in the kernel code gener-
ate data requests in the host memory through low-bandwidth
PCIe channels. This inadequacy motivates us to design a
shared virtual memory between CPUs and GPUs [12]–[15].

IV. SOFTWARE-BASED SHARED VIRTUAL MEMORY
This section introduces a software-based shared virtual mem-
ory (SBSVM) to create a view of the hostmemory insideGPU
kernels using CPU-GPU remote procedure calls.

A. ASYMMETRIC SHARED MEMORY SPACE
An asymmetric shared memory space allows GPU kernels
to access arbitrary objects in the host memory through a set
of indirect references to the objects in the host memory. The
programming interface is composed of a C/C++ opaque data
type of Cptr and a set of access functions. A Cptr value
in the device code is an indirect reference to an object in

VOLUME 5, 2017 10083



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 1. Representations of multiplying dense matrices in the six programming environments. (a) CPU, Java and Stream API, and shared memory.
(b) CPU, C and OpenMP, and shared memory. (c) GPU, C/C++ and CUDA, and page locked shared memory. (d) GPU, C/C++ and CUDA, and managed
shared memory. (e) GPU, C/C++ and CUDA, and distinct memory. (f) GPU, C/C++ and CUDA, and distinct memory with CUDA Stream.

10084 VOLUME 5, 2017



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 2. GPU kernel code of accessing the host memory through Cptr.

the host memory. These opaque references disallow low-level
pointer operations such as pointer dereference and arithmetic.
Instead, the device code executes numerous access functions
to read and write the values in the host memory. Figure 2
shows a GPU kernel code snippet multiplying two dense
matrices resident in the host memory using the Cptr ref-
erences. This kernel code is identical to the kernel routines
in Figure 1 except that all expressions of accessing matrix
elements are replaced with calls to the Cptr access func-
tion, and a few Cptr variables a, b and c are declared as
indirect references to the elements in the input and output
matrices.

To access the host memory objects without preempting
GPU kernel execution, to reduce data transfer overhead, and
to exploit memory reference locality, our shared memory
design adapts the page caching, address translation, and the
CPU-GPU remote procedure call in RSVM [15] and Active-
Pointers [14]. Our shared memory system is composed of
CPUPointer, page cache, and CPU-GPU remote procedure
call. CPUPointer is the implementation of the Cptr inter-
face to process all requests from the GPU kernels to access
the host memory objects. The page cache manages a set of
cached host pages and mapping from their host addresses to
the device addresses. The CPU-GPU remote procedure call
exchanges pages between the host memory and the device
memory.

A memory access goes through some of these four subsys-
tems. In the fast path case, in which a CPtr reference points
to an object in the cached page in the page cache, the overhead
includes checking the condition bit of validating the cached
condition (page hit). When the condition bit is invalid and the
object is in the cached page, the slow path successfully looks
up the page cache, updates the validity bit, and accesses the
cached object in the page cache (minor fault). In the worst
case, in which the object is not resident in the page cache, the
slowest path requests a CPU-GPU remote procedure call of
copying the host page to the page cache, updates the page
cache and validity condition bit, and accesses the cached
object in the page cache (major fault). When the page cache
is in use for the other object, the extra path temporarily
allow the read-through and write-through operations (hash
collision).

1) CPUPointer
Cptr is an unsigned integer type containing two members: a
valid bit and the mapping data. The valid bit contains the two
states of a Cptr reference: the linked state and the unlinked
state. In the linked state, the cached host page resides in
the page cache, and the mapping data is the device address
of the host object in the page cache. We call this location
an internal address, or iAddress. A memory access through
a linked CPUPointer locates the cached object (page hit).
In the unlinked state, the mapping data expresses the host
address of the object, and we call this location an external
address or xAddress. An access through an unlinked refer-
ence activates a page fault handler to service either a minor
fault or a major fault depending on the state of the page
cache.

2) PAGE CACHE
Page cache keeps a poll of the cached host memory pages
inside the device memory and a hash table of mapping from
the host page addresses to the cached states. Each cached
state contains a pointer to the cached page in the device
memory, a dirty bit for writing the updated host page back
to the host memory, and an integer value to count the number
of Cptr references to the cached page. The page fault han-
dler looks up the hash table with the external host address
in an unlinked reference. In the event of a lookup success
(minor fault), the page fault handler increments the reference
count in the caches state entry, installs the internal address
in the state entry into the Cptr reference, and turns the
reference into the linked state. In the event of a lookup failure
(major fault), the page fault handler requests to transfer the
page from the host memory to the device memory through
the CPU-GPU remote procedure call and handles the minor
fault.

3) REMOTE PROCEDURE CALL
The CPU-GPU remote procedure call serves asynchronous
data transfer requests from the GPU kernel between the host
and device memories. The data transfer granularity is a mem-
ory block of 4 KB pages. It is composed of an RPC server
running in the host thread and RPC clients running in the
GPU kernel threads. Once the host thread activates a GPU
kernel, it executes the RPC server, which waits for a request
from an RPC client. The major page fault handler running
in a GPU thread enqueues data transfer requests. For the
communication channel and data transfer, the RPC subsystem
allocates and updates the page locked memory using the
cudaMallocHost and cudaMemcpyAsync subroutines
in CUDA.

B. MANAGING CONCURRENCY
Our shared memory subsystem manages concurrency within
kernel threads with several concurrency idioms. The fast path
of page hits is free from any synchronization on the page
cache and RPC channels. The slow path of minor and major

VOLUME 5, 2017 10085



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

faults employs fine-grained locks and lock-free synchroniza-
tions for the hash table in the page cache and RPC channels.
We carefully address the potential problem of divergence
deadlock where a group of threads in a warp cannot make
progress when the lock owner thread cannot release the lock
when it becomes idle because of a branch divergence [5].
There are twomethods to solve this deadlock problem: serial-
izing the execution of the critical sections and using one lock
for each warp and critical section. The former method is used
to lock a cached state in the page cache hash table in handling
the major fault, whereas the latter method locks an element
of the RPC queue in handling the major page fault.

FIGURE 3. The page fault handler to solve the readers-writers problem.

There is a readers-writers problem on handling the minor
and major fault for each page cache; the major faults are
the side of writers and the minor faults are the side of read-
ers. And it should be a readers-preference to higher cache
availability. The solution that is achieved to avoid divergence
deadlock is shown in Figure 3.

The loop of the outside enables the serializing the execu-
tion of the critical sections. Even though some threads in a
warp fail to obtain the locks, the other threads can continue
to execute the critical section, and the failed threads can try
again to obtain the locks at next iteration. The condition vari-
able of read_mode enables to control the execution flow
of entering the readers’ section. The read_mode is updated
by the atomic operation, and the variable is utilized as the
double-checked locking mechanism. Thanks to this double-
checked locking mechanism, any spin-lock is not required

in the readers’ section, which the spin-lock may incur the
divergence deadlock. The value of the readers counts the
threads that entered the section of reader, and the value of
readers is updated by atomic operation. The busy-lock,
which uses reads, makes a writer to wait until all readers
exit the readers’ section, and this feature shows that it is a
readers-preference. Since the page cache is in the page mode,
the value of readers is guaranteed to decrease into zero,
and therefore, it’s free from the problem of dead lock.

V. METHODOLOY
This section describes benchmarks and the measurement
setup to evaluate performance of programming environments.

TABLE 2. Summary of the benchmarks.

A. BENCHMARKS
Table 2 presents six benchmarks to compare performance
for each programming environment. The benchmark column
lists the benchmarks’ names, the summary column summa-
rizes the computations in the benchmarks, and the last column
shows the data types in the computations.MM is a densematrix
multiplication program taking two square matrices. Gemm is
a matrix calculation program taking three square matrices
and two scalar values and producing an output square matrix.
Gemm has the identical complexity with MM, but it consumes
more memory space than MM. Gesummv performs a matrix
computation taking two square matrices, two scalar values,
and two vectors and producing a vector. Gesummv requires
a less amount of computation complexity than MM and Gemm
because it multiplies vectors withmatrices.Blackscholes
is a financial application taking vectors and producing vectors
to calculate put options. Series performs a vector calcula-
tion taking one vector of N elements and producing a vector
of 2N elements to compute Fourier coefficients. Series
uses significantly less memory space than Blackscholes.
SpMM is a sparse matrix multiplication program taking one
sparse matrix and one vector and producing a vector. SpMM
requires locking operations to avoid race conditions while
others do not need any synchronization.

Figure 4 reports communication ratio for each benchmark.
The horizontal axis represents benchmarks, and the vertical
bars show the three components of their execution times:
(1) kernel execution for computation times in the kernel

10086 VOLUME 5, 2017



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 4. Normalized execution times of communication and
computation.

subroutines, (2) D2H for transferring data from the device
(GPU) to the host (CPU), and (3) H2D for transferring data
from the host (CPU) to the device (GPU). Series, MM, and
Gemm are computation intensive because the fraction of their
kernel execution is more than 0.7. On the other hand, SpMM,
Gesummv and Blackscholes spend a large fraction of
their execution on transferring data between the host and the
device.

B. SETUP
We run all benchmark programs on a host machine with
two 2.7GHZ 12-core Intel Xeon E5-2697 v2 processors,
66GB main memory, and a 1GHz GTX 980TI GPU device
with 2,816 CUDA cores and 6GB memory. The machine
runs Linux kernel 3.13.0 in the Ubuntu 16.04 distribution
operating system. We implement each benchmark under the
programming environments in Table 1 and vary the input size
for each benchmark to cover memory sizes from a few mega
bytes to dozens of giga bytes. Each benchmark reports wall
clock times in milliseconds from the start to the completion
of the computation. To tolerate variations in nondeterministic
timing runs, we report the average of the last five executions
out of 12 iterations. When a benchmark runs for more than 8
hours, it reports a timeout.

VI. EVALUATION
This section evaluates and analyzes the performance of the
programming environments.

A. THROUGHPUT
Figure 5 reports the throughputs of the benchmark runs for
the various programming environments and input sizes. The
horizontal axis shows the input data size, and the vertical axis
shows the execution times of the benchmarks under various
programming environments. We apply a log scale to both
axes to acount for the large variations in the input size and
execution time. Owing to either timeouts or out-of-memory
errors, some programming environments may not show data

points for large amounts of input data. All data points exhibit
the pattern of an increasing the execution time as the input
size increases.
MM and Gemm show similar performance results. The two

programming environments employing CPUs perform worse
than the those employing GPUs or report timeouts. This
suggests that GPUs are desirable for intensive computations
with large data sets. For small data sets from 1K to 4K, the
conventional CUDA programming with distinct memory and
managed shared memory performs the best, whereas large
data sets from 8K to 32K present programming challenges.
The programming environment employing CUDA Stream
API performs the best, but this programming environment
may not express other kinds of computation as illustrated
in Section III. SBSVM processes this very large data set
at a somewhat decreased rate with respect to CUDA man-
aged memory. Figures 6a and 6b report composition of the
execution times in MM and Gemm when the inputs are
1K-by-1K matrices. SBSVM does not trigger any significant
communication activities, but its kernel execution time is
slower than the other two programming environments. This
slowdown comes from frequent minor faults which occur
when scanning the column vectors of the second input matrix
with little spatial locality. We believe that this slowdown will
be eliminated as we mature SBSVM.
Gesummv is a communication intensive benchmark con-

suming 90% of its execution time on data transfer as shown in
Figure 4. The programming environments employing CPUs
outperform the other environments employing GPUs over
a wide range of large data sets. The GPU programming
environments with distinct memory and managed memory
have similar performance capabilities, but they report out-
of-memory errors due to the limit of device memory when
the input size is 32K. However, SBSVM processes this 32K
input size while it performs as good as the other program-
ming environments employing GPUs. Figure 6c compares
the composition of the execution times in three programming
environments when the input size is 4K. Distinct memory
requires a significant amount of time for data transfer while
managed memory needs less time for data transfer. SBSVM
spends a smaller amount of time on transferring data than
the others, but its kernel execution performs the worst. As
a result, SBSVM performs as good as distinct memory and
managed sharedmemorywhile it overcomes the devicemem-
ory limit.
Blackscholes exhibits distinguishable performance

results where SBSVM performs the best over all input data
sets. In addition, page locked shared memory outperforms
distinct memory and managed shared memory. Figure 6d
compares the composition of the execution times in four
programming environments. SBSVM and page locked shared
memory show slow kernel execution times while managed
shared memory and distinct memory show large amounts of
overhead for memory communication. The net result is that
page locked shared memory and SBSVM perform better than
the others. This result suggests the performance potential of

VOLUME 5, 2017 10087



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 5. Performance of programming environments. (a) MM. The three programming environments labeled by ‘‘CPU,Java and
Stream API,shared memory,’’ ‘‘CPU,C/C++ and OpenMP,’’ and ‘‘GPU,C/C++ and CUDA,Page locked shared memory’’ report
timeouts when the input size N is larger than 16K. The two programming environments labeled by ‘‘GPU,C/C++ and
CUDA,Managed shared memory’’ and ‘‘GPU,C/C++ and CUDA,Distinct memory’’ report out-of-memory errors when the input size
N is larger than 16K. (b) Gemm. The three programming environments labeled by ‘‘CPU,Java and Stream API,shared memory,’’
‘‘CPU,C/C++ and OpenMP,’’ and ‘‘GPU,C/C++ and CUDA,Page locked shared memory’’ report timeouts when the input size N is
larger than 16K. The two programming environments labeled by ‘‘GPU,C/C++ and CUDA,Managed shared memory’’ and
‘‘GPU,C/C++ and CUDA,Distinct memory’’ report out-of-memory errors when the input size N is larger than 16K. (c) Gesummv.
All programming environments labeled by ‘‘GPU,C/C++ and CUDA,Managed shared memory’’ and ‘‘GPU,C/C++ and
CUDA,Distinct memory’’ report out-of-memory errors when the input size N is larger than 16K. (d) Blackscholes. The two
programming environments labeled by ‘‘GPU,C/C++ and CUDA,Managed shared memory’’ and ‘‘GPU,C/C++ and CUDA,Distinct
memory’’ report out-of-memory errors when the input size N larger than 64M. (e) Series. The two programming environments
labeled by ‘‘CPU,Java and Stream API,shared memory,’’ and ‘‘CPU,C/C++ and OpenMP,’’ report timeouts when the input size N is
larger than 65,536K. The two programming environments labeled by ‘‘GPU,C/C++ and CUDA,Managed shared memory’’ and
‘‘GPU,C/C++ and CUDA,Distinct memory’’report out-of-memory errors when the input size N larger than 65,536K. (f) SpMM. The
two programming environments labeled by ‘‘GPU,C/C++ and CUDA,Managed shared memory,’’ and ‘‘GPU,C/C++ and
CUDA,Distinct memory’’ report out-of-memory errors when the input size N larger than 8K.

SBSVM when the benchmark has large amounts of overhead
for memory communication.
Series is a computation intensive benchmark consum-

ing 99% of it execution time for kernel execution as show
in Figure 4. Not surprisingly, the GPU programming envi-

ronments outperform the other CPU programming envi-
ronments, which report timeouts when the input data size
is 524,288K. SBSVM and page locked shared memory
overcome the device memory limit while distinct memory
and managed shared memory report out-of-memory errors.

10088 VOLUME 5, 2017



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 6. Composition of execution times. (a) Elapsed time for MM, Input size is 1K. (b) Elapsed time for Gemm, Input size is 1K. (c) Elapsed
time for Gesummv, Input size is 8K. (d) Elapsed time for Blackscholes, Input size is 64M. (e) Elapsed time for Series, Input size is 131M.
(f) Elapsed time for SpMM, Input size is 8K.

Figure 6e compares the composition of the execution times
in four programming environments. All GPU programming
environments show similar performance.
SpMM is a communication intensive benchmark. It is

distinguishable from others in that it employs locks to

synchronize concurrent accesses to the elements in matri-
ces. GPU programming environments outperform CPU pro-
gramming environments over all data sets. Managed memory
performs the best, and the performance gap between man-
aged memory and SBSVM is quite significant. The random

VOLUME 5, 2017 10089



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

FIGURE 7. Time series of data transfer rates over the PCIe channel for MM. (a) Page locked shared memory. (b) Managed shared memory. (c) Distinct
memory. (d) Distinct memory with CUDA stream. (e) PCIe result for CUDA with cache.

memory access pattern seems to show low spatial locality
and trigger frequent page faults in SBSVM. This benchmark
seems to identify the overhead of the address translation in
SBSVM.

Based on these evaluation results, SBSVM is proven to
be an effective alternative of current GPU shared memory
schemes as it generally shows comparative performance to
CUDA distinct memory while maintaining programability
as shown in most benchmarks (MM, Gemm, Gesummv,
and SpMM). This is mainly because SBSVM highly reduces
the memory coherence traffic between CPU and GPU mem-
ory structures. Moreover, it often shows the best performance
for several benchmarks when the target workload requires
1) large memory transfer overhead (Blackscholes) or
2) larger data set more than the GPUmemory size (Series).
Therefore, SBSVM can efficiently resolve the distinct mem-
ory space problem of the traditional GPU programming
model with a minimum performance overhead.

B. HOST AND DEVICE COMMUNICATION
To characterize the communication patterns between the
host and device in the programming environments, Figure 7

reports the time series of the data transfer rate in bytes per
second for read and write requests over the PCIe channel
while executing the benchmarks for MM. The horizontal axis
normalizes the execution time and the vertical axis shows the
data size on a log scale. The page-locked shared memory
in Figure 7a transfers a large amount of data continuously
because all memory accesses in the kernel code trigger read
and write requests over the PCIe channel. The managed
shared memory model in Figure 7b triggers a data transfer in
the beginning as the data are resident in the device memory
and because all memory accesses from the host during the
initialization phase trigger PCIe traffic. The distinct memory
model in Figure 7c triggers PCIe read requests in the begin-
ning when the program manually moves the input matrices
from the host memory to the device memory. There are no
data transfer activities while the kernel is running. In the
end, this triggers write-back traffic when the host program
moves the output matrix from the device to the host. The
distinct memory with CUDA streaming in Figure 7d exhibits
several peaks in read and write requests because it transfers
submatrices between the host and device memory while exe-
cuting the kernels several times. SBSVM shows a pattern of

10090 VOLUME 5, 2017



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

continuous read and write requests similar to the pattern in
page locked memory because its major fault handler requests
data continuously over the RPC channel. The difference is
that SBSVM consumes less PCIe bandwidth because it does
not request data transfers when data appears in the page of
the device memory.

VII. THREATS TO VALIDITY
The goal of our comparative study is to examine the per-
formance and programmability tradeoffs in a variety of pro-
gramming environments and investigate the feasibility of
adaptive, transparent migration of Java computation to het-
erogeneous processors such as GPUs for big data processing.
Our comparative study is based on 36 programs exhibiting
the six benchmarks in Table 2 using the seven programming
environments including the six environments in Table 1 and
SBSVM in Section IV.

The seven programming environments and six benchmarks
do not cover all possible programming environments and
benchmarks. However, they cover several prevalent program-
ming languages such as Java and C andmemory spacemodels
such as shared and distinct memory for big data processing
frameworks written in Java [7] and heterogeneous proces-
sors [5]. The six benchmarks involve matrix and vector data,
which can be easily paralleled using data parallel processors
such as GPUs while big data computation would process a
wide variety of data types aswell asmatrix and vector. Further
evaluation with more environments and benchmarks remains
as future work.

The programmability of each programming environment
is a subjective metric, which is affected how benchmarks
organize their computation and communication and how pro-
grammers accept low-level features such as CUDA stream
API. Our qualitative analysis assumes that a programmer’s
productivity gets low when spending extra time on thinking
of how to move and deallocate data and writing the source
lines of managing data manually.

The performance of each programming environment is a
quantitative metric, which is directly measured by comparing
execution times of benchmarks over a number of inputs.
This comparison assumes that benchmark programs is opti-
mized equally well over all programming environments. This
assumption is likely to be valid because the six benchmark
programs express simple computations with dozens of source
lines in Java and C.

VIII. RELATED WORKS
A. PROGRAMMING ENVIRONMENTS
Heterogeneous systems increasingly cover a wide variety of
programming languages including C/C++, Python, and Java.
CUDA and OpenCL extend C/C++ with a few keywords
and provide a number of API routines to allow programmers
to offload data-parallel computations to GPUs. Language
bindings such as jCUDA and pyCUDA directly wrap the
API routines in Java and Python, and the kernel routines are
expressed as string values in Java and Python. The kernel

routines in C/C++ bypass any syntax and type checking, and
they cannot execute any routine written in Java and Python.
Dynamic compilers [9], [18], [19] relax these limitations.
To the best of our knowledge, no prior work compares pro-
gramming environments for big data processing as we do.

B. MEMORY MANAGEMENT
CUDA has naturally evolved its programming model from
a distinct memory space to shared memory as it is increas-
ingly used to process a large variety of data. CUDA 4
introduces unified virtual addressing (VUA) to allow both
the host and the device memories to be addressed together
in a single address space. CUDA 6 takes the next step of
introducing a unified memory as a pool of memory that is
migrated between the host and device automatically when
the memory is allocated through a CUDA runtime function
(cudaMallocManaged). Several studies have explored
implementations of the shared memory space between CPUs
and GPUs at multiple levels, including hardware [12], com-
piler [13], runtime library [14], [15], [20], and languages [21].
These studies inspired our software-based shared virtual
memory, which adapts the bimodal references, page cache,
and remote procedure calls in ActivePointers [14]. While
ActivePointers focuses on accessing large data sets in the
storage devices through the mmap interface, SBSVM focuses
on accessing data objects in the host memory from the
device kernel code. RSVM [15], GMAC [20], and CUDA
unified memory ask the host code to allocate shared memory
explicitly through API functions, including rsvm_malloc,
adsmAlloc, and cudaMallocManaged. GMAC [20]
and CUDA unified memory avoid the overhead of trans-
lating address values between host and device memory by
ensuring that shared objects are placed at the identical virtual
address in the two distint memories. SBSVM does not have
the restriction of allocating shared objects using a custom
memory allocator. Instead, it performs address translation in
kernel executions with a modest overhead.

IX. CONCLUSION
This article compares programming environments that
exploit heterogeneous systems for processing large data sets.
Our programming environments cover two processor types of
CPUs and GPUs, multiple programming language interfaces
such as Java, C/C++, StreamAPI, OpenMP, and CUDA, and
two memory space models including both distinct and shared
memories. In addition, we present a software-based shared
virtual memory to create a view of the host memory within
the device kernel. We compare these programming environ-
ments over a few benchmarks while varying the input size.
We validate the performance-programmability hierarchy, in
which a high performance for a large data set is achieved at
the cost of decreasing programming productivity. To balance
performance and programmability, an efficient implementa-
tion of the shared memory space would potentially approach
the throughput of distinct memory models with stream API.

VOLUME 5, 2017 10091



B. Ko et al.: Comparative Study of Programming Environments Exploiting Heterogeneous Systems for Big Data Processing

REFERENCES
[1] D. A. Reed and J. Dongarra, ‘‘Exascale computing and big data,’’Commun.

ACM, vol. 58, pp. 56–68, Jun. 2015.
[2] A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin, ‘‘GPU-aware dis-

tributed quantum simulation,’’ in Proc. ACM Symp. Appl. Comput. (SAC),
2014, pp. 860–865.

[3] S. Liang, The Java Native Interface: Programmer’s Guide Specification.
Boston, MA, USA: Addison-Wesley, 1999.

[4] Python Software Foundation. Python/C API Reference Manual, accessed
on Apr. 2017. [Online]. Available: https://docs.python.org/3/capi

[5] CUDA C Programming Guide 8.0, N. Corporation, Santa Clara, CA, USA,
2016.

[6] The OpenCL Specification Version: 2.1, document 23, KOWGroup, 2015.
[7] Apache Hadoop, accessed on Apr. 2017. [Online]. Available:

http://hadoop.apache.org
[8] Apache Spark, accessed on Apr. 2017. [Online]. Available:

http://spark.apache.org
[9] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar, ‘‘Compiling and opti-

mizing java 8 programs for GPU execution,’’ in Proc. Int. Conf. Parallel
Archit. Compilation (PACT), 2015, pp. 419–431.

[10] Cuda C Programming Guide 8.0, N. Corporation, 2016.
[11] Nvidia Tesla P100: Infinte Compute Power for the Modern Data

Center, accessed on Apr. 2017. [Online]. Available: http://images.
nvidia.com/content/tesla/pdf/nvidia-teslap100-techoverview.pdf

[12] Y. Kim, J. Lee, and J. Kim, ‘‘GPUdmm: A high-performance and memory-
oblivious GPU architecture using dynamic memory management,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2014,
pp. 546–557.

[13] J. Lee, M. Samadi, and S. Mahlke, ‘‘VAST: The illusion of a large memory
space for GPUs,’’ in Proc. Int. Conf. Parallel Archit. Compilation (PACT),
2014, pp. 443–454.

[14] S. Shahar, S. Bergman, and M. Silberstein, ‘‘ActivePointers: A case for
software address translation on GPUs,’’ in Proc. Int. Symp. Comput. Archit.
(ISCA), 2016, pp. 596–608.

[15] F. Ji, H. Lin, and X.Ma, ‘‘RSVM: A region-based software virtual memory
for GPU,’’ in Proc. Int. Conf. Parallel Archit. Compilation Techn. (PACT),
2013, pp. 269–278.

[16] PloyBench. The Polyhedral Benchmark Suite, accessed on Apr. 2017.
[Online]. Available: http://web.cs.ucla.edu/ pouchet/software/polybench/

[17] JGF. The Java Grande Forum Benchmark Suite, accessed on Apr. 2017.
[Online]. Available: https://www.epcc.ed.ac.uk/research/computing/
performancecharacterisationandbenchmarking/javagrandebenchmarksuite

[18] What is Aparapi? accessed on Apr. 2017. [Online]. Available:
http://aparapi.github.io/

[19] W. Zaremba, Y. Lin, and V. Grover, ‘‘JaBEE: Framework for object-
oriented Java bytecode compilation and execution on graphics processor
units,’’ inProc.WorkshopGeneral Purpose Process. Graph. Process. Units
(GPGPU), 2012, pp. 74–83.

[20] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, andW.-M.W. Hwu,
‘‘An asymmetric distributed shared memory model for heterogeneous
parallel systems,’’ in Proc. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), 2010, pp. 347–358.

[21] E. Holk, R. Newton, J. Siek, and A. Lumsdaine, ‘‘Region-based memory
management for GPU programming languages: Enabling rich data struc-
tures on a spartan host,’’ in Proc. Int. Conf. Object Oriented Program. Syst.
Lang. Appl. (OOPSLA), 2014, pp. 141–155.

BONGSUK KO received the B.S. degree in elec-
trical engineering from the Gwangju Institute of
Science and Technology in 2015, where he is
currently a Graduate Student with the School of
Electrical Engineering and Computer Science.

SEUNGHUN HAN received the B.E. degree
in computer science and engineering from
Chonbuk National University, in 2015. He is
currently a Graduate Student with the School
of Electrical Engineering and Computer Science,
Gwangju Institute of Science and Technology.

YONGJUN PARK received the Ph.D. degree
in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2013.
He is currently an Assistant Professor with the
Department of Computer Science and Engineer-
ing, Hanyang University, Seoul, South Korea.
His research interests include compilers and com-
puter architectures for various computer systems.

MOONGU JEON received the B.S. degree in
architectural engineering from Korea University
in 1998, the M.S. degrees in computer science
and civil engineering from the University of
Minnesota at Mineapolis, and the Ph.D. degree in
scientific computation, in 1994, 1999, and 2001,
respectively. He is currently a Professor with
the School of Electrical Engineering and Com-
puter Science, Gwangju Institute of Science and
Technology. His research interests include opti-

mization and pattern recognition.

BYEONGCHEOL LEE (M’17) received the B.E.
degrees in electronic and electrical engineer-
ing and computer science engineering from
POSTECH in 2004, and the M.A. and Ph.D.
degrees in computer science from the University
of Texas at Austin in 2006 and 2011, respectively.
He is currently a Full-Time Instructor with the
Gwangju Institute of Science and Technology. His
research interests include dynamic analysis and
optimization.

10092 VOLUME 5, 2017


