
Efficient GPU multitasking
with latency minimization and
cache boosting

Jiho Kim, Minsung Chu, and Yongjun Parka)

School of Electronic and Electrical Engineering, Hongik University,

Seoul, Korea

a) yongjun.park@hongik.ac.kr

Abstract: GPU spatial multitasking has been proven to be quite effective at

executing different applications concurrently using SM partitioning. How-

ever, while it maximizes total throughput, latency-critical applications often

cannot meet their deadlines due to the increased execution time. Further-

more, SM partitioning cannot allocate the appropriate L1 cache size per

kernel. To solve these problems, this paper proposes a new application-aware

resource allocation framework called GPU Fine-Tuner, for assigning appro-

priate resources to GPU kernels. To minimize the execution time of latency-

constrained applications, it assigns them more SMs when performance is

not affected. It also increases the cache size of SMs for cache-sensitive

kernels using resource borrowing from neighbors for cache-insensitive

kernels. Experimental results show that the Fine-Tuner outperforms GPU

spatial multitasking with up to 15% less average latency without perform-

ance degradation.

Keywords: GPGPU, multitasking, energy, resource sharing, workload

balancing

Classification: Integrated circuits

References

[1] J. T. Adriaens, et al.: “The case for GPGPU spatial multitasking,” HPCA
(2012) 1 (DOI: 10.1109/HPCA.2012.6168946).

[2] P. Aguilera, et al.: “QoS-aware dynamic resource allocation for spatial
multitasking GPUs,” ASP-DAC (2014) 726 (DOI: 10.1109/ASPDAC.2014.
6742976).

[3] D. H. Albonesi: “Selective cache ways: On demand cache resource allocation,”
MICRO (1999) 248.

[4] A. Bakhoda, et al.: “Analyzing CUDA workloads using a detailed GPU
simulator,” ISPASS (2009) 163 (DOI: 10.1109/ISPASS.2009.4919648).

[5] S. Che, et al.: “Rodinia: A benchmark suite for heterogeneous computing,”
IISWC (2009) 163 (DOI: 10.1109/IISWC.2009.5306797).

[6] P. N. Glaskowsky: “NVIDIA’s Fermi: the first complete GPU computing
architecture,” White paper (2009).

[7] C. Gregg, et al.: “Fine-grained resource sharing for concurrent GPGPU
kernels,” USENIX (2012) 10.

[8] B. He, et al.: “Mars: A MapReduce framework on graphics processors,” PACT
(2008) 260 (DOI: 10.1145/1454115.1454152).

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

1

LETTER IEICE Electronics Express, Vol.14, No.7, 1–12

http://dx.doi.org/10.1109/HPCA.2012.6168946
http://dx.doi.org/10.1109/HPCA.2012.6168946
http://dx.doi.org/10.1109/HPCA.2012.6168946
http://dx.doi.org/10.1109/HPCA.2012.6168946
http://dx.doi.org/10.1109/ASPDAC.2014.6742976
http://dx.doi.org/10.1109/ASPDAC.2014.6742976
http://dx.doi.org/10.1109/ASPDAC.2014.6742976
http://dx.doi.org/10.1109/ASPDAC.2014.6742976
http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454152
http://dx.doi.org/10.1145/1454115.1454152


[9] Y. Liang, et al.: “Efficient GPU spatial-temporal multitasking,” IEEE Trans.
Parallel Distrib. Syst. 26 (2015) 748 (DOI: 10.1109/TPDS.2014.2313342).

[10] J. Nickolls, et al.: “NVIDIA CUDA software and GPU parallel computing
architecture,” Microprocessor Forum (2007).

[11] S. Pai, et al.: “Improving GPGPU concurrency with elastic kernels,” ASPLOS
(2013) 407 (DOI: 10.1145/2451116.2451160).

[12] J. J. K. Park, et al.: “Chimera: Collaborative preemption for multitasking on a
shared GPU,” ASPLOS (2015) 593 (DOI: 10.1145/2694344.2694346).

[13] Polybench: “The Polyhedral benchmark suit” (2011) http://www.cse.ohio-state.
edu/~pouchet/software/polybench/GPU.

[14] I. Tanasic, et al.: “Enabling preemptive multiprogramming on GPUs,” ISCA
(2014) 193 (DOI: 10.1109/ISCA.2014.6853208).

[15] Z. Wang, et al.: “Simultaneous Multikernel GPU: Multi-tasking throughput
processors via fine-grained sharing,” HPCA (2016) 358 (DOI: 10.1109/HPCA.
2016.7446078).

[16] Q. Xu, et al.: “Warped-slicer: Efficient Intra-SM slicing through dynamic
resource partitioning for GPU multiprogramming,” ISCA (2016) 230 (DOI:
10.1109/ISCA.2016.29).

[17] G. Pekhimenko, et al.: “A case for toggle-aware compression for GPU
systems,” HPCA (2016) 188 (DOI: 10.1109/HPCA.2016.7446064).

[18] N. Agarwal, et al.: “Selective GPU caches to eliminate CPU-GPU HW cache
coherence,” HPCA (2016) 494 (DOI: 10.1109/HPCA.2016.7446089).

[19] J. Kloosterman, et al.: “WarpPool: Sharing requests with inter-warp coalescing
for throughput processors,” MICRO (2015) 433 (DOI: 10.1145/2830772.
2830830).

1 Introduction

Computing platforms for mobile and high-performance computing devices must

support high-performance capabilities while retaining low energy consumption.

Graphics processing units (GPUs) are attractive solutions for this because they

provide high throughput by accelerating massively data-parallel applications effi-

ciently. Therefore, GPUs have become the essential parts of most computing

systems in the form of heterogeneous architectures. As most heterogeneous systems

generally consist of multiple CPUs and a shared GPU, the shared GPU must

provide a smart multitasking mechanism in order to handle multiple data-parallel

kernels simultaneously from the CPUs.

In order to efficiently utilize GPU resources between multiple applications,

spatial multitasking [1, 2] is one of the most popular solutions, which partitions

resources for each application at streaming multiprocessor (SM) granularity. As

many applications do not require full GPU resources, spatial multitasking can

improve total system throughput with concurrent execution of multiple applications

compared to temporal multitasking [12, 14].

However, spatial multitasking may be ineffective for latency-sensitive applica-

tions as the execution latency of each application highly increases compared to

normal (single-application) execution, since it cannot fully occupy all the available

resources [1]. With increased execution latency, latency-sensitive applications often

violate deadlines, even when they are launched immediately. The second problem

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

2

IEICE Electronics Express, Vol.14, No.7, 1–12

http://dx.doi.org/10.1109/TPDS.2014.2313342
http://dx.doi.org/10.1109/TPDS.2014.2313342
http://dx.doi.org/10.1109/TPDS.2014.2313342
http://dx.doi.org/10.1109/TPDS.2014.2313342
http://dx.doi.org/10.1145/2451116.2451160
http://dx.doi.org/10.1145/2451116.2451160
http://dx.doi.org/10.1145/2451116.2451160
http://dx.doi.org/10.1145/2694344.2694346
http://dx.doi.org/10.1145/2694344.2694346
http://dx.doi.org/10.1145/2694344.2694346
http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU
http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU
http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU
http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU
http://dx.doi.org/10.1109/ISCA.2014.6853208
http://dx.doi.org/10.1109/ISCA.2014.6853208
http://dx.doi.org/10.1109/ISCA.2014.6853208
http://dx.doi.org/10.1109/ISCA.2014.6853208
http://dx.doi.org/10.1109/HPCA.2016.7446078
http://dx.doi.org/10.1109/HPCA.2016.7446078
http://dx.doi.org/10.1109/HPCA.2016.7446078
http://dx.doi.org/10.1109/HPCA.2016.7446078
http://dx.doi.org/10.1109/ISCA.2016.29
http://dx.doi.org/10.1109/ISCA.2016.29
http://dx.doi.org/10.1109/ISCA.2016.29
http://dx.doi.org/10.1109/ISCA.2016.29
http://dx.doi.org/10.1109/ISCA.2016.29
http://dx.doi.org/10.1109/HPCA.2016.7446064
http://dx.doi.org/10.1109/HPCA.2016.7446064
http://dx.doi.org/10.1109/HPCA.2016.7446064
http://dx.doi.org/10.1109/HPCA.2016.7446064
http://dx.doi.org/10.1109/HPCA.2016.7446089
http://dx.doi.org/10.1109/HPCA.2016.7446089
http://dx.doi.org/10.1109/HPCA.2016.7446089
http://dx.doi.org/10.1109/HPCA.2016.7446089
http://dx.doi.org/10.1145/2830772.2830830
http://dx.doi.org/10.1145/2830772.2830830
http://dx.doi.org/10.1145/2830772.2830830


of spatial multitasking is the mismatch between the L1 cache resource requirement

of each kernel and the fixed L1 cache size of SMs. For example, compute-intensive

kernels generally do not fully utilize the L1 cache but memory-intensive kernel

performance highly depends on L1 cache size.

To resolve these inefficiencies, this paper proposes an application-aware

resource allocation framework referred to as the GPU Fine-Tuner. Based on spatial

multitasking, it first assigns more SMs to higher priority kernels only when the total

system throughput is not changed with different SM partitioning. With the smart

SM resource adjustment, the execution latency of higher priority kernels, which are

latency-sensitive kernels in most cases, can be minimized so as not to violate their

strict deadlines. GPU Fine-Tuner also tries to allocate more L1 cache resources to

cache-sensitive kernels by borrowing from neighboring SMs running cache-insen-

sitive kernels (cache boost). The cache resource allocation process is performed

when a new kernel is launched with minimum reallocation overhead because the

original data backup process in the borrowing partition is not required due to the

GPU programming model [10]. Based on these novel techniques, the GPU Fine-

Tuner achieves up to 15% lower average latency without the total throughput loss.

2 Background and motivation

In this paper, we first identified compute-/memory-intensive kernels from well-

known GPGPU benchmark suites using a well-known GPU simulator (GPGPU-

Sim), and the methodology for this task is detailed in Section 4 with Fig. 8

and Table I.

GPU spatial multitasking [1] is effective in improving total system throughput

by resource partitioning for mltiple applications. However, as each application

cannot utilize all the resources, the execution latency of each kernel greatly

increases compared to its single execution. Fig. 1 shows the impact of execution

latency of different applications when each kernel is executed with spatial multi-

tasking compared to single execution. In this figure, all the compute-intensive

kernels have more than 60% increased latency, and most of the memory-intensive

kernels also show high performance degradation. This is because compute-inten-

sive applications normally require full SMs, and the SM requirement of memory-

intensive applications may be smaller than the full GPU but still suffer. This result

means that spatial multitasking may cause latency violation when some applica-

tions have critical deadlines, even though the total system throughput is dramat-

ically improved and the starvation problem is solved.

Fixed L1 cache size of each SM may also be a limiting factor in maximizing the

total utilization of computation resources in SM-level spatial multitasking due to

the different cache-sensitivities of applications. Fig. 2 shows the cache sensitivity

variance over multiple data parallel kernels. In this figure, we measured the

performance of kernels with different sizes of L1 cache from 8 kB to 32 kB by

changing the number of ways and normalized them according to the performance

of the 16 kB size. Fig. 2(a) shows the kernels that do not require full cache size

(Cache-Insensitive) for maximum performance. Most of these kernels are compute-

intensive or task-bounded, which means the total number of threads is too small.

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

3

IEICE Electronics Express, Vol.14, No.7, 1–12



Fig. 2(b) depicts the kernels with saturated performance with respect to cache size.

Performance of the kernels is highly improved with the baseline cache size and then

shows only little improvement over this size. Fig. 2(c) shows the kernels with high

performance scalability with respect to the L1 cache size (Cache-Sensitive). Based

on the cache sensitivity variance, we found an opportunity to further improve the

performance of cache-sensitive kernels by using the unused cache partition for

cache-insensitive kernels.

3 GPU Fine-Tuner

The GPU Fine-Tuner presented here is an advanced kernel scheduler for adjusting

two parameters: the number of SMs and the L1 cache size per kernel. The Fine-

Tuner decides these parameters based on the priority comparison between two

co-running kernels. They are updated whenever new kernel is launched, and the

Scheduling-Tuner and the Cache Tuner then determine SM and cache allocation

policy.

Fig. 3(a) illustrates the overall architecture of the GPU Fine-Tuner. The Fine-

Tuner consists of three parts: Master/slave priority selector, Scheduling Tuner, and

Cache Tuner. The Master/slave priority selector identifies the types of kernels

and determines the priorities of kernels at the application and kernel level. In this

priority selector, high priority is called Master, and low priority is called Slave. The

scheduling tuner chooses the SM partitioning policy based on the kernel type

combination. If two co-running kernels are both compute-intensive, priority-based

Fig. 1. Single kernel latency increase of multi-kernel execution
compared to single-kernel execution on GPUs (simulation-
based)

Fig. 2. Different kernel types based on cache sensitivity (simulation-
based)

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

4

IEICE Electronics Express, Vol.14, No.7, 1–12



SM partitioning policy is selected for latency minimization, or even partitioning is

used. In priority-based partitioning, more SMs are allocated to the application-level

high priority kernel. The cache tuner performs the L1 cache size allocation for co-

running kernels based on the cache sensitivity combination. As cache insensitive

kernels do not need to use all the L1 cache of the SMs, some partitions can be

used for other kernels. Based on this insight, if a current kernel (kernel-master) is

cache sensitive and a newly launched kernel (kernel-slave) is cache insensitive, the

current kernel decides to use some partition of the L1 cache of SMs for the new

kernel. (cache boost) As the cache borrowing is performed between neighbor SMs,

every two neighbor SMs comprise the coupled-SM, which share L1 caches with

each other as shown in Fig. 3(a).

Fig. 3(b) describes the resource assignment flow of the GPU Fine-Tuner. First,

if a kernel is newly launched, both the kernel and the currently running kernel have

to update their priorities on the priority selector. (Section 3.1) The scheduling

tuner then tries to choose the priority-based SM allocation policy that gives more

SMs to the application-level master kernel when both kernels are compute in-

tensive. (Section 3.2) Lastly, the cache tuner tries to assign more L1 cache

resources to a cache-sensitive kernel by resource borrowing from the neighboring

SM. (Section 3.3)

3.1 Master/slave priority selector

Two tuners basically control their resource allocation based on their kernel prior-

ities and their characteristics. As discussed above, we call high priority the master

and the other slave. The master/slave priority selector contains the kernel type and

the priority information and provides them to the tuners. For kernel type informa-

tion, it saves the compute-intensity and cache-sensitivity of each kernel.

Fig. 3. GPU Fine-Tuner

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

5

IEICE Electronics Express, Vol.14, No.7, 1–12



The information can be determined by the programmer’s knowledge about the

target application or using profiling tools from GPU vendors such as nvprof from

NVIDIA. For example, compute/memory intensity could be determined by the

ratio of Load/Store instructions to total instructions and cache sensitivity could also

be determined by the hit/miss ratio of caches from profiling. In our framework, the

information is manually added through simple code modification of the original

CUDA program, as shown in Fig. 3(a). The modified-compiler then embeds the

additional information to the execution binary, and GPUs can save the data to the

additional special registers when each kernel is newly launched. In addition to this,

the programmer can set kernels of an application as latency critical in a similar

way when the programmer decides the application is latency constrained, such as

in health monitoring system applications that need to check the user’s health status

promptly with a hard deadline.

Fig. 4(a) depicts the kernel level master/slave (K-MS/SL) selection process.

When several kernels are co-executing on a GPU, the earliest invoked kernel is

designated the Master and the remainders are Slaves. Thus, the Master kernel can

be changed when the previous Master kernel is finished. Similar to K-MS/SL

selection, the application level master/slave (A-MS/SL) relationship is also deter-

mined (Fig. 4(b)). Different from K-MS/SL, the A-MS/SL relationship is the

priority difference between whole applications having multiple kernels. Therefore,

the relationship depends on which application is more latency constrained based

on user-annotated information. For example, if both applications are not latency

constrained, the earlier started application will be the A-MS. This relationship is

only changed when previous Master application’s last kernel is finished. The Fine-

Tuner updates the A-MS/SL and K-MS/SL information for the Scheduling and

Cache tuner when either one of the executing kernels is finished or a new kernel is

launched as shown in Fig. 3(b) and Fig. 4.

3.2 Scheduling tuner

The Scheduling tuner decides to give more SMs (up to 75%) to A-MS kernels only

when the total system throughput is not affected, since both kernels are compute

intensive. As compute intensive kernel performance is nearly proportional to the

number of SMs, the total system throughput will be nearly constant per different

SM allocated combination and the execution time of the A-MS application can be

minimized by obtaining more SMs. In general, when co-running two applications

Fig. 4. Master/slave priority selection example

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

6

IEICE Electronics Express, Vol.14, No.7, 1–12



where compute intensive kernels are dominant, the A-MS application execution

time will be highly reduced.

Fig. 5 describes the total system throughput and kernel execution latency

comparison for two different cases when running two compute intensive kernels

with and without a scheduling tuner on SM multitasking. Fig. 5(a) shows that the

total execution time and the average execution latency of two kernels are the same

as M cycles on evenly partitioned execution. However, when Kernel A is latency

constrained, the scheduling tuner allocates more SM resources to Kernel A, as

shown in Fig. 5(b). In this case, the average execution latency is reduced due to the

smaller latency of Kernel A execution (N cycles) without total execution time loss.

This analysis shows that the scheduling tuner can vary SM allocation freely without

performance degradation, and therefore, the latency of critical applications can be

minimized by an allocation ratio adjustment when co-running kernels are compute

intensive.

3.3 Cache Tuner

The Cache Tuner adjusts the L1 cache resource assignment of co-running kernels

when possible (cache boost). The Cache Tuner first checks the possibility of cache

borrowing. Cache borrowing is only allowed when the K-MS (earlier) kernel is

cache sensitive and the K-SL (newly launched) kernel is cache insensitive.

Borrowing for the opposite combination is not allowed because performance

Fig. 5. System throughput and execution latency analysis

Fig. 6. Cache boost architecture

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

7

IEICE Electronics Express, Vol.14, No.7, 1–12



degradation may occur when cached data for the master kernel is lost by cache

repartitioning.

Implementation of cache boost is similar to well-known cache way partitioning

[3]. At the high-level, a subset of the ways in the L1 cache of SMs for the K-SL

kernel is logically disabled for its own execution, and the subset is used for K-MS

kernel execution as the logically extended ways of the L1 cache of SMs for the

K-MS kernel. To realize this, only small cache access selection logics and data

read selection logics are added between every two neighboring cores (coupled-SM)

as shown in Fig. 6. Fig. 6(a) shows that the cache access of SM0 can be extended

to a subset of the ways of the SM1 L1 cache by boost enable signal, and Fig. 6(b)

shows that the cached data from the neighboring SM (SM1) can be used for the

K-MS kernel. Different from general dynamic cache repartitioning techniques, a

data consistency problem does not exist because the GPU L1 cache’s write policy is

basically write-evict for Hit and no-allocation for Miss [10].

3.4 Example execution scenario using the GPU Fine-Tuner

An example execution scenario is shown in Fig. 7. In this example, we assume that

two applications (App0, App1) having three kernels each are executed in parallel,

and App0 is A-MS as it is latency-constrained. Based on this assumption, Fig. 7(a)

shows the normal execution using even partitioning, where each half of the SMs is

allocated to two applications without considering the hard deadline of App0.

Compared to this, Fig. 7(b) shows the execution with the GPU Fine-Tuner. In

this scenario, the execution latency of App0 can be minimized by assigning App0

more SMs when both co-running kernels are compute intensive ((2): scheduling

tuner) and assigning App0 more L1 cache ways when the App0 kernel is cache

sensitive and the App1 kernel is cache insensitive ((4): cache tuner). Also, the

increased latency of App1 can be reduced using cache borrowing as it is not based

on application level priority. ((3): cache tuner)

4 Experiments

In this work, we used GPGPU-Sim v3.2.2 [4, 17, 18] to evaluate the GPU Fine-

Tuner. The Fermi architecture model [6, 18, 19] was used for our evaluation.

Fig. 7. Example execution using the GPU Fine-Tuner

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

8

IEICE Electronics Express, Vol.14, No.7, 1–12



Table I(a) shows the configuration parameters of our model. We use Extended Even

Partition as a baseline scheduling policy for a fair comparison. Extended means

non-used SMs are allocated to another kernel if one of the co-running kernels is

task-bounded, which means that the number of thread blocks is too small to fully

occupy the SMs.

In this work, we classify various kernels chosen from well-known GPGPU

benchmarks such as Rodinia [5], polybench [13] and Mars [8] into compute (COM)

and memory (MEM) intensive types based on profile information. For this, we

measured the performance of each kernel with different numbers of SMs from 1 to

15, and normalized them with the performance of one SM as shown in Fig. 8.

Kernels with highly scalable performance are compute intensive, and others are

memory intensive. All the benchmarks for evaluation are shown in Table I(b) with

each kernel type and cache sensitivity. We also categorize the application type

based on the type of the dominant kernel.

4.1 Results

We simulated all pairs of the listed benchmarks. In order to avoid long-running

benchmarks having a significant portion of running time on their own, different

execution lengths of two benchmarks were modified to be similar within 3% of the

total cycle by re-running each benchmark several times.

Fig. 8. Kernel type classification

Table I. GPGPU-Sim configuration and benchmark list

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

9

IEICE Electronics Express, Vol.14, No.7, 1–12



Fig. 9(a) shows the total average latency improvement of the GPU Fine-Tuner.

On average, the Fine Tuner improves the average latency for COM+COM,

MEM+COM, and MEM+MEM by 14.9%, 3.3%, 1.1%, respectively. The overall

average latency improvement of the Fine Tuner is 5.2%. The scheduling tuner

mainly contributes to the COM+COM case and the cache tuner mainly contributes

to the MEM+COM case. In the MEM+MEM case, a slight performance improve-

ment can be obtained with cache borrowing because some memory intensive

kernels are cache insensitive. Fig. 9(b) also shows the system throughput of our

experiments. The result shows a 0.4% average improvement of system throughput

with a slight loss from priority-based SM scheduling and a slight gain from cache

borrowing. Therefore, we can conclude that the GPU Fine-Tuner has little effect on

system throughput when latency is optimized.

Fig. 10 presents detailed improvements of average latency in all the application

combinations. All the combinations in COM+COM improve up to 20% and more

than half of the combinations in MEM+COM improve up to 13%. For MEM+
MEM combinations, latency is improved for two combinations with SM because

cache borrowing is applied because a dominant kernel in SM is cache sensitive.

4.2 Hardware overhead

The hardware overhead of the GPU Fine-Tuner is twofold: special registers and

cache borrowing support logic. First, several special registers are required to store

the annotated data from the user (cache sensitivity, compute intensity, and latency

criticality) and two types of master/slave information, but the overhead is negli-

(a) Latency (b) Throughput

Fig. 9. Latency and system throughput

Fig. 10. Individual latency improvement of applications

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

10

IEICE Electronics Express, Vol.14, No.7, 1–12



gible. Second, a substantial amount of additional logic is required to support cache

borrowing. To access another SM’s cache, as shown in Fig. 6, a 2-input mux for tag

match per cache line, two muxes to determine Hit/Miss information and output

data direction per cache way, and some additional logic are required per SM. In

order to estimate the hardware overhead of the logic, RTL Verilog implementation

for the routing logic is used and synthesized with the Synopsys tools using 65 nm

technology. We then scaled the result to 40 nm technology to match the GTX 480

baseline system [6, 19]. As a result, the GPU fine-tuner specific logic is only

0.014mm2, which is only 0.003% of the total GPU area (529mm2) [19].

4.3 Case study: PF+BP and HS+SM

This section shows the detailed difference between Even partitioning and Fine-

Tuner execution from two executions. In both cases, total number of executed

instructions are the same for Even and Fine-Tuner execution.

Fig. 11(a) shows PF+BP execution. For even partition, total SMs are divided

by two and they are allocated to the applications (Fig. 11(a)(1)). However, the

Fine-Tuner allocates BP more SMs through priority-based partitioning because BP

is the A-MS application. Therefore BP execution is finished earlier than the evenly

partitioned case while retaining similar throughput (Fig. 11(a)(2)).

Fig. 11(b) shows HS+SM execution, which has memory-intensive and com-

pute-intensive kernels. For even partition, HS is executed using more SMs because

SM is task-bounded (small total number of threads) (Fig. 11(b)(1)). Compared to

this, the total cycle with the Fine-Tuner can be minimized (4% gain) by applying

cache borrowing (Fig. 11(b)(2)).

Fig. 11. Execution cases: PF+BP and HS+SM

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

11

IEICE Electronics Express, Vol.14, No.7, 1–12



5 Related works

Several software [7, 9, 11] and hardware [1, 12, 2] approaches for GPU multi-

tasking has been introduced before. These works generally focus on SM level

partitioning, and did not consider resources inside SMs. Preemption mechanism

[12] and dynamic scheduling [2] are orthogonal to our research, and therefore can

be applied to our system. Recently, simultaneous multi-kernel, (SMK) which

executes multiple kernels within a same SM, is proposed to improve the utilization

of resources inside SMs [15, 16]. Though these hardware algorithms can optimize

thread block allocation for high resource utilization inside SMs, the control logic is

too complex. Our research is different from the technique in that we don’t require

complex control logic to use idle resources.

6 Conclusion

Graphics processing units (GPUs) present a powerful platform by providing high

computation throughput for massively parallel applications. As modern GPUs are

used as an shared resource on recent heterogeneous platforms, efficient execution

of multiple applications on GPUs has become one of the central challenges. GPU

spatial multitasking is one of the promising solutions for this but still suffer from

increased latency and resource under-utilization inside SMs. In this paper, we

propose the GPU Fine-Tuner to perform smart resource allocation process. First,

it minimizes the execution time of latency-critical applications by allocating more

SMs. Second, it improves the performance of cache sensitive kernels by getting

more L1 cache ways from neighboring SMs when possible. By applying these

novel techniques, the GPU Fine-Tuner achieves up to 15% lower average latency

without the total throughput loss.

Acknowledgments

This work was supported in part by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-

2015R1C1A1A01053844 and No. NRF-2015K2A1A2070541) and the Korea

Institute for Advancement of Technology (KIAT) grant funded by the Korean

government (Motie: Ministry of Trade, Industry & Energy, HRD Program for

Software-SoC convergence) (No. N0001883).

© IEICE 2017
DOI: 10.1587/elex.14.20161158
Received November 23, 2016
Accepted December 20, 2016
Publicized January 16, 2017
Copyedited April 10, 2017

12

IEICE Electronics Express, Vol.14, No.7, 1–12


