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ABSTRACT

Accurate detection of copy number alterations (CNAs) using next-generation 
sequencing technology is essential for the development and application of more 
precise medical treatments for human cancer. Here, we evaluated seven CNA 
estimation tools (ExomeCNV, CoNIFER, VarScan2, CODEX, ngCGH, saasCNV, and 
falcon) using whole-exome sequencing data from 419 breast cancer tumor-normal 
sample pairs from The Cancer Genome Atlas. Estimations generated using each tool 
were converted into gene-based copy numbers; concordance for gains and losses 
and the sensitivity and specificity of each tool were compared to validated copy 
numbers from a single nucleotide polymorphism reference array. The concordance 
and sensitivity of the tumor-normal pair methods for estimating CNAs (saasCNV, 
ExomeCNV, and VarScan2) were better than those of the tumor batch methods 
(CoNIFER and CODEX). SaasCNV had the highest gain and loss concordances (65.0%), 
sensitivity (69.4%), and specificity (89.1%) for estimating copy number gains or 
losses. These findings indicate that improved CNA detection algorithms are needed 
to more accurately interpret whole-exome sequencing results in human cancer.

INTRODUCTION

The accumulation of genetic aberrations, ranging 
from the single nucleotide to the chromosome level, leads 
to various human diseases, including cancer. Several 
types of genetic aberrations, such as single nucleotide 
polymorphisms (SNP), insertions, deletions, duplications, 
and inversions, are associated with cancer. Copy-number 
alterations (CNAs) are defined as copy number variations 
(CNVs), including duplication, amplification, deletion, 
and homozygous deletion, in a specific genomic region 
in somatic cells [1]. Many CNAs have been identified in 
regions of the genome that contain multiple oncogenes and 
tumor suppressors [1–3], and these CNAs correlate with 
clinical outcomes and prognosis in various types of cancer, 
including colon, prostate, and breast cancers and leukemia 
[4–9]. These findings indicate that CNAs are important 
predictive and prognostic biomarkers in human cancer.

In recent years, high-throughput approaches, 
including array comparative genomic hybridization 

(aCGH) [10], SNP arrays [11, 12], and various forms of 
next-generation sequencing (NGS), such as whole-genome 
sequencing (WGS) and whole-exome sequencing (WES) 
[13–16], have been widely used to identify CNAs. NGS 
generates a great deal of information not only on genomic 
sequences and substitutional mutations, but also on CNVs 
or CNAs; this information can make possible the use of 
personalized medicine or precision oncology in treatment 
strategies. As the cost of WGS and WES decreases, they 
have become increasingly useful in cancer studies [17]. 
WES in particular allows for high coverage at a relatively 
low cost by targeting only the protein-coding regions of 
the genome, and may therefore be especially useful in 
clinical assays. However, the systematic noise associated 
with WES data, including signal variation caused by 
exon trapping bias, contamination by normal tissue, and 
multiple clones in the tumor sample, complicates the 
estimation of CNAs [18]. Additional bioinformatics tools 
are needed to more precisely estimate CNAs from WES 
data.
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Several tools have been developed for estimating 
somatic CNAs using NGS data. For example, CNV-seq, 
ReadDepth, CNVnator, and HMMcopy use WGS data, and 
ExomeCNV, VarScan2, CoNVEX, CODEX, CoNIFER, 
and exome2cnv use WES data as inputs. Control_FREEC, 
saasCNV, ngCGH, and falcon use both WGS and WES 
[18, 19]. Each tool is characterized by distinct properties. 
For instance, ExomeCNV uses the log coverage ratio 
and requires a control set [20]. CoNIFER uses singular 
value decomposition methodology and does not require 
a control set [14]. VarScan2 uses pairwise comparison of 
read depth and population-based methods [21]. CODEX 
uses Poisson likelihood-based recursive segmentation and 
requires normalization using normal samples [22]. NgCGH 
computes a pseudo-CGH using simple coverage counting 
for the tumor relative to the normal sample. SaasCNV and 
falcon estimate allele-specific copy numbers based on B 
allele frequency [23, 24]. Studies have also been conducted 
to compare these CNA estimation algorithms [10, 25–27]. 
However, these studies compared WES-based CNAs with 
reference CNAs only at the exon level. Characterization 
of gene-based CNAs is very important in general cancer 
studies because knowledge of gene amplifications or 
deletions is crucial for diagnosis and treatment decisions.

In this study, we evaluated the ability of seven 
different CNA calling algorithms (ExomeCNV, CoNIFER, 
VarScan2, CODEX, ngCGH, saasCNV, and falcon) to 
estimate gene-based CNAs from WES data as compared 
to reference copy number data obtained from the SNP 
array (Genome-Wide Human SNP Array 6.0). Although 
CoNIFER was designed to identify CNVs at the population 
level, we used it here for comparison with tumor-normal 
pair CNA estimation. For these estimations, we used 419 
breast cancer samples from The Cancer Genome Atlas 
(TCGA) project. The TCGA breast cancer dataset contains 
not only WES data, but also SNP6.0 array-based copy 
number data that were generated using the same DNA 
samples and which reflect the exact CNA status of each 
sample. By comparing the WES-based CNA estimations 
with the SNP6.0 copy numbers, we evaluated the accuracy 
and clinical applicability of the CNA estimation tools.

RESULTS

Estimated CNA segment sizes at the exon level 
differ among the algorithms

To evaluate the accuracy of conventional CNA 
detection tools at the gene level, we compared the accuracy 
of seven different WES-based CNA estimation algorithms 
(ExomeCNV, CoNIFER, VarScan2, CODEX, ngCGH, 
saasCNV, and falcon) to the SNP6.0 copy numbers 
generated using the same DNA samples from the TCGA 
dataset (Supplementary Figure 1). A summary of the 7 
WES CNA estimation tools is presented in Table 1. We 
first assessed the CNA segment sizes obtained using these 
algorithms; each tool estimated a different distribution of 

CNA sizes (Figure 1, Supplementary Figure 2). Consistent 
with previous studies [26], CODEX and ExomeCNV 
estimated the CNAs evenly and with a normal distribution 
of sizes. In comparison, saasCNV and falcon estimated 
relatively longer CNAs, while ngCGH estimated shorter 
CNAs. These results reflect differences in the algorithms 
used in each tool. Because the average genomic size of a 
human gene is 10 ~ 15 kbps and because many of the CNA 
segment sizes estimated based on WES were smaller, the 
results were merged to obtain representative copy numbers 
for one gene. Unexpectedly, the average CNA segment sizes 
per gene, which varied depending on the algorithm used, 
were large (ExomeCNV, 2.30 segments per gene; CoNIFER, 
2.25; VarScan2, 2.28; CODEX, 2.10, ngCGH, 25.71; 
saasCNV, 2.17; and falcon, 2.33). Each tool incorporated 
specific numerical values into the estimation; these values 
were converted into copy numbers for each segment. Among 
the 7 estimation tools, ngCGH estimated the largest number 
of CNAs and, accordingly, the smallest CNA segment size 
(Figure 1, Supplementary Figure 2). These data indicate that 
CNA estimations based on a single WES BAM file differ 
depending on which estimation tool is used.

Gene-based CNA counts vary between the 
different algorithms and the reference

We next converted each CNA estimation into gene-
based copy numbers and compared the numbers of CNA 
gains and losses at the gene level for all 419 samples 
to the SNP6.0 copy numbers as a reference (Figure 2, 
Supplementary Figure 3). Each CNA estimation for the 
segments in a single gene was converted into a copy 
number, and total gain (amplification, +2; duplication, +1) 
and loss (deletion, -1; homozygous deletion, -2) counts were 
assessed. According to the SNP6.0 CNA gain and loss count 
distribution, the median CNA counts were approximately 
2,500, suggesting that there were copy number losses or 
gains in approximately 5,000 genes in each breast cancer 
genome (Figure 2). VarScan2, ngCGH, and ExomeCNV 
estimated more CNAs compared to the reference, while 
CODEX and CoNIFER estimated fewer CNAs compared to 
the reference. Falcon estimated a similar number of CNAs 
compared to the reference (Figure 2). The gain and loss ratio 
was approximately 50% in the reference and in ExomeCNV. 
In contrast, CODEX, CoNIFER, ngCGH, and falcon had 
more gains than losses, whereas VarScan2 and SaasCNV had 
more losses than gains (Supplementary Figure 4). Overall, 
the tumor-normal pair estimation algorithms (VarScan2, 
ExomeCNV, ngCGH, saasCNV, and falcon) called more 
gains and losses than the tumor batch estimation algorithms 
(CODEX, CoNIFER) (Figure 2).

Gene-based concordance between the reference 
and WES CNAs

To determine how many of the estimations obtained 
from each tool were consistent with the SNP6.0 copy 
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Table 1: Summary of the WES CNA estimation tools

Tool OS Language Control 
required

Input 
format

Output 
format

Methodology 
characteristics References

CODEX Linux, Mac OS R No BAM Tab-
delimited

Poisson log-
likelihood ratio

Jiang Y and 
Zhang NR (2015) 

[22]

CoNIFER Linux, Mac OS Python No BAM/
RPKM

Tab-
delimited SVD Krumm et al. 

(2012) [14]

ExomeCNV Linux, Mac OS, 
Windows R Yes BAM/

pileup/GTF TXT, PNG Log coverage 
ratio, CBS

Sathirapongsasuti 
et al. (2011) [20]

VarScan2 Linux, Mac OS, 
Windows Java Yes BAM/pileup Tab-

delimited CMDS, CBS Koboldt et al. 
(2012) [21]

ngCGH
Linux,

Mac OS,
Windows

Python Yes BAM Tab-
delimited Pseudo-CGH  

saasCNV
Linux,

Mac OS,
Windows

R Yes VCF Tab-
delimited

Allele specific 
by RD, BAF

Zhongyang et al. 
(2015) [23]

falcon
Linux,

Mac OS,
Windows

R Yes VCF Tab-
delimited

Allele specific 
by bivariate 

mixed Binomial

Chen et al. (2015) 
[24]

Detailed information regarding the specifications, algorithm, and reference for each tool is shown. BAM: Binary sequence 
alignment map, RPKM: Reads per kilobase per million mapped reads, GTF: General transfer format, SVD: Singular vector 
decomposition, CBS: Circular binary segmentation, CMDS: Correlation matrix diagonal segmentation, RD: Read depth, 
BAF: B allele frequency, CGH: Comparative genomic hybridization, VCF: Variant calling format.

Figure 1: Distribution of CNA call sizes. Sizes are stratified into 5 categories (<1K, 1K-10K, 10K-100K, 100K-1M, >1M). The total 
number of average CNA counts (gains and losses) for the 419 samples is displayed on the top of each bar. Neutral estimations are excluded 
from these numbers.
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numbers in this dataset, we compared the number of 
gene-based copy number gains or losses estimated by 
ExomeCNV, CoNIFER, VarScan2, CODEX, ngCGH, 
saasCNV, and falcon to the SNP6.0 copy numbers as a 
reference. There were an average of 1.2 SNP6.0 probe 
overlaps on each WES exon, implying that estimations 
of gene copy numbers in CNAs were similar between 
SNP6.0 and WES targets (Supplementary Table 1). 
The CNA algorithms differed from each other in this 
regard (Figure 3 and Supplementary Table 2). The 
tumor-normal pair estimation algorithms (VarScan2, 
ExomeCNV, and saasCNV) showed more than 50% gain 
and loss concordance, whereas the tumor batch estimation 
algorithm (CODEX) exhibited lower concordance 
with SNP6.0 (Figure 3). In contrast, the copy number 
neutral estimations produced by all algorithms showed 
similar concordance with the reference, and saasCNV 
was the most concordant with the SNP6.0 results (gain, 
74.8% concordance; neutral, 78.3%; loss, 55.4%). Taken 
together, these results indicate that most gain and loss 
CNA estimations had large variations in concordance 
with SNP6.0 results, and concordance was better 
for gain estimation than for loss estimation. We also 
evaluated the ability of the CNA calling tools (CODEX, 
ngCGH, and falcon) that subcategorize gain and loss 
events (amplification, +2; duplication, +1; deletion, -1; 
homozygous deletion, -2) (Supplementary Figure 3) 
to estimate amplifications and homozygous deletions. 
However, their rate of concordance with the reference in 
estimating amplification was very low (Supplementary 
Figure 5), indicating that improvements are needed in 

CNA calling algorithms before such estimations can be 
made based on WES data.

Concordance across CNA-calling algorithms

To investigate how many algorithms produced 
common estimations, we used a special case (TCGA.
AN.A0FL.01) to construct a Venn diagram for the 
algorithms and the reference. Two representative tumor-
normal pair methods (saasCNV and ExomeCNV) and 
two tumor batch methods (CoNIFER and CODEX) were 
used for this analysis (Figure 4A, 4B, Supplementary 
Figure 6). SaasCNV and ExomeCNV generated a larger 
number of correct common estimations compared to 
CODEX and CoNIFER, but the tumor-normal pair 
methods also generated many wrong estimations (Figure 
4A, 4B, Supplementary Figure 6). We also compared the 
common estimations produced by each of the 7 algorithms 
to those in the reference using a Venn diagram (Figure 
4C, 4D). Again, saasCNV and ExomeCNV were better 
at estimating gains and losses than the other tools. The 
concordance of tumor batch methods (CODEX and 
CoNIFER) was relatively low; these programs generated 
a small number of correct estimations and many wrong 
estimations. Analysis of the shared estimations for all 419 
cases between the reference and the 7 algorithms revealed 
that SaasCNV was the most similar to the SNP6.0 
reference (Table 2).

Next, we calculated the sensitivity and specificity of 
each algorithm using the CNA estimations for all samples. 
To do this, we assessed whether each estimation was a 

Figure 2: Numbers of gene-based copy number gains and losses generated by the WES CNA estimation tools compared 
to SNP6.0. Boxplots show the total numbers of gene-based copy number gains and losses estimated using the indicated algorithms. Gains 
are dark and losses are gray. Amplifications were merged with gains, and homozygous deletions were merged with losses.
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Figure 3: Overlap percentages for the WES-based CNAs and the reference CNA set. The CNA estimations obtained using 
the seven tools were converted into gene based copy numbers (loss (-2, -1), neutral (0), or gain (1, 2)) and concordance with the SNP6.0 
copy number reference was assessed.

Figure 4: Gene-based Venn diagram. The overlapping genes were calculated in the TCGA.AN.A0FL.01 sample. The Venn diagrams 
show the overlaps in (A) losses and (B) gains at the gene-level between the four selected CNV calling tools. Overlap between SNP6.0 copy 
numbers and each of the seven tools for (C) losses and (D) gains.
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true positive, true negative, false positive, or false negative 
using the 19,780 genes for all 419 samples available in 
SNP6.0. As shown in the boxplot in Figure 5, sensitivity 
and specificity percentages for saasCNV, ExomeCNV, and 
VarScan2 were higher than approximately 50%, whereas 
CODEX and CoNIFER had lower sensitivities. The high 
specificity of CODEX and CoNIFER reflected the small 
number of gain or loss estimations they generated. Falcon 
also showed low sensitivity and high specificity, and the 
loss sensitivity of saasCNV was much higher than that of 
the other tools.

DISCUSSION

In the present study, we evaluated 7 CNA estimation 
tools converted at the gene level using WES data for 419 
paired breast cancer tumor and normal tissue sample pairs 

from TCGA to SNP6.0 copy numbers as a reference. 
SaasCNV, ExomeCNV, and VarScan2 showed better 
concordance with the reference and had higher sensitivity 
and specificity in estimating gains and losses than the 
other tools. The number of estimations produced by the 
different algorithms varied: VarScan2 and ExomeCNV 
tended to overestimate, while CODEX and CoNIFER 
tended to underestimate, compared to the reference. 
Furthermore, saasCNV had the highest concordance with 
the SNP6.0 results among the algorithms tested. These 
results characterize the properties and demonstrate the 
limitations of each tool for estimating CNAs using WES 
data.

Using SNP6.0 copy number as the gold standard for 
CNA estimation, our findings suggest that tumor-normal 
pair methods should be used to estimate CNAs based on 
WES data; CNA estimations generated with the tumor-

Table 2: Similarity between SNP6.0 CNA and the estimation algorithms

 SNP6.0 saasCNV VarScan2 ExomeCNV ngCGH falcon CoNIFER CODEX

SNP6.0 1.000 0.634 0.565 0.464 0.506 0.305 0.155 0.148

saasCNV  1.000 0.514 0.475 0.506 0.320 0.100 0.100

VarScan2   1.000 0.457 0.473 0.268 0.101 0.099

ExomeCNV    1.000 0.441 0.215 0.072 0.080

ngCGH     1.000 0.418 0.190 0.133

falcon      1.000 0.152 0.113

CoNIFER       1.000 0.247

CODEX        1.000

Average Pearson correlations of the estimation of CNAs in 419 TCGA breast cancer samples. (19,780 gene copy numbers 
state: amplification, +2; duplication, +1; neutral, 0; deletion, -1; homozygous deletion, -2).

Figure 5: Sensitivity and specificity of CNA loss and gain estimations. Boxplots of the sensitivity and specificity for losses and 
gains are shown for each tool and compared to the SNP6.0 results.
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normal pair methods saasCNV, ExomeCNV, and VarScan2 
had higher concordance and sensitivity compared to 
the reference than those generated by the tumor batch 
methods CODEX and CoNIFER. Our data also suggest 
that saasCNV, an allele-specific CNA estimation tool, may 
be more valuable than other algorithms for estimating 
gains and losses in copy numbers using WES data. A 
major advantage of the tools examined here is their ability 
to estimate copy-neutral LOH (loss of heterozygosity), 
but we could not examine this function relative to the 
reference here because SNP6.0 was not used for LOH 
estimation in the TCGA dataset. None of WES-based CNA 
calling algorithms tested were able to accurately estimate 
the amplification and homozygous deletion subcategories 
of gains and losses compared to the reference, and a 
CNA calling algorithm that can make those predictions 
accurately is needed for cancer studies. In addition, the 
concordance of the current gain and loss CNA estimation 
tools appears to vary widely, and additional studies may 
be needed to identify the sample data characteristics that 
contribute to high concordance.

Our results here both share similarities with and 
differ from the findings of previous reports that have 
evaluated CNA detection tools. Nam et al. previously 
examined ExomeCNV and VarScan2 using WES data 
from 150 patients with SNP arrays and WGS as reference 
methods [25]. They found that ExomeCNV was less than 
40% concordant for gains and less than 50% concordant 
for losses, while concordance for VarScan2 was 
approximately 50% for both gains and losses. We obtained 
similar results here for our gene-based CNA estimation 
(ExomeCNV, 47.1% concordance in gains, 46.4% in 
losses; VarScan2, 61% in gain, 49.2% loss). Tan et al. also 
evaluated the concordance of CNA estimation tools using 
WES data for 33 samples with WGS as a reference and 
found that the concordance of CoNIFER was very low 
(3.18%) [26]. In contrast, we found that CoNIFER was 
moderately concordant (67.5% in gains, 46.2% in losses), 
but also had high specificity and low sensitivity. These 
differences between studies may be due to the differences 
in the gene-based CNA estimation methods used here 
compared to those used in previous studies.

Notably, CNAs were estimated at the gene level 
in our study, while most previous CNA estimation tool 
comparison studies performed estimations at the exon 
level. Because a single gene can have many exons, it 
is difficult to accurately identify copy number changes 
in specific genes, and estimation tools can return many 
different copy numbers for a single gene. Gene level CNA 
estimation methods may therefore be particularly helpful 
in determining whether a specific oncogene is amplified 
in the clinical setting. In this study, we used the rounded 
arithmetic mean of the copy numbers for each segment 
on single genes generated using the various methods to 
characterize CNAs for each gene. Furthermore, compared 
to previous studies, we used more WES samples (419 

tumor-normal pairs) and gene level estimations for more 
convenient clinical interpretation. We also confirmed the 
efficacy of the current CNA estimation tools for diagnosis 
by assessing their sensitivity and specificity. Although 
tumor-normal pair estimations, particularly saasCNV, 
were more reliable than tumor batch estimations, their 
sensitivity and specificity were lower than desired; our 
present results should therefore be interpreted with 
caution.

Collectively, our findings indicate that current 
WES CNA detection algorithms should be applied more 
carefully depending on the specific aims of different 
studies, and additional improvements and tools are needed 
to improve the accuracy of WES CNA detection.

MATERIALS AND METHODS

Datasets analyzed

We extracted 419 of the 471 breast cancer patient 
samples in The Cancer Genome Atlas (TCGA) for use in 
this study based on QC and SNP array (Genome-Wide 
Human SNP array 6.0) copy number data availability [3]. 
WES BAM files were acquired from the Cancer Genomics 
Hub (CGHub) through NCBI dbGaP authorized access. 
Each BAM file was mapped to GRCh37-lite for human 
genome reference. Two exon capture kits were used in this 
dataset: Agilent (120 pairs) and Nimblegen (299 pairs). 
Each CNA estimation tool used the information in these 
kits (BED file) for WES CNA estimation.

“SNP and copy number level 3 GISTIC” data, 
which provided thresholded copy number information 
for each gene, including amplification (+2), duplication 
(+1), neutral (0), deletion (-1), and homozygous deletion 
(-2), were also provided for the same patients in the TCGA 
dataset. This information was used as the gold standard for 
the evaluation of each estimation tool.

Execution of CNA estimation tools

The CODEX, CoNIFER, ExomeCNV, VarScan2, 
ngCGH, saasCNV, and falcon CNA estimation tools 
were selected for evaluation in this study. A summary of 
these WES CNV estimation tools is provided in Table 1. 
CODEX and CoNIFER used WES BAM files and the 
kit information BED file as inputs; these programs did 
not require normal data. CODEX used normal data for 
normalization. ExomeCNV used kit information BED 
files and coverage files as inputs. Coverage files were 
generated using the GATK DepthOfCoverage program 
with normal and tumor WES BAM files [28]. VarScan2 
used pileup files, which were generated using normal 
and tumor WES BAM files in SAMtools [29], as inputs. 
Each estimation used default threshold settings. NgCGH 
used normal-tumor pair BAM files directly. SaasCNV and 
falcon required VCF files, which were generated using 
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VarScan2, for allele-specific CNA estimations. Details 
regarding versions, processes, and options are described 
in the Supplementary Materials and Methods.

Gene-based evaluation

Each tool estimated CNAs by genomic region. 
We subsequently annotated the results at the exon level 
using BEDTools [30]. For gene-based evaluation, the 
copy numbers for each exon were merged to generate 
one gene copy number based on the rounded average of 
the copy number values. For example, if the CNAs of 
gene DDX11L1 exons were [-1, 1, 0, 1, 0, 1, 1, 1, 1, 1], 
the average was 0.6, and the rounded average “1” was 
used as the copy number for this gene. We compared the 
CNA values obtained for each gene using the selected 
estimation tools to the SNP6.0 copy number for all 419 
patients. The concordance of each tool with the reference 
was statistically analyzed using t-tests in R statistical 
software; P values less than 0.05 were considered 
statistically significant.
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