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We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries 
breaking systems via the holographic duality. This formula states that the ratio of the determinant of the 
dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit 
has a universal value. As explicit illustrations, we give several examples elucidating the validation of this 
formula: We construct an anisotropic black brane solution, which yields linear in temperature for the 
in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially 
isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can 
be realized.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The AdS/CFT correspondence provides a powerful tool to ana-
lyze strongly coupled systems, particularly for studying the trans-
port properties of strongly coupled systems. One of the most fa-
mous results of the AdS/CFT applications, is the so-called Kovtun–
Son–Starinets (KSS) bound η/s ≥ h̄/(4πkB), which states that for 
strongly coupled systems with a classical Einstein gravity dual de-
scription, the ratio of the shear viscosity η, to the entropy den-
sity s, obeys such a bound [1]. In most higher derivative gravity 
models, the bound is violated and there may still exist a lower 
bound [2,4,3,6,5,7], but even this is not clear [8].

Recently, the KSS conjecture was severely challenged by the 
anisotropic black brane systems, where the shear viscosity is a ten-
sor and some components of the tensor can become considerably 
smaller, which parametrically violates the bound [9,10]. Consid-
ered a d + 1-dimensional geometry with coordinates (t, xi, z), and 
anisotropy only along the z-direction, the shear viscosity to en-
tropy density ratio is related to the anisotropy as follows

ηxi z,xi z

s
= h̄

4πkB

gxi xi

gzz

∣∣∣∣
r=rH

, (1)

where gxi xi and gzz are the line elements of the metric and rH
is the event horizon radius, respectively. For translational sym-
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metry unbroken system, there is a universal relation between the 
graviton absorption cross-section and the black-brane horizon area 
in the large-incident-wavelength limit [11]: A = �(ω = 0). The 
rise of the event horizon area-graviton cross-section equivalence 
is simply because the metric perturbation component hx j

xi
satisfies 

the equation of motion of the minimally coupled massless scalar 
�hx j

xi
= 0. The spin-2 shear viscosity component is proportional to 

the graviton absorption cross-section via ηxi x j ,xi x j = �(ω = 0)/2κ2. 
Therefore, the spin-2 shear viscosity component is linearly depen-
dent on the event horizon area (i.e. the entropy density). However, 
for the spin-1 component hxi

z , the equation of motion is not iden-
tical to minimally coupled massless Klein-Gordon equation and 
thus the absorption cross-section of spin-1 vector field hxi z in 
an anisotropic black-brane background is not equal to the black-
brane horizon area. An arbitrary violation of the KSS bound would 
occur if gxi xi /gzz → 0. In this anisotropic background, the rota-
tional symmetry of the dual field theory is broken from S O (d − 1)

to S O (d − 2). We thus have shear viscosities ηxi z,xi z , which are 
defined by the metric fluctuations hxi z . Such metric components 
carry spin 1 with respect to the S O (d − 2) symmetries [12]. Al-
though the spin-2 components of the shear viscosity tensor in the 
xi − x j plane satisfy the KSS bound, the shear force in the xi − z
plane, which is related to the spin-1 metric components, can vi-
olates it. Furthermore, the diffusion bound D � Ch̄v2

F /kB T (C is a 
constant) will also break down [13–16]. The diffusivity bound was 
proposed to replace the Mott–Ioffe–Regel (MIR) bound in bad met-
als, and it is based on the KSS bound η/s ≥ Ch̄/kB and the relation 
η/s = DT /c2 for a vanishing chemical potential [14].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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We also notice that even in isotropic systems, the KSS conjec-
ture can be violated due to momentum dissipation [17–21]. In 
translation invariance broken but isotropic systems, fluctuations 
of the metric components becomes massive and the correspond-
ing shear viscosity does not yield a hydrodynamic description. In 
this case, the shear viscosity to entropy density ratio behaving as 
η/s ∼ T ν with ν a positive parameter, violating the KSS conjecture 
even in Einstein gravity. The shear viscosity now quantifies the rate 
of entropy production due to a strain.

One natural question is whether there is an alternative bound 
to be obeyed by the transport coefficients in such anisotropic sys-
tems. It is well-known that in condensed matter physics, it is 
notably universal that the materials are anisotropic with differ-
ent properties in different directions. Remarkably, the transport 
in high-Tc cuprates is strongly two-dimensional in character and 
there is substantial anisotropy between the in- and out-of-plane 
(i.e. CuO2 plane) resistivities. In contrast to the resistivity ρab in 
the CuO2 planes, where a generic behavior is observed to de-
pend on the metallic temperature, the c-axis transport in high-
temperature cuprates is very highly material-specific. Intriguingly, 
in most underdoped cuprates, ρc(T ) shows insulating behavior at 
all temperatures [22].

Therefore, the universal transporting properties of anisotropic 
systems deserve further studies. In this study, we will show that 
the ratio of the determinant of the electrical DC conductivities to 
the graviton absorption cross-section in anisotropic systems from 
holography in the zero-charges limit has a universal value

∏
i σii

Ad−3

∣∣∣∣∣qi=0 =
∏

i

Zd−1
i

∣∣∣∣∣
r=rH

, (2)

where A and Zi are area density per unit volume of the black 
hole event horizon and gauge field couplings, respectively. In the 
minimal coupling case, Zi = 1. Isotropic systems can be considered 
as special case of anisotropic systems.

The universal relation (2) is able to provide us some insights 
into the holographic realizations of the linear temperature resistiv-
ity:

1). For Z(φ) = 1 and d ≥ 3, isotropic black branes in the AdS space 
cannot be utilized to realize linear temperature resistivity in the 
zero-charges limit. Nevertheless, anisotropic black branes are good 
candidates in model-building of holographic strange metals.
2). For d + 1-dimensional spatially isotropic Lifshitz black holes 
with Z(φ) = 1 in the absence of hyperscaling violation, this re-
lation indicates that σii |qi=0 = [4π/(d + z − 1)]d−3T (d−3)/z , which 
is consistent with what obtained in Refs. [23,24] based on a uni-
versal scaling relation hypothesis: σ(ω = 0) = T (d−3)/z�(0), where 
z is a dynamical critical exponent and �(ω) is a frequency depen-
dent function.
3). This relation applies to shear viscosity-bound and electrical 
conductivity-bound violated systems, for example, systems consid-
ered in [20,25,26]. In [27], the authors conjectured that for the 
case d = 3, there exists a lower bound of dc electrical conductivity ∏

i σii > 1. But it was soon found that this bound can be violated 
by a special coupling between the linear axion fields and the U (1)

gauge field [25,26].

The structure of this paper is organized as follows. In section 2, we 
present our main results by writing down the conductivity tensor 
in terms of horizon data for anisotropic systems. We then present 
three examples that reproduce particular features of strange metals 
in section 3. Discussions and conclusions are presented in section 4
2. Main results

Without loss of generality, we consider the Einstein–Maxwell-
dilaton action with linear scalar fields

S =
∫

dd+1x
√−g

[
1

16πG

(
R − 1

2
∂φ2 + V (φ)

− 1

2

p−1∑
i=1

Yi(φ)∂ψ2
i

)
− 1

4g2
d+1

Z(φ)F 2

]
. (3)

Hereafter, we select 16πG = g2
d+1 = L = 1, where L is the AdS ra-

dius, g2
d+1 is the d +1-dimensional gauge coupling constant, and G

is Newton’s constant. Recently, this model has been widely stud-
ied in Refs. [28–35]. The solution to the above theory is assumed 
to be anisotropic

ds2 = −gttdt2 + grrdr2 + gxxdx jdx j + gzzdzdz, (4)

φ = φ(r), A = At(r)dt, ψ j = k jx j, j = 1 · · ·d − 2,

ψz = kz z, k j �= kz.

The anisotropic direction is selected along the z-direction. We 
regard the xi − x j plane as the “ab” plane and the z-direction 
as the “c”-axis in cuprates. The entropy density is given by s =
4π(gd−2

xx gzz)
1/2|r=rH . The electric charge density is given by q ≡

− J t = −√−g Z(φ)∂r At .
We impose a constant electric field in the xi direction with 

magnitude E , which will generate electric currents only along the 
x j direction. Let us consider a small perturbation in the black hole 
background

A j = −Et + δax j (r), gtx j = δgtx j (r),

grx j = gxxδhrx j (r), ψ = k jx j + δχ1. (5)

From Maxwell equation ∂r(
√−g Z(φ)F rxi ) = 0, we can define a 

conserved current J x j = −√−g grr gxx Z(φ)∂rax j + δgtx j gxxq. In the 
absence of a charge density, we only have a contribution to the 
current from the gauge field J x j ∼ ∂rax j . The conductivity can be 
determined based on the horizon regularity. In this case, we sim-
ply haves(√

gtt

grr
a′

x j

)′
= 0. (6)

Regularity at the horizon gives us

ax j = − E

4π T
ln(r − rH). (7)

At finite charge density, we must know the behavior of δgtx j at the 
horizon. In the presence of momentum dissipation, δgtx j will take 
a finite value at the horizon

δgtx j = Eq

k2
j Y H g

d−3
2

xx

∣∣∣∣
r=rH

, (8)

where we use the notation Y H = Y (φH ) and Z H = Z(φH ). There-
fore, the conserved current is obtained as

J x j =
(

g
d
2 −2
xx g

1
2
zz Z H E + Eq2

k2
j Y H g

d−1
2

xx

)∣∣∣∣
r=rH

. (9)

Then, the DC conductivity is given by

σ j j = J x j

E
=

(
g

d
2 −2
xx g

1
2
zz Z H + q2

k2Y H g
d−1

2
xx

)∣∣∣∣
r=rH

. (10)
j
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The first term in the above formula corresponds to the conductivity 
of the particle-hole pair creation and the second term is associated 
with the momentum relaxation. In the following section, we will 
calculate the DC conductivity along the anisotropic z-direction.

Conductivity anisotropy is important in condensed matter 
physics, because the divergence of the resistivity anisotropy, and 
the temperature-linear resistivity at optimal doping of the cuprates 
are among the most puzzled problems to theorists. Normal-state 
transport in high-Tc cuprates has become one of the most chal-
lenging topics in condensed matter physics. A clear understanding 
of the normal-state transport properties of cuprates is considered 
as a key step towards understanding the pairing mechanism for 
high-temperature superconductivity.

To calculate the DC conductivity along the anisotropic direction, 
we must impose a constant electric field in the z direction with 
magnitude Ez . Now, we consider a small perturbation along the 
z-direction

Az = −Ezt + δaz(r), gtz = δgtz(r),

grxi = gzzδhrz(r), ψ = kz z + δχz. (11)

In this case, the conserved current is given by

J z = −√−g grr gzz Z(φ)∂raz + δgtz gzzq. (12)

The DC conductivity along the anisotropic direction is

σzz =
(

g
d
2 −1
xx g

− 1
2

zz Z H + q2

k2
z Y H g

d−2
2

xx
√

gzz

)∣∣∣∣
r=rH

. (13)

Therefore, the determinant of the DC electric conductivity at zero 
charge density is then obtained as

∏
i

σii

∣∣∣∣
q=0

= g(d−1)(d−3)/2
xx g(d−3)/2

zz Zd−1
H . (14)

Comparing with the area density A = (gd−2
xx gzz)

1/2, we can repro-
duce the relation given in (2). In the next section, we will give 
several examples on the effectiveness and universality of the rela-
tion (2), in particular, the case with more than one gauge fields.

The ratio between the isotropic and anisotropic DC conductivi-
ties in the zero-charge limit q → 0 can be easily evaluated σzz

σ j j
=

gxx
gzz

∣∣∣
r=rH

. For notably small k j ∼ kz 
 q, the translation symmetry is 

weakly broken and it is expected to have a Drude peak of conduc-
tivity. The dissipation term becomes dominant when the particle-
hole production term is negligible. The conductive anisotropy be-

comes σzz
σ j j

∼
√

gxx√
gzz

∣∣∣
r=rH

. A concrete calculation was provided in 

Ref. [36], where the DC conductivity along the z-direction exhibits 
an insulating behavior with dρDC /dT < 0, which is consistent 
with the c-axis transport behavior for underdoped cuprates. The 
R-charged version of the anisotropic black brane solution was con-
structed using the non-linear Kaluza–Klein reduction of type-IIB 
supergravity [37,38], where gxi xi = r2

He−φH /2 and gzz = r2
He−3φH /2. 

Therefore, we achieve the result σzz/σii = eφH < 1 since φH > 0.
This result is qualitatively consistent with our observation 

in cuprates, where the resistive anisotropy ρc/ρab varies be-
tween from 10 to over 106 at the critical temperature [22]. 
The ratio of shear viscosities also satisfies the above relation: 
ηxi x j ,xi x j /ηxi z,xi z = σzz/σ j j .

3. Examples

Example 1. As a toy model, the simplest case of linear-T resistiv-
ity can be derived from the 2 + 1-dimensional charged BTZ black 
holes. Utilizing the action (3), we simply set
d = 2, φ = 0, V (φ) = 2, Y (φ) = 1, Z(φ) = 1. (15)

One of the solutions to the above action is given by the 2 +
1-dimensional charged BTZ metric and a linear scalar field

ds2 = 1

z2

(
− f (z)dt2 + dx2 + dz2

f (z)

)
, (16)

f (z) = 1 − z2

z2
h

+ μ2 + c2
1

2
z2 ln

z

zh
, (17)

At(z) = μ ln
z

zh
, ψ1 = c1x. (18)

The black hole temperature and entropy density are given by 
T = 4−z2

h(μ2+c2
1)

8π zh
and s = 4π z−1

h ∼ T , respectively. In the higher 
temperature limit, the DC conductivity is obtained as

σxx = 1

T
+ μ2

c2
1 T

. (19)

The universal relation (2) is simply obeyed by this 2 + 1-dimen-
sional black hole. In addition, the linear-T resistivity appears both 
in the quantum critical term and momentum dissipation term. 
In the zero charge limit, we arrive at σQ C = 1/T . Physics in 
1 +1-dimensions involve very interesting phenomena in condensed 
matter physics such as spin chains, quantum wires and Luttinger 
liquids. The first term in equation (19) is qualitatively consistent 
with the result obtained in Ref. [39]. Note that the shear viscosity 
bound is not violated by the BTZ black hole considered here. In the 
following, we will consider shear viscosity violated but the electric 
conductivity formula satisfied examples.

Example 2. To demonstrate how the linear resistivity can be re-
alized in higher dimensions, we consider an anisotropic systems 
with the following action:

S =
∫

d5x
√−g

[
R + 12� − 1

2
(∂φ)2 − 1

2
e2αφ(∂χ3)

2

− 1

4
F 2 − 1

2

2∑
i=1

(∂χi)
2

]
. (20)

In the low-temperature limit, the solution is given by

ds2 = l2
(

−r2 f (r)dt2 + dr2

r2 f (r)
+ r2dx2 + r2dy2

+ r
4α2

1+2α2 dz2
)

,

(21)

χi = βiaxa, χ3 = c3z, φ = 2α

1 + 2α2
ln

rH

r
,

c3 =
√

2(3 + 8α2)

1 + 2α2
, l2 = 3 + 8α2

4 + 8α2
. (22)

It is easy to verify that the above ansatz yields a solution in the 
absence of charge

f (r) = 1 − β2(1 + 2α2)r2

(2 + 8α2)r2
H

+
[

β2(1 + 2α2)

(2 + 8α2)r2
− 1

](
rH

r

) l2
4

,

β2 = 1

2

2∑
1

�βa · �βa, �βa · �βb = β2δab. (23)
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The Hawking temperature is given by T = rHl2

16π − β2(1+2α2)l2

(2+8α2)rH
and 

the entropy density s = 4πr
2+ 2α2

1+2α2

H . The quantum critical conduc-
tivity at high temperature is given by

σ j j = r
2α2

1+2α2

H , σzz = r
2− 2α2

1+2α2

H . (24)

One can easily verify that the relation (2) is valid for this black 
hole background. For the special case of α2 = − 1

4 and β2/rH → 0
but β2/(1 + 4α2) is finite, we can easily obtain

σ j j = 16π

l2
T −1, σzz = 4096π3

l6
T 3. (25)

The resistivity, i.e., σ−1
j j , varies linearly with T , which provides a 

phenomenological account for the linear resistivity of strange met-
als. σzz monotonically decreases with decreasing temperature and 
behaves as T 3. The metallic behavior in the “ab”-plane and insulat-
ing behavior along the “c”-axis indicate that this anisotropic model 
captures the key features of the high-Tc transport properties in the 
normal state. The experimental data of σc is proportional to T 3 for 
YBa2Cu3O6.95 [40], which is consistent with our result that the T 3

power law of the c-axis conductivity [41] is notably universal for 
cuprates.

As argued in the previous section, for systems with rotational-
symmetry breaking, vector Goldstone bosons are generated. Such 
Goldstone modes correspond to the broken Lorentz symmetry in 
the boundary theory. From the Kaluza–Klein reduction, we know 
that the off-diagonal components of the metric, whose perturba-
tions carry spin 1, induce gauge fields in the dimensionally reduced 
theory. Jain et al. argued that the conductivity of these gauge fields, 
is proportional to the spin-1 viscosity components ηxi z,xi z [12], 
which motivates us to conjecture that the dc electrical conductivi-
ties obeys a universal lower bound in anisotropic systems.

Example 3. It would be interesting to consider black holes with a 
hyperscaling violating factor. We consider the following action

S =
∫

d4x
√−g

[
R − 1

2
(∂φ)2 − 1

4

2∑
i=1

eλiφ(Fi)
2

− 1

2
eηφ

2∑
i=1

(∂χi)
2 +

2∑
i=1

V ie
γiφ

]
, (26)

where λi, η, γi, V i are undetermined constant parameters and 
Zi(φ) = eλiφ , Y (φ) = eηφ and V = V ieγiφ . Note that there are two 
U (1) gauge F (1)

rt and F (2)
rt in which the first gauge field plays the 

role of an auxiliary field, making the geometry asymptotic Lifshitz, 
and the second gauge field is the real Maxwell field. We obtain 
one of the black hole solutions as

ds2 = r−θ

(
−r2z f (r)dt2 + dr2

r2 f (r)
+ r2dx2 + r2dy2

)
,

F (1)
rt = rz−θ+1q1, F (2)

rt = rθ−z−1q1,

φ = ν ln r = √
(θ − 2)(θ − 2z + 2), χi = βxi . (27)

The parameters are solved and take the following values

λ1 = θ − 4

ν
, λ2 = η = ν

θ − 2
, γ1 = θ

ν
,

γ2 = θ + 2z − 6

ν
, V 1 = (z − θ + 1)q2

1

2(z − 1)
, (28)

V 2 = q2
2(2z − θ − 2)

.

4(z − 2)
The blacken function f (r) yields the form

f (r) = 1 − mrθ−2−z − β2rθ−2z + q2r2z−6

4(z − 2)(3z − θ − 4)
.

The black hole solution presented here is very general and for 
special value of θ and z (i.e. θ = 0 and z = 1), one recovers 
the Reissner–Nordström-AdS black hole solution with linear scalar 
fields. The event horizon locates at f (rH) = 0. The Hawking tem-
perature is given by

T = 1

4π

[
(z − θ + 2)rz

H + β2rθ−z
H

θ − 2
+ q2

2r3z−6
H

4(z − 2)

]
. (29)

Similar black hole solution has been obtained in [42] and a new 
computational tool for computing the DC transport coefficients was 
presented in [42] and [43]. Now we have two U (1) gauge fields, 
in general, there will be mixing terms between fluctuations of 
two gauge fields in the expressions of conductivities as discussed 
in [43]. The general conductivity matrix takes the form

σ
(11)
xx = rθ−4

H + q2
1r2z−4

H

β2
r2z−4

H , σ
(12)
xx = q1q2r2z−4

H

β2
,

σ
(22)
xx = rθ−2z+2

H + q2
2r2z−4

H

β2
r2z−4

H , σ
(21)
xx = σ

(12)
xx . (30)

Recall that σ (11)
xx and σ (22)

xx are generated by two distinct electric 
fields, which are oriented along the x-direction. Similar conduc-
tivity matrix can be obtained along the y-direction. Substituting 
equation (30) at zero charge density, the area density and gauge 
coupling Zi into (2) and evaluating at the event horizon, we can 
see that (2) is satisfied for general value of θ and z.

As a side note and just for simplicity, we set z = 1 from the be-
ginning, so that the first gauge field and q1 vanish in the action. 
Since this is an isotropic systems, followed the DC conductivity for-
mula given in (10), the DC conductivity reads

σii = rθ
H + q2

2

β2
r−2

H . (31)

One can easily verify that the general relation (2) is satisfied 
by (31) when q2 = 0 at any physical temperature. Moreover, the 
linear- and quadratic- in temperature resistivity can be realized 
when z = 1 and θ = −1 in the limit rH ∼ T . That is to say

σii ∼ 1

T
+ q2

2

β2

1

T 2
. (32)

This matches with the experimental observations of cuprates: The 
in-plane resistivity varies approximately linearly with temperature 
at high temperature, while as temperature cools down, the resis-
tivity is governed by the Fermi-liquid-like T 2 behavior [31,42].

As demonstrated in [20] and [21], the shear viscosity in this 
4-dimensional isotropic systems will violate the KSS conjecture be-
cause of the momentum dissipation and the appearance of the 
effective mass of gravitons. However, the relation (2) stills remain 
to be uninfluenced even in the presence of the translational sym-
metry breaking.

We can also prove that for the electric conductivity bound [27]
violated system considered in [25,26], the universal formula of DC 
electrical conductivity (2) is still valid. In this sense, the formula 
(2) seems to be more universal than the shear viscosity bound [1]
and the electric bound [27].
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4. Discussions and conclusions

Considering the above facts, we propose that the determinant 
of the quantum critical conductivity matrix has a scaling relation 
with the black hole horizon area: 

∏
i σii |qi=0 =Ad−3 ∏

i Zd−1
i (rH).

In order to recast (2) in a experimental testable manner, we 
consider a generalized spatially anisotropic black hole with follow-
ing line-elements

ds2 = −r2 f (r)dt2 + dr2

r2 f (r)
+ r2

p∑
i=1

dx2
i + r

2
z

d−1∑
j=p+1

dy2
j , (33)

where f (r) is the blacken factor with event horizon locates at 
r = rH. The horizon area density A = r p+(d−1−p)/z

H ∼ T p+(d−1−p)/z , 
where we have assumed rH ∼ T . Therefore, the conductivity for-
mula reduces to∏

i

σii|qi=0 = CT (p+ (d−1−p)
z )(d−3)

∏
i

Zd−1
i (rH), (34)

where C is a specific constant to be determined. Equation (34) is 
a generalized form of quantum critical conductivity and it can re-
cover the quantum critical conductivity given in Refs. [23,24,44]
under the conditions Z H = 1 and p = 0. Note that we do not con-
sider the hyperscaling violating factor θ here.

In the slow relaxation limit, the DC conductivity can be written 
as the sum of an explicit charge-dependent term and a quantum 
critical term σ DC

ii = σ Q C
ii + q2

ε+p τ L
ii , where ε and p are the energy 

density and pressure, respectively, and τL is a time scale associated 
with the impurity/lattice. Therefore, this theory has a “universal” 
finite conductivity even without a net charge density. The quantum 
critical current that is carried by the particle-hole pairs of oppo-
site momenta, controls the rate at which charge diffuses instead 
of the momentum relaxation. However, in an anisotropic system, 
the quantum critical conductivity σQ C along different directions 
should not be identical.

In this study, we propose a universal formula of the DC electri-
cal conductivity applied to both anisotropic and isotropic systems. 
Holography provides us a uniquely tractable method to study those 
strongly interacting systems without quasiparticles. In incoherent 
metals without a Drude peak, the transport is described by diffu-
sive physics in terms of the diffusion of charge and energy instead 
of momentum diffusion. Thus, one can propose that the conduc-
tivity is a more universal physical quantity in such systems. In 
the absence of isotropy, different metric perturbations break up 
into components with different spin values. The shear viscosity in 
a rotationally invariant field theory is proportional to the gravi-
ton absorption via η = �(0)/2κ2. The spin 2 metric perturbation 
component obeys the equation of motion of a minimally cou-
pled massless scalar. Therefore, the absorption cross-section of a 
graviton is equivalent to that of a scalar field. A theorem on the 
scalar absorption cross-section states that in the larger-wavelength 
limit, A = �(0). So, the shear viscosity is proportional to the black 
hole entropy density because s = A/4G . However, for rotational-
symmetry-breaking systems, for a metric perturbation with spin 1, 
the equation of motion for hxi

z cannot be written in the form of 
a minimal coupled massless scalar. Instead, its equation of mo-
tion can be recast in a similar form to the Maxwell equation: 
∇μ f μν + ∇μgxx f μν/gxx = 0. Even for isotropic but translation in-
variance broken systems, an effective mass term is generated in 
the equation of motion of the tensor mode so that the shear vis-
cosity is not equivalent to the black hole entropy density. Based on 
this formula (2), we however are able to provide examples yielding 
the linear temperature resistivity and insulating behavior are real-
ized in the isotropic plane and out-of-plane, respectively. We are 
also able to realize both the linear-T and quadratic-T contributions 
to the resistivity by constructing a 4-dimensional isotropic black 
hole solution.

The DC electrical conductivity formula proposed here (i.e., (2)
and (34)) can provide some insights on future model building of 
linear temperature resistivity in holographic theory and it is ex-
perimentally testable because it can recover the form in Ref. [24]. 
If the dual Maxwell theory must be minimally coupled, the pres-
ence of the linear temperature resistivity and the universality of 
the conductivity bound infers that anisotropy is a fundamental 
factor to be considered in normal-state of high temperature su-
perconductors. We expect that our result is falsifiable in the future 
study.
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