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Abstract

Parcellation of the human cortex has important implications in neuroscience. Parcellation is

often a crucial requirement before meaningful regional analysis can occur. The human cor-

tex can be parcellated into distinct regions based on structural features, such as gyri and

sulci. Brain network patterns in a given region with respect to its neighbors, known as con-

nectional fingerprints, can be used to parcellate the cortex. Distinct imaging modalities

might provide complementary information for brain parcellation. Here, we established func-

tional connectivity with time series data from functional MRI (fMRI) combined with a correla-

tion map of cortical thickness obtained from T1-weighted MRI. We aimed to extend the

previous study, which parcellated the medial frontal cortex (MFC) using functional connec-

tivity, and to test the value of additional information regarding cortical thickness. Two types

of network information were used to parcellate the MFC into two sub-regions with spectral

and Ward’s clustering approaches. The MFC region was defined using manual delineation

based on in-house data (n = 12). Parcellation was applied to independent large-scale data

obtained from the Human Connectome Project (HCP, n = 248). Agreement between parcel-

lation using fMRI- and thickness-driven connectivity yielded dice coefficient overlaps of 0.74

(Ward’s clustering) and 0.54 (spectral clustering). We also explored whole brain connectivity

using the MFC sub-regions as seed regions based on these two types of information. The

results of whole brain connectivity analyses were also consistent for both types of informa-

tion. We observed that an inter-regional correlation map derived from cortical thickness

strongly reflected the underlying functional connectivity of MFC region.

Introduction

Parcellation of the human cortex yields structurally or functionally distinct sub-regions [1–3].

Structural features, especially sulci and gyri, have been widely used to divide the cerebral cortex

into distinct regions [4,5]. The inherent limitation of this approach is that an anatomical
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boundary cannot fully account for the functional capabilities of a given cortical region. Pas-

singham et al. attempted to parcellate the cortex using the patterns of connection in a given

region with respect to its neighbors [6]. They coined the term “connectional fingerprint” to

convey that each cortical sub-region has a unique connectivity pattern that distinguishes it

from other sub-regions. This approach was successfully applied to parcellate many sub-regions

of the human cerebral cortex, including the medial frontal cortex (MFC) [1,2].

Many studies have computed functional connectivity using data from functional magnetic

resonance imaging (fMRI) and structural connectivity from diffusion tensor imaging (DTI) to

parcellate the cortex [2,7–11]. Connectivity based parcellation (CBP) is capable of revealing

fine grained functional sub-regions and has become an important tool in neuroimaging [7].

CBP using resting-state fMRI (rs-fMRI) was applied to parcellate the whole brain and cortical

structures such as the supplementary motor area (SMA) and insula [2,8,9]. CBP using diffu-

sion imaging has also been applied to parcellate the whole brain and thalamus [10,11]. Other

studies have used morphological features derived from structural MRI, such as cortical thick-

ness, to assess inter-regional morphological correlations [7,8]. CBP results depend on the type

of connectivity information fed to the parcellation algorithm. Connectivity information

derived from different imaging modalities could be different, and thus CBP using different

imaging modalities could differ within a given brain region. CBP using diffusion MRI and rs-

fMRI were consistent for the insula [9,12]. We aimed to explore whether CBP using different

imaging modalities was consistent for an underexplored brain region. The MFC is a clinically

important cortical sub-region that consists of two functionally distinct sub-regions: the supple-

mentary motor area (SMA) and the pre-SMA [1]. The SMA is closely linked to motor control

and the pre-SMA is linked with complex cognitive controls [1]. Accurate parcellation of the

MFC would allow us to better characterize brain alterations related to motor function and

complex cognitive controls. A previous study parcellated the MFC based on DTI- and fMRI-

driven connectivity [1]. Another study employed fMRI-driven connectivity to parcellate the

MFC [2]. We aimed to extend the previous study which parcellated the MFC using functional

connectivity and to test the value of additional information regarding cortical thickness [2].

Connectivity derived from correlation thickness was used to replicate many known neuro-

anatomical pathways. Thickness-driven connectivity showed “small-worldness,” an important

property of functional brain networks [13]. Cortical thickness can provide morphological

information about brain regions and thus might provide complementary information not

obtainable with DTI [13]. We did not consider diffusion MRI, as combining diffusion MRI

and rs-fMRI has already been done [1]. Parcellation was performed using spectral clustering

and Ward’s clustering approaches. We computed network information from two imaging

modalities for the MFC, one derived from cortical thickness and the other derived from rs-

fMRI. We then used that information to parcellate the MFC into two sub-regions. We com-

pared the results of MFC parcellation based on cortical thickness obtained from structural

MRI and functional correlation obtained from rs-fMRI. We also explored whole brain connec-

tivity based on these two types of network information using the MFC sub-regions as seed

regions.

Methods

Subjects and image acquisition

The Institutional Review Board (IRB) of Samsung Medical Center approved this study. All par-

ticipants in this study provided written informed consent. We considered two sets of data.

Data from the first set (n = 12) were used to define the MFC region. Data from the second set

(n = 248) were obtained from the Human Connectome Project (HCP), which was released in
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December 2015 [14–16]. The second data set was used to test parcellation approaches. HCP

data were chosen so that the second set of data had a similar age and sex ratios compared to

the first set. For the first data set, 12 healthy subjects (6 males and 6 females; mean

age ± standard deviation (SD): 22 ± 2 years) were scanned. Participants underwent

T1-weighted imaging and Echo Planar Imaging (EPI) at Samsung Medical Center, Seoul,

Korea. Images were acquired with a Philips Intera Achieva 3.0 Tesla scanner equipped with an

8-channel SENSE head coil (Phillips Healthcare, the Netherlands). T1-weighted images were

acquired using a magnetization-prepared gradient echo sequence with the following image

parameters: TR = 9.9 ms; TE = 4.6 ms; flip angle = 8˚; 298 slices; with voxel dimen-

sion = 0.5×0.5×1 mm3. Imaging parameters for the EPI were as follows: TR = 3000 ms;

TE = 35 ms; flip angle = 90˚; 35 slices; and voxel dimension = 1.72×1.72×4 mm3. EPI data con-

sisted of 155 volumes, and the total scan time was 7 minutes and 45 seconds. A manual specifi-

cation for the MFC region of interest (ROI) was available for the first data set. For the second

data set, 248 healthy subjects (112 male and 136 female; mean age ± SD 25.47 ± 2.27 years)

were selected from the HCP data. T1-weighted images were acquired with the following imag-

ing parameters: TR = 2400 ms; TE = 2.14 ms; flip angle = 8˚; with voxel dimen-

sion = 0.7×0.7×0.7 mm3. Imaging parameters for the EPI were as follows: TR = 720 ms;

TE = 33.1 ms; flip angle = 52˚; 72 slices; with voxel dimension = 2×2×2 mm3. EPI data con-

sisted of 1200 volumes, and the total scan time was 15 minutes.

ROI definition

One of our primary goals was to parcellate the MFC region into sub-regions; therefore, we man-

ually defined the MFC ROI so that subsequent analysis occurred only in the MFC region. For

the first data set, an expert neurologist drew the MFC ROIs within the native volume space of a

T1-weighted image, which was collected along with the EPI data. Each ROI was later spatially

normalized to the Montreal Neurological Institute (MNI) standard volume space using a trans-

formation matrix obtained from routine pre-processing of the fMRI data. Once all 12 ROIs

were mapped and summed in the standard space, a threshold of 75% was applied to the

summed data to yield a probabilistic MFC ROI. The threshold was chosen as it yielded reason-

able results [17]. We computed the probabilistic ROI to reflect group statistics. The probabilistic

ROI was then mapped onto the MNI standard surface space. Surface space mapping was neces-

sary because cortical thickness is only available for the surface space, not for the volume space.

The defined ROI could be easily applied as it was defined in standard volume and surface space.

The procedures and results for defining the ROI in standard surface space are shown in Fig 1.

FMRI pre-processing

Functional MRI data were processed using Analysis of Functional NeuroImages (AFNI) and

SUrfaceMApping (SUMA) software [18]. The first three fMRI volumes were removed because

they were scanned before magnetization stabilized. The remaining 152 volumes were de-spiked,

slice timing-corrected, and realigned for head motion. No participant had head motion greater

than 2.0 mm translation or 2 degrees rotation during the resting state scan. A skull-stripped

structural T1-weighted image was co-registered to the corrected functional volume. Linear

regression was applied to remove nuisance signals unrelated to neuronal activity, including six

motion parameters, white matter signals, and ventricular signals. Functional data were tempo-

rally band pass filtered (0.009 Hz< f< 0.08 Hz) and mapped onto the cortical surface using

the two-step two-surface method [19]. First, a straight line consisting of 10 sampling points was

drawn between corresponding linked vertices of the gray matter and white matter surfaces. The

white matter surface refers to the inner surface between the gray and white matter, while the
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gray matter surface refers to the outer surface between the gray matter and cerebral spinal fluid

(CSF). The time series data were filtered with an 8 mm full width at half maximum (FWHM)

2D Gaussian kernel smoothing. Second, the value of each sampling point was obtained by near-

est neighbor 3D interpolation of the filtered time series data. The average value of 10 sample

points along the line was assigned as the mapped times series value for the surface vertex.

Details can be found in Fig. 4 of [19]. The above procedure is summarized in step 1 of Fig 2.

Surface extraction and cortical thickness measurement

T1-weighted structural images were processed using automatic image analysis pipeline soft-

ware developed by the MNI. First, we performed intensity non-uniformity correction. Inten-

sity-corrected brain images were normalized to standard space using a linear transformation.

Each subject’s registered brain images were classified into gray matter, white matter, and CSF.

The gray and white matter surfaces were extracted using the Constrained Laplacian-Based

Automated Segmentation with Proximities (CLASP) algorithm [20,21]. Each subject’s gray

and white matter surfaces consisted of 81,924 vertices with triangular meshes. To measure cor-

tical thickness in the respective native spaces, gray and white matter surfaces were inversely

transformed to the native spaces because these surfaces were originally extracted from the spa-

tially normalized T1 images. The vertices of gray matter surface maintained correspondence

with the vertices of white matter surface. Thus, cortical thickness could easily be measured

from the Euclidean distance between corresponding vertices of the gray and white matter sur-

faces. Cortical thickness maps were then spatially normalized to the standard MNI surface

space using a surface registration approach so that cortical thickness could be compared in the

common space. In sum, cortical thickness was measured for each subject and then registered

onto the standard MNI space using surface registration. Only one registration step was applied

to the cortical thickness measurements. Errors in image registration might have caused errors

in the mapped thickness map; however, existing studies have adopted the same approach and

the associated errors were deemed acceptable, as the registration process caused sub-voxel

error [22–24]. The details of this entire procedure are described in a previous paper [22]. The

above procedure is also summarized in step 1 of Fig 2.

Correlation matrix construction

Brain network information is commonly presented in a matrix fashion, where one element of

the i-th row and j-th column represents the correlation between the i-th and j-th regions. In

Fig 1. Manual definition of an MFC ROI. (a) Probabilistic MFC ROI. The scale bar denotes the number of cases mapped onto a voxel which ranged from

0 to 12. (b) Probabilistic MFC ROI threshold at 75%. (c) ROI mapped onto the cortical surface.

doi:10.1371/journal.pone.0171803.g001
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Fig 2. Overview of procedures to parcellate the MFC using cortical thickness and fMRI. TOP:

Procedures for pre-processing fMRI and T1-weighted MRI. MIDDLE: Procedures for constructing the

similarity matrix. BOTTOM: Procedures for parcellating the MFC regions into k sub-regions using spectral and

Ward’s clustering approaches.

doi:10.1371/journal.pone.0171803.g002
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this representation, the matrix is referred to as the correlation matrix. Each element of the cor-

relation matrix is a correlation coefficient computed from modality-dependent imaging obser-

vations. The first region is commonly referred to as the seed region, as the correlation values

with respect to other regions are computed after fixing this first region. The seed region is

referred to as the seed vertex in the analysis of the surface space, which we performed in this

study. The vertex in this study refers to a vertex on a surface, not a vertex on a graph structure.

We limited our study to seed vertices within the MFC since we were interested in how MFC

vertices were connected to other brain regions. For the fMRI portion of our study, correlation

coefficients were computed for the time series data of a given seed vertex within the MFC and

time series data of other cerebral vertices, excluding the MFC. This resulted in a one-row cor-

relation matrix. This process was repeated for all MFC vertices, resulting in an Ns × Nw corre-

lation matrix, where Ns was the number of seed vertices and Nw was the number of other

cerebral vertices. The correlation matrix derived from fMRI, denoted as CfMRI, had the follow-

ing notation. CfMRIði; jÞ ¼
COVðXi ;XjÞ

sXi sXj
, where Xi and Xj were processed fMRI data for vertexes i

and j, respectively, COV was the covariance operation, and σXi and σXj were the standard devi-

ations for Xi and Xj, respectively [25]. Fisher’s r-to-z transform was applied to correlation val-

ues [26]. Functional correlation matrices were summed to yield one correlation matrix to

represent a group of subjects. For the thickness portion of this study, the cortical thickness of

each subject was concatenated into a long vector and the correlations between concatenated

thickness values were used as elements in the correlation matrix. The length of the

concatenated vector was the number of subjects being modeled. The pre-processing steps to

obtain cortical thickness involved mapping of the cortical thickness values onto the standard

surface space; thus, it was possible to concatenate the thickness values at a given vertex loca-

tion. We computed correlation coefficients between the cortical thickness values of a given

seed vertex within the MFC and the cortical thickness values of other cerebral vertices exclud-

ing the MFC. This process was repeated for all MFC vertices. The correlation matrix derived

from thickness is denoted as Cthick with the following notation: Cthickði; jÞ ¼
COVðTi;TjÞ

sTi sTj
, where Ti

and Tj were thickness data for vertexes i and j, respectively, COV was the covariance operation,

and σTi and σTj were the standard deviations for Ti and Tj respectively. Fisher’s r-to-z trans-

form was applied to correlation values. One correlation matrix was computed from the cortical

thickness values of a group of subjects.

Inter-subject reliability of correlation matrix

Our study used the sum of correlation matrices across subjects in the fMRI experiment. A

5-fold validation was performed to compute the stability of connectivity patterns. HCP data

were randomly assigned to five groups of 50, 50, 50, 50, and 48 subjects. The sum of 198 corre-

lation matrices from the four groups was compared against the sum of 50 correlation matrices

from the left-out group for each MFC vertex. Comparisons were made using Pearson’s correla-

tion coefficient. This process was repeated 30 times, each time with a different set of 50 subjects

as the left-out group. Vertex-wise correlation maps were then averaged across leave-one-out

steps to yield the average stability map. We applied the same 5-fold validation approach to

HCP data to compute the inter-subject reliability for thickness-driven connectivity. HCP data

were randomly assigned to five groups. Each group had 50 or 48 thickness measurements that

were used to compute one correlation matrix, as described in “Correlation matrix construc-

tion”. The sum of four correlation matrices from the four groups was compared against the

correlation matrix for the left-out group for each MFC vertex. This process was repeated 30

Agreement between functional and cortical thickness correlation maps of the medial frontal cortex
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times, each time with a different set of 50 subjects as the left-out group. Vertex-wise correlation

maps were then averaged across leave-one-out steps to yield the average stability map.

Parcellation using clustering

We applied spectral clustering and Ward’s clustering algorithms with a variable number of

clusters (i.e., values between two and 10) to all MFC vertices [8,27–29]. Spectral clustering con-

siders the eigen-spectrum of the correlation matrix and is more capable of producing non-con-

vex decision boundaries than the traditional k-mean clustering approach [15]. Spectral

clustering was chosen as it is a widely used clustering approach [27]. The affinity matrix (A)

for spectral clustering was generated by computing pair-wise correlations between rows of the

correlation matrix. A transform of adding a constant of one and then dividing by two was

applied to correlation values to ensure non-negativity in the affinity matrix. For example, an

element in the i-th row and j-th column from A would be the correlation between the i-th row

of the correlation matrix and the j-th row of the correlation matrix. Ward’s clustering is a hier-

archical algorithm where each data point belongs to a hierarchy of clusters. Data points with

similar properties were merged using a criterion such as minimum-variance. Ward’s clustering

was adopted as it was shown to perform best among three tested clustering algorithms in a

recent parcellation study [30]. Dimensionality reduction was not applied for the Ward’s

approach. Clustering algorithms were applied twice, once to the fMRI correlation matrix and

then again to the cortical thickness correlation matrix obtained from the HCP data (n = 248).

Each vertex within the MFC was assigned to pre-determined k clusters. This procedure essen-

tially parcellated the MFC into k sub-regions based on the given correlation matrix. The above

procedure is also summarized in step 3 of Fig 2.

Determining the number of clusters: fMRI

The MFC was parcellated into k sub-regions, where k was a user-defined parameter. Variation

of information (VI) was adopted to determine the k value to use [31]. A split-half comparison

was performed by randomly assigning subjects into two groups of 124 subjects. The summed

correlation matrix for each group was used to yield corresponding clustering results. The two

sets of clustering results were compared using the VI metric for a given k. This procedure was

repeated 100 times, each time with new random split-half groups. Low VI values indicated

high similarity between the two clustering results (i.e., high stability), while high VI values

indicated low similarity (i.e., low stability). A plot of average VI values across split halves was

prepared as a function of k. The trend of VI value with respect to k was used to determine the

optimal number of clusters to use. One possible criterion was to determine k such that VI did

not decrease substantially relative to the VI of k-1 clusters [31]. This approach can be thought

of as choosing a k that leads to a plateau in VI values, starting from the largest k. A silhouette

reproducibility approach was adopted to determine which k value to use [32]. Silhouette coeffi-

cients measured how close each point in one cluster was to points in neighboring clusters,

which could be used to determine how many clusters to use. For each subject, parcellation was

performed using k clusters and results were used to compute a silhouette coefficient. We com-

puted the mean silhouette value. The optimal number of clusters could be chosen where maxi-

mum silhouette value occurred.

Whole brain network analysis with respect to MFC

In the previous sub-section, we analyzed the brain network for all vertices within the MFC

region. In this sub-section, we analyzed the whole brain network using the k sub-divided MFC

regions as the seed region while exploring other brain regions from the second data set
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(n = 248). The sub-divided MFC region as a whole (i.e., not individual vertices) in each hemi-

sphere was correlated with other brain regions. We adopted the Automated Anatomical Label-

ing (AAL) atlas defined on the common MNI space to designate various brain regions [33].

For the fMRI portion of our study, we computed the spatial average of time series data in the

sub-divided MFC region and other regions obtained from the AAL atlas. For each participant,

correlation coefficients between time series data were computed by fixing the seed region and

exploring the other regions, which yielded a correlation matrix. We applied one-sample t-tests

to correlation values of regions and retained regions whose false discovery rate (FDR) cor-

rected p-values were less than 0.05. For the thickness portion of this study, we computed the

spatial average of group-wise cortical thickness values in the sub-divided MFC regions and

other regions from the AAL atlas obtained from the 248 participants. Correlation coefficients

between cortical thickness values were computed by fixing the seed region and exploring the

other regions, which yielded a correlation matrix. We identified significant regions as those

with z-values (i.e., normalized correlation values) higher than 0.4. The z value was assumed to

follow the normal distribution with a mean of zero and a standard error of 1=
ffiffiffiffiffiffiffiffiffiffiffi
n � 3
p

, where n

was the number of subjects [26].

Results

Stability of the connectivity pattern

The stability of fMRI- and thickness-driven connectivity patterns within the MFC was investi-

gated to provide a basis for using a summed correlation matrix to represent a group of subjects.

If the stability of a connectivity pattern was low, it suggested that the subjects had diverging

connectivity patterns. This would be a weak basis for using group statistics for parcellation.

The average stability in terms of the correlation coefficient was 0.85 for fMRI and 0.9 for corti-

cal thickness. The average stability map was plotted along with the distribution of correlation

coefficients in Fig 3. Correlations greater than 0.7 were observed throughout the MFC vertex

except for boundary vertices.

Determining the number of clusters: fMRI

This study parcellated the MFC into k sub-regions, where k was a user-defined parameter. The

VI metric was adopted to determine what k values to use. A plot of average VI values across

split-halves was presented as a function of k (Fig 4). The VI values increased significantly

(p< 0.05) with respect to all k values between 2 and 10. Starting from large k values (= 10), we

could not find the smallest k that resulted in a non-significant decrease in VI value for both

clustering algorithms. The VI metric did not lead us to an optimal k, thus we chose the smallest

number (i.e., k = 2) as the number of clusters. Given a choice of k values, the model with the

fewest degrees of freedom was typically the most suitable [17]. A plot of average silhouette val-

ues was given as a function of k (Fig 4). Using k = 2 led to the highest silhouette value. The use

of two clusters was consistent with the existing literature, as the MFC is commonly believed to

have two distinct sub-regions [1]. We also used two clusters in the cortical thickness portion of

our study in order to produce a fair comparison between fMRI and cortical thickness results.

Functional and structural MFC parcellation

We performed parcellation of all vertices in the MFC regions into two (k = 2) clusters, first

using the fMRI-driven correlation matrix and then using the cortical thickness-driven correla-

tion matrix. Parcellation based on fMRI data revealed two distinct sub-regions in both the left

and right hemispheres, corresponding to the anterior part (i.e., pre-SMA) and the posterior
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part (i.e., SMA), as shown in Fig 5. Parcellation based on cortical thickness data also revealed

two similar-looking distinct sub-regions within the MFC, as shown in Fig 5. Visual inspection

revealed agreement between fMRI-based and thickness-based parcellation results. Consistent

with visual inspection, dice overlap index values between the two parcellation results were 0.47

Fig 3. Stability of connectivity patterns. (a) Map of correlation coefficients describing the average correlation between MFC cortical thickness-driven

connectivity patterns (between activity in the MFC and the rest of the brain). (b) Histogram of correlation coefficients between the MFC connectivity

patterns of different subjects based on thickness. (c) Map of correlation coefficients describing the average correlation between MFC fMRI-driven

connectivity patterns (between activity in the MFC and the rest of the brain). (d) Histogram of correlation coefficients between the MFC connectivity

patterns of different subjects based on fMRI.

doi:10.1371/journal.pone.0171803.g003

Fig 4. Choosing the number of clusters. (a) Plot of VI values with respect to the number of clusters (k = 2..10) for two clustering algorithms (spectral and

Ward’s clustering approaches). All VI values at different k values were statistically significant (p < 0.05). There was no plateau as we decreased k from 10 to 2.

(b) Plot of silhouette coefficient with respect to the number of clusters (k = 2..10) for the spectral clustering approach. (c) Plot of silhouette coefficient with

respect to the number of clusters (k = 2. . .10) for Ward’s clustering approach.

doi:10.1371/journal.pone.0171803.g004
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Fig 5. Parcellation results using (a) connectivity from fMRI and (b) connectivity from cortical thickness based

on Ward’s clustering with K = 2. Parcellation results using (c) connectivity from fMRI and (d) connectivity from

cortical thickness based on spectral clustering with K = 2. The anterior portion is shown in green for the pre-

SMA and the posterior portion is shown in red for the SMA.

doi:10.1371/journal.pone.0171803.g005
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Fig 6. Overlap between BA6 and parcellation results using two clustering approaches based on two

types of connectivity. (a) Using fMRI and Ward’s clustering. (b) Using fMRI and spectral clustering. (c)

Using thickness and Ward’s clustering. (d) Using thickness and spectral clustering.

doi:10.1371/journal.pone.0171803.g006
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for the pre-SMA and 0.60 for the SMA using spectral clustering. The dice overlap index values

were 0.74 for the pre-SMA and 0.75 for the SMA using Ward’s clustering. Agreement of par-

cellation using fMRI- and thickness-driven connectivity yielded average dice overlaps of 0.74

(Ward’s clustering) and 0.54 (spectral clustering) for two sub-regions in the MFC. These per-

formance values reinforced the consistency between the two sets of parcellation results.

Comparison with Brodmann atlas

Parcellation results using two clustering algorithms were compared with the Brodmann atlas

to assess agreement between our parcellation results and Brodmann atlas cytoarchitecture.

Our parcellation results were compared with Brodmann area (BA) 6. The fMRI- and thick-

ness-driven parcellation results were overlaid with BA 6 of the HCP Brodmann atlas in Fig 6.

Our parcellation results were mainly contained within BA 6. Approximately 70% of MFC sub-

regions (i.e., SMA and preSMA) overlapped with BA6, as shown in red and orange in Fig 6.

The amount of overlap did not change much, regardless of whether we adopted fMRI- or

thickness-driven connectivity. The amount of overlap did not change based on Ward’s or

spectral clustering.

Whole brain network analysis

We analyzed the whole brain network of the fMRI time series data using the sub-divided MFC

regions as seed regions and exploring other brain regions, as shown in Fig 7. The pre-SMA

and SMA regions were parcellated using Ward’s clustering results as they yielded a better

Fig 7. fMRI-driven connectivity results of the whole brain using the MFC sub-region as the seed region. (a) Connectivity results using the left pre-SMA

(i.e., anterior) region as the seed region. (b) Connectivity results using the right pre-SMA region as the seed region. (c) Connectivity results using the left SMA

(i.e., posterior) region as the seed region. (d) Connectivity results using the right SMA region as the seed region. Colored values denote negative log of p-

values.

doi:10.1371/journal.pone.0171803.g007
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overlap index than spectral clustering. One analysis was performed using the pre-SMA (i.e.,

anterior) region as the seed region, and the other analysis was performed using the SMA (i.e.,

posterior) region as the seed region. The SMA region was significantly (corrected p< 0.00001)

correlated with motor regions consisting of the precentral gyrus and medial cingulate cortex.

In contrast, the pre-SMA region was less correlated with these motor regions. The pre-SMA

region was correlated (corrected p< 0.00001) with frontal regions that consisted of the supe-

rior frontal gyrus and the medial frontal gyrus. The SMA region was less correlated with these

same frontal regions. Functional connectivity results with respect to the SMA and pre-SMA

regions are shown in Table 1.

We also analyzed the whole brain network of cortical thickness data using the sub-divided

MFC regions as the seed regions and exploring other brain regions, as shown in Fig 8. One

analysis was performed using the pre-SMA (i.e., anterior) region as the seed region, and the

other analysis was performed using the SMA (i.e., posterior) region as the seed region. The

SMA region was significantly (z > 0.4) correlated with motor regions consisting of the precen-

tral gyrus and medial cingulate cortex, as reported in Table 2. This result from cortical thick-

ness data was also consistent with that from the fMRI connectivity data. In addition, the pre-

SMA region was significantly (z> 0.4) correlated with frontal regions that consisted of the

superior frontal gyrus and medial frontal gyrus, as reported in Table 2. This result from corti-

cal thickness data was also was consistent with that from the fMRI connectivity data. Overall,

whole brain network analyses using the MFC sub-regions as the seed regions were consistent,

whether we used fMRI or cortical thickness data. We also observed that, even though regions

Table 1. Major correlated regions in the motor and frontal areas for SMA/pre-SMA regions using fMRI data. Regions with significance are reported in

bold.

Sub-region Target region Left/Right One sample t-test (t-value) Corrected p-value

Left SMA Precentral Left 10.8319290082795 < 0.00001

Right 9.88344268953952 < 0.00001

Mid-Cingulate Left 12.4780727572292 < 0.00001

Right 13.5169888816289 < 0.00001

Angular Left 12.7936976481766 < 0.00001

Right 9.89283126920642 < 0.00001

Right SMA Precentral Left 18.8483788304059 < 0.00001

Right -1.45981924853788 0.92719

Mid-Cingulate Left 25.909367603036 < 0.00001

Right 17.5317277429267 < 0.00001

Angular Left 16.5996055376089 < 0.00001

Right 21.5147665722438 < 0.00001

Left pre-SMA Superior Frontal Left 15.000356670372 < 0.00001

Right 10.0795534334249 < 0.00001

Medial Frontal Left 6.50825043771273 < 0.00001

Right 3.01904147004437 0.00140

Angular Left 7.16356089807129 < 0.00001

Right 9.98370029717117 < 0.00001

Right pre-SMA Superior Frontal Left 12.7449899471104 < 0.00001

Right 9.52338949936237 < 0.00001

Medial Frontal Left 7.37536786913104 < 0.00001

Right 6.4325149682644 < 0.00001

Angular Left 10.88629793357 < 0.00001

Right 9.46581707369649 < 0.00001

doi:10.1371/journal.pone.0171803.t001
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showing major correlation were consistent for fMRI connectivity- and cortical thickness-

based correlation maps, there were differences, including the connection strength between

regions. In general, the whole brain network information derived from fMRI and cortical

thickness was similar for the MFC region.

Discussion

This study is the first to compare network information derived from fMRI and cortical thick-

ness. We observed that both fMRI- and cortical thickness-based parcellation results divided

the MFC into two sub-regions that corresponded to the pre-SMA and the SMA regions. The

fMRI parcellation results and those for cortical thickness were consistent and showed high

overlap between the two parcellation results. This result led us to believe that 1) two distinct

sub-regions, the SMA and pre-SMA regions, have sharp differences in terms of functional con-

nectivity and morphological inter-regional correlation and thus justified parcellation into two

distinct sub-regions, and 2) morphological inter-regional correlation was strongly linked with

functional connectivity within the MFC region. In the MFC sub-regions (i.e., the pre-SMA

and the SMA), functional divisions based on fMRI and structural divisions based on cortical

thickness might be very similar; however, this might not apply for many other brain regions.

This study also compared whole brain network analysis using MFC sub-regions as seed

regions and exploring other brain regions using both fMRI and cortical thickness data. The

SMA region showed strong functional correlations with the precentral gyrus and medial cin-

gulate cortex. This is consistent with existing findings showing that the SMA is closely associ-

ated with motor control [34–37]. Unlike the SMA, the pre-SMA region showed strong

Fig 8. Cortical thickness-driven network analysis of the whole brain using MFC sub-regions as the seed region. (a) Connectivity results using the left

pre-SMA (i.e., anterior) region as the seed region. (b) Connectivity results using the right pre-SMA region as the seed region. (c) Connectivity results using the

left SMA (i.e., posterior) region as the seed region. (d) Connectivity results using the right SMA region as the seed region. Colored values denote z-values.

doi:10.1371/journal.pone.0171803.g008
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functional correlations with most of the frontal region. The observed functional connectivity

of the pre-SMA closely resembled that for complex cognitive controls, which include alteration

of motor plans, motor selection, and sequential movement [37–39]. Additionally, based on

cortical thickness-driven correlation maps, the SMA region showed strong correlations with

motor regions, and the pre-SMA region showed strong structural correlations with most of

the frontal region. We conducted whole brain network analyses using the same approach

adopted to parcellate the MFC into sub-regions and confirmed the known findings. Thus, we

believe the approach we adopted for MFC parcellation is sound.

Our study belongs in the category of network analyses of brain connectivity. Recent studies

have adopted cortical thickness to explore brain networks and have demonstrated an intrinsic

property of the whole brain network, namely “small-worldness” of the structural network and

a modular architecture property of the whole brain [13,40]. Both results demonstrated that the

anatomical network in the human brain was largely compatible with the previously identified

functional network. Using independent component analysis, another study demonstrated that

gray matter structural components were closely associated with functional components [41].

In light of these previous findings, our results suggest that inter-regional correlation maps

derived from cortical thickness reflect the underlying cytoarchitecture and function of some

brain regions.

We applied two types of clustering algorithms, spectral and Ward’s clustering. As shown in

a recent study, Ward’s clustering was better than k means and spectral clustering [30]. A good

clustering algorithm should be able to produce consistent parcellation results if two types of

Table 2. Major correlated regions (motor and frontal regions) for SMA/pre-SMA regions using cortical thickness. Regions with significance are

reported in bold.

Sub-region Target region Left/Right Correlation Coefficient (z-score) Corrected p-value

Left SMA Precentral Left 0.914888246 < 0.00001

Right 0.778042883 < 0.00001

Mid-Cingulate Left 0.609910529 < 0.00001

Right 0.575345189 < 0.00001

Angular Left 0.570550540170045 < 0.00001

Right 0.481691049404179 < 0.00001

Right SMA Precentral Left 0.702214913 < 0.00001

Right 0.751713666 < 0.00001

Mid-Cingulate Left 0.646114132 < 0.00001

Right 0.815058405 < 0.00001

Angular Left 0.644203779344561 < 0.00001

Right 0.559207603830776 < 0.00001

Left pre-SMA Superior Frontal Left 0.999544391 < 0.00001

Right 0.88498706 < 0.00001

Medial Frontal Left 0.931279677 < 0.00001

Right 0.7777322 < 0.00001

Angular Left 0.673914948196877 < 0.00001

Right 0.518119231076202 < 0.00001

Right pre-SMA Superior Frontal Left 0.788382444 < 0.00001

Right 1.06106518 < 0.00001

Medial Frontal Left 0.72027127 < 0.00001

Right 0.843095283 < 0.00001

Angular Left 0.581874154230906 < 0.00001

Right 0.475966583265475 < 0.00001

doi:10.1371/journal.pone.0171803.t002
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connectivity share a similar connectivity profile for the MFC. Indeed, Ward’s clustering pro-

vided better agreement between fMRI- and thickness-driven parcellation results than spectral

clustering. We adopted the AAL atlas, a structural atlas, for whole brain connectivity analysis.

Using a functional atlas is better suited for a whole brain functional connectivity study and

should be considered for future studies. One major advantage of using the AAL is that it is a

widely adopted atlas, so results derived from the AAL atlas can be easily compared across stud-

ies. Two types of network information led to consistent whole brain connectivity results in the

medial frontal gyrus and superior frontal gyrus, regions related to working memory [42,43].

We observed inconsistent whole brain connectivity results in the angular gyrus (responsible

for language and spatial cognition) based on two types of network information [44]. Further

investigation is needed to understand why two types of network information agree for working

memory-related regions. Our approach was entirely performed on the cortical surface and

thus is only applicable to brain regions that are close to the cortical surface. Certain deep brain

structures far from the cortical surface cannot be analyzed with the approach here and will

require further investigation.
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