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1 Introduction

Suppose that s ∈ (0, 1), N > 2s, p = N+2s
N−2s and� is a smooth open bounded domain. In this

paper, we are concerned with the asymptotic behavior of solutions to the nonlinear nonlocal
elliptic problem

⎧
⎪⎨

⎪⎩

(−�)su = u p−ε in �,

u > 0 in �,

u = 0 in R
N\�,

(1.1)

when a small parameter ε > 0 tends to zero. Here, (−�)s is understood as either the spectral
fractional Laplacian or the restricted fractional Laplacian (see Sect. 2.1 for the definition of
the fractional Laplacians).

Recently, various nonlocal differential equations have attracted lots of researchers. In
particular, equations involving the fractional Laplacian were treated extensively in both pure
and applied mathematics, because not only the fractional Laplacian is an operator which
naturally interpolates the classical Laplacian −� and the identity (−�)0 = id , but also it
appears in diverse areas including physics, biological modeling and mathematical finances,
as a tool describing nonlocal characteristic.

Owing to technical difficulties arising from the nonlocality, there had not been enough
progress in theory of equations involving the fractional Laplacian. However, about a decade
ago, Caffarelli and Silvestre [15] interpreted the fractional Laplacian in R

N in terms of a
Dirichlet–Neumann-type operator in the extended domainRN+1+ = {(x, t) ∈ R

N+1 : t > 0},
and this idea allowed one to analyze nonlocal problems by utilizing well-known arguments
such as the mountain pass theorem, the moving plane method, the Moser iteration technique
or monotonicity formulae. A similar extension was also devised by Cabré and Tan [14], and
Stinga and Torrea [58] (see Capella et al. [17], Brändle et al. [10], Tan [61] and Chang and
González [19] also) for nonlocal elliptic equations on bounded domains with zero Dirichlet
boundary condition.

Based on these extensions (or the integral representation of a differential operator itself),
a lot of studies on nonlocal problems of the form (−�)su = f (u) (for a certain function
f : R → R) were conducted. For the results of particular equations, we refer to papers on
the Schrödinger equations [3,22,28,32], the Allen–Cahn equations [12,13], the Fisher–KPP
equations [8,11], the Nirenberg problem [1,39,40], and the Yamabe problem [24,34,35,41],
respectively. Also, Brezis–Nirenberg-type problems have been tackled in [6,27,60]. Most
results mentioned here considered on the existence of solutions with some desired property.
Meanwhile, several regularity results such as the Schauder estimate and the strong maximum
principle were derived in [12,14,16,17,39,58] and references therein.

Due to its simple form, the Lane–Emden–Fowler problem (1.1) has been regarded as
one of the most fundamental nonlinear elliptic equations. It is now a classical fact that the
exponent p = N+2s

N−2s is a threshold on the existence of a solution to (1.1). If ε > 0, one
can find a solution to (1.1) by applying the standard variational argument with the compact
embedding Hs(�) ↪→ L p+1−ε(�). If ε ≤ 0 and � is star-shaped, the Pohozaev identity
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(obtained in [14,61] for the spectral Laplacians and in [54] for the restricted Laplacians)
implies that no solution exists. In view of the corresponding result of Bahri and Coron [4] to
the case s = 1, it is expected that (1.1) has a solution if the domain� has nontrivial topology.

On the other hand, it is well known that the Brezis–Nirenberg-type problem
⎧
⎪⎨

⎪⎩

(−�)su = u p + εuq in �,

u > 0 in �,

u = 0 in R
N\�,

(1.2)

where N > 2s, 0 < q < p and ε > 0 is a parameter, shares many common characteristics
with (1.1). Through the papers [6,7,57,60], it was determined that its solvability relies on
ε, p, q, N and �.

Once the existence theory is settled, the very next step would be to obtain information on
the shape of solutions.

For Eq. (1.1) with general exponents on the nonlinearity, an answer of this question is
provided by the moving plane argument. It yields that for any p − ε > 1 each solution to
(1.1) increases along lines emanating from a boundary point to a certain interior point. It
then induces symmetry of a solution from that of the domain �. We refer to [14,52,61] for
further discussion.

On the other hand, it is natural to guess that if ε → 0, then the solution uε may possess
a singular behavior, since p = N+2s

N−2s is the critical exponent. This idea intrigues one to
investigate the shape of uε in detail for ε > 0 small enough. In this regard, Choi et al. [25] and
Dávila et al. [29] constructed multiple blow-up solutions by applying the Lyapunov–Schmidt
reduction method (refer to Theorem A below). When the fractional Laplacian is defined in
terms of the spectra of the Dirichlet Laplacian, the authors of [25] also characterized the
asymptotic behavior of a sequence {uε}ε>0 of minimal energy solutions to (1.1) and (1.2)
(with q = 1). It turned out that uε blows up at a single point which is a critical point of the
Robin function of (−�)s .

In this line of research, an important remaining problem is to study the asymptotic character
of solutions {uε}ε>0 without the minimal energy condition. This is what we address in the
current paper. Precisely, we shall give a detailed description for the asymptotic behavior of all
finite energy solutions to (1.1) where the fractional Laplacian is either spectral or restricted
one. We believe that the same phenomena should happen to finite energy solutions to (1.2).

Theorem 1.1 For any given s ∈ (0, 1) and N > 2s, suppose that there exists a sequence
{un}n∈N in

H̃ s(�) :=
{
u ∈ Hs(RN ) : u = 0 in R

N\�
}

(1.3)

such that each of the function un solves Eq. (1.1) with ε = εn ↘ 0. In addition, assume
supn∈N ‖un‖H̃ s (�) < +∞ (refer to Sect. 2.1). Then, one of the following holds: Up to a
subsequence, either

(1) the function un converges strongly in H̃ s(�) to a function v satisfying
⎧
⎪⎨

⎪⎩

(−�)sv = v p in �,

v > 0 in �,

v = 0 on R
N\�

(1.4)

as n → ∞, or
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(2) the asymptotic behavior of un is given by

un =
m∑

i=1

Pwλin ,x
i
n
+ rn (1.5)

where λin → 0 and xin → xi0 ∈ � as n → ∞. Here, Pwλ,ξ is the projected bubble defined
after (2.17), and rn is a remainder term converging to zero in H̃ s(�). Furthermore, the
following properties are valid.

– There is a constant C0 > 0 independent of n ∈ N such that λ
j
n

λin
< C0 holds for all n ∈ N

and i, j = 1, . . . ,m.
– There is a constant d0 > 0 such that |xin − x j

n | > d0 for any n ∈ N and i, j = 1, . . . ,m
with i �= j .

– Let bi =
(
limn→∞ λin

λ1n

) N−2s
2

and b0 = limn→∞(λ1n)
−(N−2s)εn. Then, the value

((b1, . . . , bm), (x10 , . . . , x
m
0 )) ⊂ (0,∞)m × �m

is a critical point of the function �m defined by

�m(b1, . . . , bm, x1, . . . , xm) = c1

⎛

⎝
m∑

i=1

b2i H(xi , xi ) −
∑

i �=k

bi bkG(xi , xk)

⎞

⎠

−c2 log(b1 . . . bm) · b0, (1.6)

where

c1 =
∫

RN
w

p
1,0dx > 0 and c2 =

(
N − 2s

N

) ∫

RN w
p+1
1,0 dx

∫

RN w
p
1,0dx

> 0. (1.7)

Here, G : � × � → R is Green’s function of (−�)s , H : � × � → R is its regular part,
and w1,0 is the standard bubble on R

N given in (2.13). (See Sect. 2 for more details.)

Remark 1.2 As we mentioned, Eq. (1.1) may have a solution even for ε ≤ 0 if the topology
of the domain � is not simple (say, its homology group over Z/(2Z) is nontrivial). Hence,
the first case (1) of Theorem 1.1 cannot be excluded for general domains.

If the blow-up points satisfy a certain nondegeneracy condition, then we can determine
the blow-up rates in terms of an explicit power of ε−1 as the following theorem shows.

Theorem 1.3 Let {un}n∈N be a sequence of solutions to (1.1) satisfying (2) of Theorem 1.1.
Let us set an m × m symmetric matrix M = (mi j )1≤i, j≤m by

mi j =
{
H(xi0, x

i
0) if i = j,

−G(xi0, x
j
0 ) if i �= j.

Then, it is nonnegative definite. If it is nondegenerate (i.e., positive definite), then for any
1 ≤ i ≤ m, we have

lim
n→∞ logεn

λin = 1

N − 2s
. (1.8)

Recall that Eq. (1.1) has multi-bubble solutions as the following result indicates.
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Theorem A (Choi et al. [25]; Dávila et al. [29]) Assume s ∈ (0, 1) and N > 2s. Given
arbitrary m ∈ N, suppose that the function �m in (1.6) with b0 = N−2s

4s has a stable critical
set 	m such that

	m ⊂ {
((λ1, . . . , λm), (x1, . . . , xm)) ∈ (0,∞)m × �m :
xi �= x j if i �= j and i, j = 1, . . . ,m

}
.

Then, there exists a point ((λ10, . . . , λ
m
0 ), (x10 , . . . , x

m
0 )) ∈ 	m and a small number ε0 > 0

such that for 0 < ε < ε0, there is a family of solutions uε of (1.1) which concentrate at each
point x10 , . . . , x

m−1
0 and xm0 as ε → 0 in the form (1.5), after extracting a subsequence if

necessary.

The asymptotic behavior of solutions figured in Theorem 1.3 (2) corresponds exactly to the
multi-peak solutions described in the above theorem. This reveals the accuracy and sharpness
of our classification results. The question of finding a blow-up sequence of solutions not
satisfying (1.8) is open even for the local case s = 1.

Before introducing our strategy for the proof of the classification results, it is worth to
remind that problem (1.1) is a nonlocal version of the Lane–Emden–Fowler equation

⎧
⎪⎨

⎪⎩

−�u = u
N+2
N−2−ε in �,

u > 0 in �,

u = 0 on ∂�.

(1.9)

In [49], Rey constructed one-peak solutions to (1.9). Then, multi-peak solutions were found
by Bahri et al. [5], Rey [51] and Musso and Pistoia [47] (for N ≥ 3) by different ways.
Furthermore, the classification of solutions was conducted in Han [38] and Rey [49] for
one-peak case (N ≥ 3), and in Bahri et al. [5] and Rey [51] for general case (N ≥ 4 and
N = 3, respectively).

Theorem B (Bahri et al. [5]; Rey [51]) Assume that N ≥ 3 and {un}n∈N ⊂ H1
0 (�) is a

sequence of solutions to (1.9) with ε = εn ↘ 0. Also, suppose that supn∈N ‖un‖H1
0 (�) < ∞.

Passing to a subsequence, either un strongly converges to a solution u of (1.4)with s = 1,
or it has the asymptotic behavior (1.5) where Pwλ,ξ is the projected bubble defined as

−�Pwλ,ξ = w
p
λ,ξ in � and Pwλ,ξ = 0 on ∂�

(wλ,ξ is given in (2.13)). Moreover, all characteristics of the concentration points
{x1n , . . . , xmn } and rates {λ1n, . . . , λmn } in the statement of Theorem 1.1 remain to hold. If
the nonnegative matrix M defined in the statement of Theorem 1.3 is in fact positive, then
(1.8) is valid.

In [5,51], a certain decomposition of the space H1
0 (�) is crucially used (see Remark 1.4

(1) below), which produces large error in the lowest-dimension case N = 3. In this reason,
improved estimates had to be made additionally in [51]. Remarkably, as we will see later,
our proof for theorems 1.1 and 1.3 provides a unified and neater approach to treat this local
situation s = 1. As a result, we have a new proof of Theorem B working for all dimensions
N ≥ 3 at the same time. See Sect. 6.2.

The framework of the proofs for our main theorems comprises of the following three
steps:

Step 1. Concentration-compactness principle;
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274 W. Choi, S. Kim

Step 2. Pointwise bounds of un obtained from a moving sphere argument and their applica-
tions;
Step 3. Two identities regarding Green’s function and the Robin function coming from a type
of Green’s identity.

Let us briefly explain each step by assuming that the spectral fractional Laplacian is under
consideration.

In Step 1, we recall the concentration-compactness principle for problem (1.1). This
renowned principle is found by Struwe [59] for Eq. (1.9), and recently extended to problem
(1.1) by Almaraz [2] for s = 1

2 , and by Fang and González [31], and Palatucci and Pisante
[48] for all 0 < s < 1 (in slightly different setting). It makes possible to decompose solutions
{un}n∈N of (1.1) as

un = v0 +
m∑

i=1

Pwλin ,x
i
n
+ rn, (1.10)

where v0 is the H̃ s(�)-weak limit of {un}n∈N, Pwλin ,x
i
n

∈ H̃ s(�) is the projected bub-

ble and rn converges to zero in H̃ s(�). See Lemma 2.2 for the complete description of
λin, x

i
n, v0, Pwλ,ξ and rn .

Now our task is reduced to getting further information on the sequence {un}n∈N whose
elements are expressed as (1.10), which is one of the main contributions of this paper. We
immediately encounter a difficulty, because we do not know at this moment even whether
two different concentration points xin and x j

n may collide or not. This technicality will be
tackled in Step 2, where we attain a pointwise bound of un near each concentration point by
employing the moving sphere method toward the extended problem (2.4) of Eq. (1.1) (see
Sect. 3). This allows us to deduce no coincidence of two different blow-up points and to
obtain further valuable information on solutions such as the alternative between v0 = 0 and
m = 0, and compatibility of blow-up rates of all peaks (see Sect. 4). This part is motivated
by Schoen [55].

Given the pointwise bound and its consequences derived in Step 2, we show in Step 3
that the L∞-normalized sequence of the solutions un converges to a combination of Green’s
functions. Then, inserting this information into a Green-type identity (5.3) will lead us
to discover two identities (5.4) and (5.11) regarding on the limit of the blow-up profile
(λ1n, . . . , λ

m
n , x1n , . . . x

m
n ), which will complete the proof of our main results. On passing to

the limit, one needs to know a uniformC2-estimate of the s-harmonic extensions of {un}n∈N.
It is not a trivial issue since we are handling the nonlocal problem (1.1), or the associate
degenerate local problem (2.4) with the weighted Neumann boundary condition. “Appendix
2” is devoted to deduce the desired regularity results.

The above strategy extends Han’s method [38] in a quite natural manner, while the argu-
ment in Bahri et al. [5] and Rey [51] can be regarded as further developments of Rey [49,50].

We conclude this section, presenting some additional remarks.

Remark 1.4 (1) The corresponding result to Step 3 for the local problem (1.9) was achieved
in Bahri et al. [5] and Rey [51]. The argument in [5,51] requires one to estimate
‖rn‖H1

0 (�) in terms of powers of εn and max1≤k≤m λkn . For this aim, the authors replaced
∑m

i=1 Pwλin ,x
i
n
in the expansion (1.10) ofun with

∑m
i=1 αi

n Pwλin ,x
i
n
(for someαi

n ∈ R) and

123



Classification of solutions to the fractional... 275

then perturbed the parameters (αi
n, λ

i
n, x

i
n) so that rn satisfies the H1

0 (�)-orthogonality

〈rn, Pwλin ,x
i
n
〉H1

0 (�) =
〈

rn,
∂Pwλin ,x

i
n

∂x j

〉

H1
0 (�)

=
〈

rn,
∂Pwλin ,x

i
n

∂λ

〉

H1
0 (�)

= 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ N ,

as in Bahri and Coron [4]. After that, they followed the argument of Rey [49,50] to get a
sharp estimate ‖rn‖H1

0 (�). Their argument is simplified in our proof in the point that we
do not need the estimate of the remainder term rn .

(2) An advantage of the argument in [5,51] is that it deals with the energy functional of
(1.9) directly so that it suggests a way to compute the Morse index of the solutions.
Recently, asymptotic behavior of the first (N + 2)m-eigenvalues and eigenfunctions for
the linearized equation of (1.9) was examined in [26,36]. They give the information on
the Morse index as a particular corollary.

The rest of this paper is organized as follows. In Sect. 2, we review the extension problem
for the spectral and restricted fractional Laplacians, Green’s function, the Robin function and
the projected bubbles. Moreover, we recall the concentration-compactness principle which
brings with a decomposition result of blow-up solutions. Section 3 is devoted to the proof
of a pointwise upper bound which makes use of a moving sphere argument. In Sect. 4, by
using this estimate, we attain various refined information for the blow-up solutions, and in
particular, show that suitably normalized blow-up solutions converge to combinations of
Green’s functions. In Sect. 5, we obtain essential information of the blow-up points and their
blow-up rates by using a Green-type identity, which proves our main results. For the sake
of brevity, we concentrate only on the spectral fractional Laplacian in Sects. 3–5. Instead,
all necessary modifications to deal with the restricted fractional Laplacian or the classical
(local) Laplacian are listed in Sect. 6. Finally, a decay estimate of the standard bubble W1,0

(see Sect. 2.4) needed in Sect. 3 and elliptic regularity results necessary for Lemma 4.6 are
derived in appendices 7 and 8, respectively.

Notations.

– The letter z represents a variable in the half-spaceRN+1+ = R
N ×(0,∞). Also, it is written

as z = (x, t) = (x1, . . . , xN , xN+1) with x = (x1, . . . , xN ) ∈ R
N and t = xN+1 > 0.

– For any fixed smooth open bounded domain � ⊂ R
N , let C := � × (0,∞) ⊂ R

N+1+
be the associated cylinder of � and ∂LC := ∂� × (0,∞) its lateral boundary. Set also
C′ := � × [0,∞).

– For fixed N ∈ N and s ∈ (0, 1) such that N > 2s, the weighted Sobolev space

D1,2(RN+1+ ; t1−2s) is defined as the completion of the space C∞
c (RN+1+ ) with respect

to the norm

‖U‖D1,2(RN+1+ ;t1−2s )
:=

(∫

R
N+1+

t1−2s |∇U (z)|2dz
)1/2

for U ∈ C∞
c (RN+1+ ).

Moreover, for any given cylinder C = � × (0,∞) (where � is a smooth open bounded
domain), the space H1,2

0 (C; t1−2s) is the completion of C∞
c (C ∪ (� × {0})) with respect

to the above norm.

– We will denote by p the critical exponent N+2s
N−2s .
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276 W. Choi, S. Kim

– Let BN+1+ ((x, 0), r) be the half-ball in R
N+1+ of radius r centered at (x, 0) ∈ R

N × {0}.
Moreover, we set ∂I B

N+1+ (0, r) = ∂BN+1+ (0, r) ∩ R
N+1.

– dS stands for the surface measure. Also, a subscript attached to dS (such as dSx or dSz)
denotes the variable of the surface.

– For an arbitrary domain D ⊂ R
n , the map ν = (ν1, . . . , νn) : ∂D → R

n denotes the
outward unit normal vector on ∂D.

– Suppose that D is a domain and T ⊂ ∂D. If f is a function on D, then the trace of f on
T is denoted by tr|T f whenever it is well defined.

– |SN−1| = 2πN/2/�(N/2) denotes the Lebesgue measure of (N − 1)-dimensional unit
sphere SN−1.

– The following positive constants will appear in (2.1), (2.2), (2.3), (2.8), (2.13) and (2.14):

cN ,s := 22ss�( N+2s
2 )

π
N
2 �(1 − s)

, κs := �(s)

21−2s�(1 − s)
, pN ,s := �

( N+2s
2

)

π
N
2 �(s)

,

γN ,s := 1

|SN−1| · 2
1−2s�

( N−2s
2

)

�
( N
2

)
�(s)

,

αN ,s := 2
N−2s
2

(
�
( N+2s

2

)

�
( N−2s

2

)

) N−2s
4s

and SN ,s := 2−sπ− s
2

(
�
( N−2s

2

)

�
( N+2s

2

)

) 1
2
(

�(N )

�( N2 )

) s
N

.

– C > 0 is a generic value that may vary from line to line.

2 Preliminaries on fractional Laplacians

In this section, we review some preliminary notions and results whichwill be needed through-
out the proofs of the main theorems.

2.1 Definition of Sobolev spaces and fractional Laplacians

For any smooth open bounded domain �, let {λk, φk}∞k=1 be a sequence of the eigenvalues
and the corresponding L2(�)-normalized eigenvectors of the Dirichlet Laplacian −� in �,

{
−�φk = λkφk in � and φk = 0 on ∂�,

‖φk‖L2(�) = 1

where 0 < λ1 < λ2 ≤ λ3 ≤ · · · . Then the spectral Laplacian is defined in terms of the
quadratic form

Qs
spec(u) :=

∞∑

k=1

λsk

(∫

�

uφkdx

)2

for u ∈ Vs(�)

where the domain Vs(�) of the form Qs
spec is

Vs(�) :=
{
u ∈ L2(�) : Qs

spec(u) < ∞
}

.

By [46, Lemma 1] and [17, Proposition 2.1], it is known that

Vs(�) = H̃ s(�) =
{
u = tr|�×{0}U : U ∈ H1,2

0 (C; t1−2s)
}
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Classification of solutions to the fractional... 277

where H̃ s(�) is the function space defined in (1.3).
On the other hand, for any s ∈ (0, 1) and u ∈ Hs(RN ), we are capable of defining the

fractional Laplacian by using the integral representation

(−�)su(x) = cN ,s P.V.
∫

RN

u(x) − u(y)

|x − y|N+2s dy. (2.1)

Here, the exact value of cN ,s > 0 (as well as other constants such as κs or pN ,s below) can
be found at the last part of the previous section. If this operator is restricted to functions in
H̃ s(�), then it is called the restricted fractional Laplacian.

To compare two different fractional Laplacians, the reader is advised to check the papers
[9,46,56]. Given either the spectral or restricted fractional Laplacian, we set

‖u‖H̃ s (�) =
(∫

�

|(−�)s/2u|2dx
) 1

2

for any u ∈ H̃ s(�).

Remark 2.1 A Moser iteration argument combined with the use of the Caffarelli–Silvestre
extension [15] shows that any finite energy solution u of (1.1) is bounded (see, for example,
[25]), and elliptic regularity results guarantee that u is continuous up to the boundary (refer
to [16,37] for the spectral case and [52] for the restricted case). Hence, it makes sense to say
that a finite energy solution u to (1.1) has zero boundary values.

2.2 Localization of fractional Laplacians

Let � be a smooth open bounded domain. For a fixed function u ∈ Vs(�) = H̃ s(�) (or
Hs(RN )), let us set U ∈ H1,2

0 (C; t1−2s) (or D1,2(RN+1+ ; t1−2s), respectively) to be the
s-harmonic extension of u, namely, a unique solution of the equation

⎧
⎪⎨

⎪⎩

div(t1−2s∇U ) = 0 in C (or RN+1+ ),

U = 0 on ∂LC (or ∂LR
N+1+ = ∅),

U (·, 0) = u on � (or RN ).

Then, by the celebrated results of Caffarelli and Silvestre [15] (for the Euclidean space RN )
and Cabré-Tan [14] (for bounded domains �, see also [17,58,61]), it holds that

(−�)su(x) = ∂sνU (x) := −κs lim
t→0+ t1−2s ∂U

∂t
(x, t) for x ∈ � (or RN ). (2.2)

Moreover, if u ∈ Hs(RN ), then the Poisson representation formula gives that

U (x, t) = pN ,s

∫

RN

t2s

(|x − y|2 + t2)
N+2s
2

u(y) dy (2.3)

while for u ∈ Vs(�) it is possible to describe U in terms of a series related to the Bessel
functions (refer to [17]).
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As a result, if the spectral fractional Laplacian is concerned, then the s-harmonic extension
Uε ∈ H1,2

0 (C; t1−2s) of a solution uε ∈ Vs(�) to problem (1.1) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(t1−2s∇Uε) = 0 in C,

Uε = 0 on ∂LC,

Uε = uε on � × {0},
∂sνUε = u p−ε

ε on � × {0}.
(2.4)

In light of the Sobolev inequality (refer to [17, Sections 1–2] and (2.14) below), we see

‖Uε‖2H1,2
0 (C;t1−2s )

= ‖uε‖p+1−ε

L p+1−ε (�)
≤ C‖uε‖p+1−ε

H̃ s (�)
. (2.5)

Therefore, if we have supε>0 ‖uε‖H̃ s (�) < +∞, then supε>0 ‖Uε‖H1,2
0 (C;t1−2s )

< +∞.

Moreover, by the strong maximum principle ([12, Corollary 4.12] or [30, Lemma 2.7]), it
holds that Uε > 0 in C.

A similar (and in fact simpler) formulation is available when the restricted fractional
Laplacian is studied. In this case, the equation we have to consider is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(t1−2s∇Uε) = 0 in R
N+1+ ,

Uε = 0 on (RN\�) × {0},
Uε = uε on � × {0},
∂sνUε = u p−ε

ε on � × {0}.
(2.6)

2.3 Green’s functions of fractional Laplacians

In this subsection, we review Green’s functions.
We consider first the case when the fractional Laplacian is defined in terms of the spectra

of the Laplacian. We refer to [25] for more details.
Let G be Green’s function of the spectral fractional Laplacian (−�)s on a smooth open

bounded domain � with the zero Dirichlet boundary condition. Then, it can be regarded as
the trace of Green’s function GC = GC(z, x) (z ∈ C, x ∈ �) for the Dirichlet–Neumann
problem on the extended domain C which satisfies

⎧
⎪⎨

⎪⎩

div(t1−2s∇GC(·, x)) = 0 in C,

GC(·, x) = 0 on ∂LC,

∂sνGC(·, x) = δx on � × {0}
(2.7)

where δx is the Dirac delta function on R
n with center at x ∈ �.

Green’s function GC on the half-cylinder C can be decomposed into the singular and
regular parts. The singular part is given by Green’s function

G
R
N+1+

((x, t), y) := γN ,s

|(x − y, t)|N−2s (2.8)

on the half-space RN+1+ satisfying
⎧
⎨

⎩

div
(
t1−2s∇(x,t)GR

N+1+
((x, t), y)

)
= 0 in R

N+1+ ,

∂sνGR
N+1+

((x, 0), y) = δy(x) on R
N = ∂RN+1+

(2.9)
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for each y ∈ R
N . The regular part is given as the function HC : C → R which solves

⎧
⎪⎪⎨

⎪⎪⎩

div
(
t1−2s∇(x,t)HC((x, t), y)

) = 0 in C,

HC((x, t), y) = γN ,s

|(x − y, t)|N−2s on ∂LC,

∂sν HC((x, 0), y) = 0 on � × {0}
(2.10)

for any y ∈ �. Its existence can be verified in a variational method (see Lemma 2.2 in [25]).
We then have

GC((x, t), y) = G
R
N+1+

((x, t), y) − HC((x, t), y).

Now, letting H(x, y) = HC((x, 0), y), we can decompose G(x, y) = GC((x, 0), y) as
follows.

G(x, y) = γN ,s

|x − y|N−2s − H(x, y).

Let us recall some regularity properties of the function HC . For any index α ∈ (N∪{0})N ,
the partial derivatives ∂α

x HC of HC in the x-variable always exist (see Lemma 8.1 and Sect. 2
of [25]). In addition, it follows from (2.10) that

{
div

(
t1−2s∇(x,t)∂

α
x HC((x, t), y)

) = 0 in C,

∂sν∂
α
x HC((x, 0), y) = 0 on � × {0}.

Therefore, by applying [12, Lemma 4.5] to each ∂α
x HC , we see that there is a constant

C = C(α, r, ξ) > 0 such that

|∂α
x HC((x, t), y)| ≤ C (2.11)

and
∣
∣t1−2s∂t∂

α
x HC((x, t), y)

∣
∣ ≤ C (2.12)

for all (x, t) ∈ BN+1+ ((ξ, 0), r) provided that ξ ∈ � and r > 0 satisfy the condition
r < dist(ξ, ∂�).

When the restricted fractional Laplacian is dealt with, we observe that the above discussion
is still valid once we let C = R

N+1+ and substitute the boundary conditions in (2.7) and (2.10)
with

GC(·, x) = 0 on ∂BC and

HC((x, t), y) = γN ,s

|(x − y, t)|N−2s on ∂BC

respectively, where ∂BC := (RN\�) × {0}. (The function GC in this paragraph should not
be confused with the fundamental solution G

R
N+1+

in (2.8).)

2.4 Sharp Sobolev and trace inequalities

Given any λ > 0 and ξ ∈ R
N , let wλ,ξ be the bubble defined by

wλ,ξ (x) = αN ,s

(
λ

λ2 + |x − ξ |2
) N−2s

2

for x ∈ R
N . (2.13)
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Then, it is true that
(∫

RN
|u|p+1dx

) 1
p+1 ≤ Sn,s

(∫

RN
|(−�)s/2u|2dx

) 1
2

for all u ∈ Hs(RN ), (2.14)

and the equality holds if and only if u(x) = cwλ,ξ (x) for any c > 0, λ > 0 and ξ ∈ R
N (refer

to [18,33,45]).1 Furthermore, it was shown in [20,42,44] that if a suitable decay assumption
is imposed, then {wλ,ξ : λ > 0, ξ ∈ R

N } is the set of all solutions for the problem
(−�)su = u p, u > 0 in R

N and lim|x |→∞ u(x) = 0.

Denote also the s-harmonic extension ofwλ,ξ byWλ,ξ ∈ D1,2(RN+1+ ; t1−2s) so thatWλ,ξ

solves
{
div(t1−2sWλ,ξ (x, t)) = 0 in R

N+1+ ,

Wλ,ξ (x, 0) = wλ,ξ (x) on R
N .

(2.15)

It follows that for the Sobolev trace inequality

(∫

RN
|U (x, 0)|p+1dx

) 1
p+1 ≤ √

κs Sn,s

(∫ ∞

0

∫

RN
t1−2s |∇U (x, t)|2dxdt

) 1
2

, (2.16)

the two sides are equal if and only if U (x, t) = cWλ,ξ (x, t) for any c > 0, λ > 0 and
ξ ∈ R

N .

2.5 Concentration-compactness principle

Firstly, we treat the spectral fractional Laplacian case. Let PWλ,ξ stand for the projection of
the bubble Wλ,ξ into H1,2

0 (C; t1−2s), that is, the solution of
⎧
⎪⎨

⎪⎩

div(t1−2s∇PWλ,ξ ) = 0 in C,

PWλ,ξ = 0 on ∂LC,

∂sν PWλ,ξ = ∂sνWλ,ξ = W p
λ,ξ on � × {0},

(2.17)

and Pwλ,ξ = tr|�×{0}PWλ,ξ . By the maximum principle [25, Lemma 2.1], we have 0 ≤
PWλ,ξ ≤ Wλ,ξ in C. Also [25, Lemma C.1] says that

PWλ,ξ (z) = Wλ,ξ (z) − c1λ
N−2s
2 H(z, ξ) + o

(
λ

N−2s
2

)
(2.18)

uniformly for z ∈ C where c1 > 0 is the number appeared in (1.6).
The following result is a fractional version of Struwe [59].

Lemma 2.2 Let {Un}n∈N be a sequence of solutions to (2.4) with ε = εn ↘ 0 which
satisfies the norm condition supn∈N ‖Un‖H1,2

0 (C;t1−2s )
< ∞. Then, there exist an integer

m ∈ N ∪ {0} and a sequence {(λin, xin)}n∈N ⊂ (0,∞) × � of positive numbers and points
for each i = 1, . . . ,m such that

Rn := Un −
(

V0 +
m∑

i=1

PWλin ,x
i
n

)

→ 0 in H1,2
0 (C; t1−2s) as n → ∞ (2.19)

1 The constant Sn,s is still the best constant even if we restrict the class Hs (RN ) to the subspace H̃ s (�). See
[46, Theorem 4].
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(up to a subsequence) where V0 is the weak limit of Un in H1,2
0 (C; t1−2s), which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

div(t1−2s∇V0) = 0 in C,

V0 = 0 on ∂LC,

∂sνV0 = V
N+2s
N−2s
0 on � × {0}.

(2.20)

In addition, it holds that

1

λin
dist(xin, ∂�) → ∞ and

λin

λ
j
n

+ λ
j
n

λin
+ 1

λinλ
j
n

|xin − x j
n |2 → ∞ as n → ∞ (2.21)

for all 1 ≤ i �= j ≤ m.

Proof See [2] and [31] where an analogous conclusion is deduced in the setting of asymptot-
ically hyperbolic manifolds. Since their approach still works for our case, we omit the proof.

��
Let v0 = tr|�×{0}V0 and rn = tr|�×{0}Rn .
Extracting a subsequence of {Un}n∈N and reordering the indices if necessary, we may

assume that

λ1n ≤ λ2n ≤ · · · ≤ λmn for all n ∈ N and xin → xi0 ∈ � as n → ∞. (2.22)

Using the Kelvin transform and the moving plane argument, Choi [23, Lemma 4.1] proved
that {Un}n∈N are uniformly bounded near the boundary ∂� × [0,∞). That is, there exist
constants δ > 0 and C > 0 such that

sup
n∈N

sup
{(x,t)∈C:dist(x,∂�)<δ}

|Un(x, t)| ≤ C.

Hence,

dist(xi0, ∂�) ≥ δ for i = 1, . . . ,m. (2.23)

For the restricted fractional Laplacian, we define PWλ,ξ by (2.17) whose second line is
replaced with PWλ,ξ = 0 in RN\�. Then, it is not hard to draw analogous results to Lemma
2.2 (cf. [48]) and (2.18). Besides, one can check that (2.23) still holds as follows: If the
domain� is strictly convex, we apply the moving plane method with the maximum principle
for small domains (given in [53, Lemma 5.1]), getting

sup
n∈N

sup
dist(x,∂�)<δ

|un(x)| ≤ C. (2.24)

In the case that � does not have the convexity assumption, we first use the conformal invari-
ance of Eq. (1.1) (refer to [52, Proposition A.1]) and then employ the moving plane method
to obtain (2.24). Now combining (2.19) and (2.24) gives (2.23) at once. See [38, Section 2]
to recall the argument used for the local case s = 1.

In the next two sections, further information on blow-up rates {λin}mi=1 and points {xin}mi=1
in the decomposition (2.19) will be examined. In what follows, we simply denote w1,0 and
W1,0 by w and W , respectively. Since W = W (x, t) is radially symmetric in the x-variable,
we will often write W (x, t) = W (ρ, t) where ρ = |x |. In addition, the operator (−�)s is
understood as the spectral fractional Laplacian in Sects. 3, 4 and 5. Consideration on the
restricted fractional Laplacian is postponed to Sect. 6.
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3 Moving sphere argument and pointwise upper bound

The aim of this section is to obtain a sharp pointwise upper bound of solutions Uε to (2.4).
To this end, we will employ the method of moving spheres (refer to [21,43,55]).

Proposition 3.1 Let r0 > 0 be any fixed small number. Assume that {Mε}ε>0 is a family of
positive numbers such that limε→∞ Mε = ∞ and limε→∞ Mε

ε = 1. If a family {Vε}ε>0 of
positive functions satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

div(t1−2s∇Vε) = 0 inBN
(
0, r0M

2
N−2s
ε

)
× (0,∞),

∂sνVε = V p−ε
ε onBN

(
0, r0M

2
N−2s
ε

)
,

‖Vε‖
L∞

(
BN+1+

(
0,r0M

2
N−2s

ε

)) ≤ c

(3.1)

for some c > 0, and

Vε ⇀ W weakly in D1,2(RN+1+ ; t1−2s) as ε → 0, (3.2)

then there are constants C > 0 and 0 < δ0 < r0 independent of ε > 0 such that

Vε(z) ≤ CW (z) for all z ∈ BN+1+
(
0, δ0M

2
N−2s
ε

)
.

For the proof of the above proposition, we make some remarks.

Remark 3.2 (1) By (3.1), (3.2) and theHölder regularity due to Cabre–Sire [12], if a constant

ζ1 > 0 and a compact set K ⊂ R
N+1+ are given, then there exist ε1 > 0 small and

α ∈ (0, 1) such that

‖Vε − W‖Cα(K ) ≤ ζ1 for ε ∈ (0, ε1). (3.3)

(2) For any function F in R
N+1+ , let Fλ be its Kelvin transform of defined as

F(z) =
(

λ

|z|
)N−2s

F
(
zλ
)

where zλ := λ2z

|z|2 ∈ R
N+1+ . (3.4)

If we write Dλ
ε = Vε − V λ

ε , then it holds that

∂sν D
λ
ε = V p−ε

ε −
(

λ

|x |
)(N−2s)ε (

V λ
ε

)p−ε ≥ V p−ε
ε − (

V λ
ε

)p−ε

= ξε(x) D
λ
ε for |x | ≥ λ and t = 0

where

ξε(x) =

⎧
⎪⎨

⎪⎩

V p−ε
ε − (

V λ
ε

)p−ε

Vε − V λ
ε

(x, 0) if Vε(x, 0) �= V λ
ε (x, 0),

(p − ε)V p−1−ε
ε (x, 0) if Vε(x, 0) = V λ

ε (x, 0).

(3) For each R > 0, let us introduceGreen’s functionGR of the spectral fractional Laplacian
(−�)s in � = BN (0, R) with zero Dirichlet boundary condition and Green’s function
GR

C of Eq. (2.7) in the cylinder C = BN (0, R) × (0,∞). By the scaling invariance, we
have

GR(x, y) = 1

RN−2s G
1
( x

R
,
y

R

)
for x, y ∈ BN (0, R)
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and

GR
C ((x, t), y) = 1

RN−2s G
1
C

((
x

R
,
t

R

)

,
y

R

)

for x, y ∈ BN (0, R) and t > 0.

Thus, we can decompose Green’s function in BN (0, R) into its singular part and regular
part as follows:

GR
C ((x, t), y) = γN ,s

|(x − y, t)|N−2s − 1

RN−2s H
1
C

((
x

R
,
t

R

)

,
y

R

)

for x, y

∈ BN (0, R), t > 0. (3.5)

The precise value of the normalizing constant γn is given in Notations.

As a preliminary step, we prove the minimum of Vε on any half-sphere {z ∈ R
N+1+ : |z| =

r} is controlled by the value W (r, 0) whenever r is at most of order M
2

N−2s
ε and ε > 0 is

small enough.

Lemma 3.3 Let {Vε}ε>0 be the family in the statement of Proposition 3.1. Then, for any
ζ2 > 0, there exist small constants δ1 ∈ (0, r0) and ε2 > 0 such that

min
{z∈RN+1+ :|z|=r}

Vε(z) ≤ (1 + ζ2)W (r, 0) for any 0 < r ≤ δ1M
2

N−2s
ε and ε ∈ (0, ε2).

(3.6)

Proof The proof is divided into three steps.

Step 1. We assert that for any parameter 0 < λ < 1, there exists a large number
R = R(λ) > 0 such that

(W − Wλ2,0)(z) > 0 for λ < |z| ≤ R. (3.7)

A direct computation with (2.13) shows that wλ(x) = wλ2,0(x) for any λ > 0 and
x ∈ R

N . By [30, Proposition 2.6] and the uniqueness of the s-harmonic extension, it
follows that W λ = Wλ2,0 in R

N+1+ . Hence (3.4) and (7.1) imply that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(t1−2s∇(W − Wλ2,0)) = 0 in R
N+1+ ,

(W − Wλ2,0)(z) = (W − W λ)(z) = 0 on |z| = λ and t > 0,

(W − Wλ2,0)(z) > 0 on |z| = R and t > 0,

(W − Wλ2,0)(x, 0) = (w − wλ2,0)(x) > 0 on λ < |x | ≤ R

for some R > 0 large. Now, the (classical) strong maximum principle justifies our claim
(3.7).
We also notice that

W (x, t) ≤ w(x) ≤ w(0) = αN ,s for (x, t) ∈ R
N+1+ (3.8)

where αN ,s > 0 is given in Notations.
Step 2. From the definition (3.4), we have

V λ
ε (z) =

(
λ

|z|
)N−2s

Vε

(
λ2z

|z|2
)

. (3.9)

By (3.3) and (3.8), there are values η1 > 0 small and R0 > 0 large such that
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V λ
ε (z) ≤

(

1 + ζ2

4

)

αN ,s |z|−(N−2s) for any 0 < λ ≤ 1 + η1 and |x | ≤ R0, (3.10)

provided ε > 0 small enough. Let us take λ1 = 1 − η1 and λ2 = 1 + η1. Thanks to
estimates (3.3) and (3.7), it is possible to select numbers η2 > 0 small and R1 > R0

large such that

Dλ1
ε (z) = Vε(z) − V λ1

ε (z) > 0 for λ1 < |z| ≤ R1,

V λ1
ε (z) ≤ (1 − 2η2) αN ,s |z|−(N−2s) for |z| ≥ R1

(3.11)

and
∫

BN (0,R1)

V p−ε
ε (x, 0) dx ≥

(
1 − η2

2

) ∫

RN
w p(x) dx (3.12)

for any sufficiently small ε > 0.
Furthermore, we also have

Vε(z) ≥ (1 − η2) αN ,s |z|−(N−2s) for R1 ≤ |z| ≤ δ1M
2

N−2s
ε (3.13)

if δ1 > 0 is small enough. To verify it, let us choose a function v̂ε which solves

(−�)s v̂ε = V p−ε
ε (·, 0) in BN

(
0, r0M

2
N−2s
ε

)
and v̂ε = 0 on ∂BN

(
0, r0M

2
N−2s
ε

)
,

and denote by V̂ε its s-harmonic extension to the cylinder BN (0, r0M
2

N−2s
ε ) × (0,∞).

Then, the comparison principle [25, Lemma 2.1] tells us that Vε ≥ V̂ε . Since H1
C(z, y)

is bounded in {(z, y) ∈ R
N+1+ × R

N : |z|, |y| ≤ 1/2}, we obtain

H1
C((x, t), y) ≤ η2

4
· γN ,s

|(x − y, t)|N−2s for |(x, t)|, |y| ≤ δ1

r0
(3.14)

by making δ1 ∈ (0, r0) smaller if necessary. Moreover, because

|(x − y, t)| ≤
(

1 − 1

l

)

|(x, t)| for |(x, t)| ≥ l R1 and |y| ≤ R1

given any large l > 1, we see from (3.5), (3.12) and (3.14) that

V̂ε(x, t) =
∫

BN
(
0,r0M

2
N−2s

ε

) V p−ε
ε (y, 0)Gr0M

2
N−2s

ε

C ((x, t), y) dy

≥
(
1 − η2

4

) ∫

BN
(
0,δ1M

2
N−2s

ε

) V p−ε
ε (y, 0)

γN ,s

|(x − y, t)|N−2s dy

≥
(
1 − η2

2

)(∫

BN (0,R1)

V p−ε
ε (y, 0) dy

)
γN ,s

|(x, t)|N−2s

≥ (1 − η2)

(∫

RN
w p(y) dy

)
γN ,s

|(x, t)|N−2s

= (1 − η2)
αN ,s

|(x, t)|N−2s forl R1 ≤ |(x, t)| ≤ δ1M
2

N−2s
ε (3.15)

by choosing l large enough. If R1 ≤ |z| ≤ l R1, we have Vε(z) ≥ (1−η2) αN ,s |z|−(N−2s)

for ε > 0 small, for Vε converges to W uniformly over a compact set. This shows the
validity of (3.13).
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Step 3. Suppose that (3.6) does not hold with δ1 > 0 chosen in the previous step. Then

min
{z∈RN+1+ :|z|=rk }

Vεk (z) > (1 + ζ2)W (rk , 0)

for some sequences {εk}k∈N and {rk}k∈N of positive numbers such that εk → 0 and

rk ∈ (0, δ1M
2

N−2s
εk ). Because of (3.3), it should hold that rk → ∞. Thus Lemma 7.1

implies

min
{z∈RN+1+ :|z|=rk }

Vk(z) ≥
(

1 + ζ2

2

)

αN ,sr
−(N−2s)
k (3.16)

where Vk := Vεk .
Now, we employ the method of moving spheres to the function Dλ

k (see Remark 3.2 (2)
for its definition). For any k ∈ N and μ ∈ [λ1, λ2], let

�
μ
k =

{
x ∈ R

N+1+ : μ < |z| < rk
}

and define a number λ̄k by

λ̄k = sup
{
λ ∈ [λ1, λ2] : Dμ

k (z) ≥ 0 in �
μ
k for all λ1 ≤ μ ≤ λ

}
.

By (3.11) and (3.13), we see that λ̄k ≥ λ1. We shall show that λ̄k = λ2 for sufficiently
large k ∈ N.
To the contrary, assume that λ̄k < λ2 for some large fixed index k ∈ N. By continuity

it holds that Dλ̄k
k ≥ 0 in �

λ̄k
k . Moreover, from (3.16) and (3.10), we have Dλ̄k

k > 0 on

{z ∈ R
N+1+ : |z| = rk}, which implies that Dλ̄k

k �= 0 in �
λ̄k
k . Thus, it holds that Dλ̄k

k > 0

in �
λ̄k
k thanks to the strong maximum principle. Pick δ > 0 small so that the maximum

principle for domains with small volume [30, Lemma 2.8] can be applied. If we choose a

compact set K ⊂ �
λ̄k
k such that |�λ̄k

k \K | < δ, then infK Dλ̄k
k > 0. By continuity again,

for λ ∈ (λ̄k, λ2) sufficiently close to λ̄k , we have

K ⊂ �λ
k , |�λ

k \K | < δ and inf
K

Dλ
k > 0.

Consequently, we see from [30, Lemma 2.8] that Dλ
k ≥ 0, contradicting the maximality

of λ̄k . Therefore, it should hold that λ̄ = λ2.
Finally, taking a limit k → ∞ to Dλ2

k ≥ 0 in �
λ2
k , we get

W (z) ≥ W λ2(z) in |z| ≥ λ2.

However, it is impossible since λ2 > 1. Therefore, (3.6) should be true. ��
We now complete the proof of Proposition 3.1.

Lemma 3.4 Let {Vε}ε>0 be the family in the statement of Proposition 3.1 and δ1 > 0 the
number selected in the proof of the previous lemma. Then, there exist a constant C > 0 and
small parameter δ0 ∈ (0, δ1) such that

Vε(z) ≤ CW (z) for all z ∈ BN+1+
(
0, δ0M

2
N−2s
ε

)

provided that ε > 0 is sufficiently small.
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Proof By virtue of lemmas 3.3 and 7.1, we have a point z0 = (x0, t0) ∈ R
N+1+ such that

|z0| = δ2M
2

N−2s
ε and

Vε(z0) ≤ (1 + ζ2)W (|z0|, 0) ≤ (1 + 2ζ2) αN ,s |z0|−(N−2s)

for any small δ2 ∈ (0, δ1). Let G∗
C be Green’s function of (2.7) in the semi-infinite cylinder

C = BN (0, δ1M
2

N−2s
ε ) × (0,∞) (refer to Remark 3.2 (3)). Then, we are able to choose a

constant δ3 ∈ (0, δ2) so small that

Vε(z0) ≥
∫

BN (0,δ1M
2

N−2s
ε )

V p−ε
ε (y, 0)G∗(z0, y) dy

≥ (1 − ζ2)γN ,s

∫

BN (0,δ2M
2

N−2s
ε )

V p−ε
ε (y, 0)

1

|(x0 − y, t0)|N−2s dy

≥ (1 − 2ζ2)γn,s |z0|−(N−2s)
∫

BN (0,δ3M
2

N−2s
ε )

V p−ε
ε (y, 0) dy

as in (3.15). Combining the above two estimates with (3.12), we obtain
∫

BN (0,δ3M
2

N−2s
ε )\BN (0,R1)

V p−ε
ε (y, 0) dy ≤ Cζ2. (3.17)

Since Vε is uniformly bounded, we observe from (3.17) that
∫

BN (0,δ3M
2

N−2s
ε )\BN (0,R1)

V p+1
ε (y, 0) dy ≤ Cζ2. (3.18)

Now, let us define Vr,ε(z) = r
N−2s
2 Vε(r z) on the half-annulus {z ∈ R

N+1+ : 1/2 ≤ |z| ≤ 2}
for each 2R1 ≤ r ≤ δ3M

2
N−2s
ε /2 and ε > 0 small. Then, one can apply the Moser iteration

method with (3.18) (refer to [25]) to deduce that it is uniformly bounded in {z ∈ R
N+1+ :

3/4 ≤ |z| ≤ 3/2}, r and ε. As a result, the Harnack inequality [12, Lemma 4.9] yields

sup
{z∈RN+1+ :3/4≤|z|≤3/2}

Vr,ε(z) ≤ C inf
{z∈RN+1+ :3/4≤|z|≤3/2}

Vr,ε(z)

where C > 0 is a universal constant. This inequality with Lemma 3.3 and (3.3) concludes
the proof of the lemma (giving δ0 = 3δ3/4). ��

The following assertion is an immediate consequence of Proposition 3.1.

Corollary 3.5 Fix any x0 ∈ R
N and small r0 > 0. Let {Uε}ε>0 be a family of positive

solutions to
⎧
⎪⎪⎨

⎪⎪⎩

div(t1−2s∇Uε) = 0 in BN (x0, r0) × (0,∞),

∂sνUε = U p−ε
ε on BN (x0, r0),

‖Uε‖L∞(BN+1+ ((x0,0),r0))
≤ cM

N−2s
2

ε

for a certain constant c > 0 independent of ε and a family of positive values {Mε}ε>0

such that limε→∞ Mε = ∞ and limε→∞ Mε
ε = 1. Suppose that the rescaled function

M
− N−2s

2
ε Uε(M−1

ε · +(x0, 0)) converges weakly to the function W in D1,2(RN+1+ ; t1−2s).
Then, we have

Uε(z) ≤ CM
N−2s
2

ε W (Mε(z − (x0, 0))) for all z ∈ BN+1+ ((x0, 0), δ0)
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for some δ0 ∈ (0, r0) and C > 0 independent of ε.

4 Application of the pointwise upper estimate

In this section, we gather refined information on finite energy solutionsUε to Eq. (2.4). More
precisely, we first show that V0 vanishes identically if m �= 0 in (2.19). Then, we prove
that any two different blow-up points do not collide and blow-up rates of each bubble are
compatible to the others. Finally, we get sharp pointwise upper bounds ofUε over the whole
cylinder C and deduce that a suitable L∞-normalization ofUε converges to a certain function
as ε ↘ 0, which can be described as a combination of Green’s function.

Recall from (2.19), (2.22) and (2.23) that

Un = V0 +
m∑

i=1

PWλin ,x
i
n
+ Rn in C′ (4.1)

and xi0 = limn→∞ xin ∈ � for each i = 1, . . . ,m. We also remind with (2.21) that the
concentration rate λin on each blow-up part tends to 0 as n → ∞. The next lemma ensures
that this convergence is not too fast.

Lemma 4.1 Let {Un}n∈N be a sequence of solutions to (2.4) with ε = εn ↘ 0, which admits
a decomposition of the form (4.1). Then, we have limn→∞(λin)

εn = 1 for each 1 ≤ i ≤ m.

Proof Fix any i ∈ {1, . . . ,m}. Multiplying (2.4) by PWλin ,x
i
n
, integrating by parts and using

(2.15), we get the equality
∫

�

u p−εn
n Pwλin ,x

i
n
dx = κs

∫

C
t1−2s∇Un · ∇PWλin ,x

i
n
dxdt =

∫

�

unw
p
λin ,x

i
n
dx . (4.2)

Let us estimate the leftmost and rightmost sides of (4.2). By making use of (4.1),
(2.21), the mean value theorem, and the fact that v0 is bounded on � × {0} and
limn→∞ ‖Rn‖H1,2

0 (C;t1−2s )
= 0, we obtain

∫

�

∣
∣
∣

(
u p−εn
n − (Pwλin ,x

i
n
)p−εn

)
Pwλin ,x

i
n

∣
∣
∣ dx

≤ C
∫

�

∣
∣
∣
∣
∣
∣

∑

j �=i

Pw
λ
j
n ,x

j
n

+ v0 + rn

∣
∣
∣
∣
∣
∣

⎛

⎝
m∑

j=1

(Pw
λ
j
n ,x

j
n
)p−1−εn + |v0|p−1−εn + |rn |p−1−εn

⎞

⎠

Pwλin ,x
i
n
dx = o(1).

Hence, it holds
∫

�

u p−εn
n Pwλin ,x

i
n
dx =

∫

�

(Pwλin ,x
i
n
)p+1−εndx + o(1). (4.3)

Moreover, it is easy to check that
∫

�

(Pwλin ,x
i
n
)p+1−εndx = (λin)

−
(
N−2s
2

)
εn

∫

λin(�−xin)
(Pw1,0)

p+1−εndx

= (λin)
−
(
N−2s
2

)
εn

(∫

RN
w p+1dx + o(1)

)

. (4.4)
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Similarly, one may show that
∫

�

unw
p
λin ,x

i
n
dx =

∫

RN
w p+1dx + o(1). (4.5)

Substituting (4.3), (4.4) and (4.5) into (4.2), we conclude that limn→∞(λin)
εn = 1. The

lemma is proved. ��
In the following, we give the proof of several claims stated in the beginning of this section,

applying the previous lemma.

Lemma 4.2 Let {Un}n∈N be a sequence of solutions of (2.4) with ε = εn which admits an
asymptotic behavior (4.1). Suppose that there exists at least one bubble in (4.1), i.e., m �= 0.
Then, V0 ≡ 0.

Proof Firstly, we aim to show that

Un(z) ≤ C(λ1n)
− N−2s

2 uniformly for any z ∈ C and n ∈ N. (4.6)

To do so, we consider the function Ũn(z) := (λ1n)
N−2s
2 Un(λ

1
nz) defined in Cn := (λ1n)

−1C.
One can easily observe that it satisfies

⎧
⎪⎨

⎪⎩

div(t1−2s∇Ũn) = 0 in Cn,
Ũn = 0 on ∂LCn,
∂sνŨn = (λ1n)

(N−2s)ε
2 Ũ p−ε

n on �n × {0}
where �n := (λ1n)

−1�. Also it is plain to check

sup
n∈N

∫

Cn
t1−2s |∇Ũn(x, t)|2dxdt < C and sup

n∈N

∫

�n

|Ũn(x, 0)| 2N
N−2s dx < C. (4.7)

Owing to Hölder’s inequality, it holds that

sup
n∈N

∫

BN (y,r0)∩�n

|Ũn(x, 0)|2dx < C

for any y ∈ �n and a small value r0 > 0 to be fixed soon. Combining this with the first
estimate of (4.7) yields

sup
n∈N

∫

BN+1+ ((y,0),r0)∩Cn
t1−2s |Ũn(x, t)|2dxdt < C (4.8)

(see the proof of [24, Lemma 3.1]). Let δ > 0 be the number in Lemma 8.1. Then, from
(2.22), (4.1) and the fact that

lim
n→∞

∫

�n

∣
∣
∣(λ

1
n)

N−2s
2 Rn(λ

1
nx, 0)

∣
∣
∣

2N
N−2s

dx = 0,

it is possible to choose r0 > 0 small enough so that

sup
n∈N

∫

BN (y,r0)∩�n

|Ũn(x, 0)| 2N
N−2s dx < δ.

Therefore, by invoking Lemma 8.1 with a = (λ1n)
(N−2s)ε

2 Ũ p−1−ε
n and f = 0, we may

conclude that

sup
n∈N

‖Ũn‖L∞(BN (y,r0/2)∩�n)
≤ C sup

n∈N

∫

BN+1+ ((y,0),r0)∩Cn
t1−2s |Ũn(x, t)|2dxdt ≤ C
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where the last inequality is due to (4.8). Since y ∈ �n is chosen arbitrarily and Ũn attains its
maximum on �n × {0}, it follows

sup
n∈N

sup
(x,t)∈Cn

Ũn(x, t) = sup
n∈N

sup
x∈�n

Ũn(x, 0) ≤ C.

This proves (4.6).
Now, by virtue of (4.6), Corollary 3.5 and Lemma 4.1, we obtain

Un(z) ≤ C(λ1n)
− N−2s

2 W

(
z − (x1n , 0)

λ1n

)

for all z ∈ BN+1+ ((x1n , 0), δ0), (4.9)

which implies

lim
n→∞Un(z) = 0 for any z ∈ BN+1+ ((x10 , 0), δ0/2)\{(x10 , 0)}.

Since Rn(·, 0) → 0 in L
2N

N−2s (�), there exists a point x ′ ∈ BN (x10 , δ0/2)\{x10 , . . . , xm0 } such
that limn→∞ Rn(x ′, 0) = 0. Furthermore, we know from (4.1) that Un(x, 0) ≥ V0(x, 0) +
Rn(x, 0) for all x ∈ �, so it should hold that V0(x ′, 0) = 0.

On the other hand, each Un and its weak limit V0 are nonnegative in C. Therefore, one
concludes from the strong maximum principle that V0 ≡ 0. ��

In Lemmas 4.3–4.6, we are mainly interested in the casem �= 0. In this situation, solutions
Un to (2.4) with the asymptotic behavior (4.1) can be rewritten in the form

Un =
m∑

i=1

PWλin ,x
i
n
+ Rn in C′ (4.10)

where limn→∞ ‖Rn‖H1,2
0 (C;t1−2s )

= 0.

Lemma 4.3 Assume that a sequence {Un}n∈N of solutions to (2.4) with ε = εn has the
asymptotic behavior given by Lemma 2.2 with m ≥ 1. Then, there exists a constant d0 > 0
such that

|xi0 − x j
0 | ≥ d0 for any 1 ≤ i < j ≤ m. (4.11)

Proof Assume that two different blow-up points converge to the same point x ′ ∈ �. By
(2.21) and (2.22), one of the following holds:

(1) lim
n→∞

λin

λ
j
n

= 0 or (2) lim
n→∞

|xin − x j
n |2

λinλ
j
n

= ∞.

Suppose that (1) holds. Then by (2.22), it should be true that

lim
n→∞

λ1n

λmn
= 0. (4.12)

We shall prove that it cannot happen. By Corollary 3.5, we have an upper bound (4.9).
Furthermore, we can find a lower bound

Un(z) ≥ C(λmn )
N−2s
2 for all z ∈ BN+1+ ((x ′, 0), δ0) (4.13)

where δ0 > 0 is a number in (4.9) (taken smaller if required). Indeed, by (2.18), (2.19), (2.21)
and Lemma 4.2, we have

(λmn )
N−2s
2 un

(
λmn y + xmn

) → w(y) for a.e. y ∈ R
N .
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Thus Green’s representation formula, Fatou’s lemma and Lemma 4.1 show

Un(z) ≥
∫

BN (xmn ,δ0)

GC(z, x) u p−εn
n (x) dx ≥ C

∫

BN (xmn ,δ0)

u p−εn
n (x) dx

= C(λmn )
N−2s
2 (1+εn)

∫

BN (0,δ0/λmn )

[
(λmn )

N−2s
2 un

(
λmn y + xmn

)]p−εn
dy

≥ C

(∫

RN
w p(y) dy + o(1)

)

(λmn )
N−2s
2 , (4.14)

which confirms (4.13). Now fixing any point z∗ ∈ R
N+1+ such that |z∗ − (x ′, 0)| = δ0/2 and

putting it into (4.9) and (4.13), we discover that (λmn )
N−2s
2 ≤ C(λ1n)

N−2s
2 for some C > 0,

contradicting (4.12). Therefore (1) is false, and we may assume that

lim
n→∞

λin

λ
j
n

= c0 for some c0 ∈ (0, 1]. (4.15)

Assume that (2) is true. Owing to (4.15), inequality (4.6) can be written as

Un(z) ≤ C(λ
j
n)

− N−2s
2 ≤ C(λin)

− N−2s
2 for z ∈ C and n ∈ N. (4.16)

Hence, we infer from elliptic regularity and Corollary 3.5 that

(λ
j
n)

N−2s
2 un

(
λ
j
n · +x j

n

)
→ w in Cα(RN ) for some α ∈ (0, 1)

and

Un(z) ≤ C(λin)
− N−2s

2 W

(
z − (x j

n , 0)

λin
+ (x j

n − xin, 0)

λin

)

(4.17)

for all z ∈ BN+1+ ((x ′, 0), δ0/2) and large n ∈ N. Since limn→∞ |x j
n − xin |/λin = ∞ holds

because of (2.22), if we take z = (x j
n , 0) in inequality (4.17) and use (4.16), then we get

C(λ
j
n)

− N−2s
2 ≤ un(x

j
n ) ≤ C(λin)

− N−2s
2 w

(
x j
n − xin
λin

)

= o(1) · (λin)
− N−2s

2

provided n ∈ N large. However, this is absurd as (4.15) holds, and so (2) does not hold either.
Summing up, every possible case is excluded if two blow-up points tend to the same point.

Accordingly, (4.11) has the validity. ��

In the following lemma, we study the behavior of solutions un to (1.1) outside the blow-up
points {x10 , . . . , xm0 }. We set

Ar = �\
m⋃

i=1

BN (xi0, r) for any r > 0. (4.18)

Lemma 4.4 Suppose that {Un}n∈N is a family of solutions for (2.4) with ε = εn satisfying

the asymptotic behavior (4.10). Then, for any small r > 0, we have un(x) = O((λmn )
N−2s
2 )

uniformly for x ∈ Ar .
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Proof Let an = u p−1−εn
n so that ∂sνUn = anun in � × {0}. Then, we see from (1.5) that

‖an‖
L

N
2s (Ar/4)

≤ C

(
m∑

i=1

∥
∥
∥wλin ,x

i
n

∥
∥
∥
p−1−εn

L
p+1−

(
N
2s

)
εn (

RN \BN (xi0,r/4)
) + ‖Rn‖H1,2

0 (C;t1−2s )

)

= o(1).

Therefore, we can proceed the Moser iteration argument to get ‖an‖Lq (Ar/2) = o(1) for some

q > N
2s , and it further leads to ‖un‖L∞(Ar ) = o(1) (see Sect. 3 in [25]).

Assume that r ∈ (0,min{δ0, d0/2}) where δ0 > 0 and d0 are the numbers picked up in
Corollary 3.5 and Lemma 4.3, respectively. Then, the argument used to derive (4.6) with
Lemma 4.3 deduces

Un(x, t) ≤ C(λin)
− N−2s

2 for |x − xi0| ≤ r and t ≥ 0

so that Corollary 3.5 implies

un(x) ≤ C(λin)
− N−2s

2 w

(
x − xin

λin

)

≤ C(λin)
N−2s
2 for

r

2
≤ |x − xi0| ≤ r

where i = 1, . . . ,m. By Green’s representation formula, one may write

un(x) =
∫

Ar/2
G(x, y) u p−εn

n (y) dy +
m∑

i=1

∫

BN (xi0,r/2)
G(x, y) u p−εn

n (y) dy.

If we set bn = ‖un‖L∞(Ar ), then we observe with assumption (2.22) that
∫

Ar/2
G(x, y) u p−εn

n (y) dy

≤ C
∫

Ar/2
G(x, y)

(
bp−εn
n + max{λ1n, . . . , λmn } N−2s

2 (p−εn)
)
dy

≤ C

(

bp−εn
n + (

λmn
) N−2s

2 (p−εn)
)

(4.19)

for any x ∈ Ar . Besides, Corollary 3.5 and Lemma 4.1 give us that
∫

BN (xi0,r/2)
G(x, y) u p−εn

n (y) dy

≤ C
∫

BN (xi0,r/2)
u p−εn
n (y) dy

≤ C
∫

BN (xi0,r/2)
w

p−εn
λin ,x

i
n
(y) dy ≤ C(λin)

N−2s
2 (4.20)

for all x ∈ Ar and each i = 1, . . . ,m. Hence, by combining (4.19) and (4.20), we get

bn ≤ C
(
bp−εn
n + (λmn )

N−2s
2

)
.

Since we have p−εn > 1 and bn = o(1), the above inequality implies that bn ≤ C(λmn )
N−2s
2 .

The lemma is proved. ��

We prove the compatibility of the blow-up rates {λ1n, . . . , λmn }.
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Lemma 4.5 There exists a constant C0 > 0 independent of n ∈ N such that

λin

λ
j
n

≤ C0 for any 1 ≤ i, j ≤ m.

Proof As in (4.14), it can be verified that un(x) ≥ C(λin)
N−2s
2 in

⋃m
k=1 B

N (xk0 , r) for each
i = 1, . . . ,m. As a matter of fact, it is possible to substitute xmn and λmn in (4.14) with xin and
λin , respectively.

On the other hand, we know from Lemma 4.4 that un(x) ≤ C(λ
j
n)

N−2s
2 for x ∈

BN (x j
0 , r)\BN (x j

0 , r/2). Thus, we have (λin)
N−2s
2 ≤ C(λ

j
n)

N−2s
2 for any 1 ≤ i, j ≤ m.

The proof is done. ��

As in the statement of Theorem 1.1, we set bi = limn→∞
(

λin
λ1n

) N−2s
2 ∈ (0,∞) for any

i = 1, . . . ,m.

Lemma 4.6 Suppose that {Un}n∈N is a sequence of solutions to Eq. (2.4) with ε = εn which
admit the asymptotic behavior (4.10). Then, it holds

lim
n→∞(λ1n)

− N−2s
2 Un(x, t) = c1

m∑

i=1

bi GC((x, t), xi0) (4.21)

in C0(C′\{(x10 , 0), . . . , (xm0 , 0)}). Furthermore, we have

lim
n→∞(λ1n)

− N−2s
2 ∇k

xUn(x, t) = c1

m∑

i=1

bi ∇k
x GC((x, t), xi0) (4.22)

for 1 ≤ k ≤ 2 and

lim
n→∞(λ1n)

− N−2s
2 t l−2s∂ lt∇k

xUn(x, t) = c1

m∑

i=1

bi t
l−2s∂ lt∇k

x GC((x, t), xi0) (4.23)

for any pair (k, l) such that 0 ≤ k ≤ 1, 1 ≤ l ≤ 2 and 1 ≤ k + l ≤ 2 in
C0(C′\{(x10 , 0), . . . , (xm0 , 0)}). We remind that C′ = � × [0,∞) and c1 = ∫

RN w p(x) dx >

0.

Proof Take any r > 0 small for which Lemma 4.4 holds. We are concerned with the values

of Un(z) for z ∈ A′
r := C′\ ∪m

i=1 BN+1+ ((xi0, 0), r). Let us look at

Un(z) =
∫

Ar/2
GC(z, y) u p−εn

n (y) dy +
m∑

i=1

∫

BN (xi0,r/2)
GC(z, y) u p−εn

n (y) dy. (4.24)

Then, by the previous lemma we have

(λ1n)
− N−2s

2

∫

Ar/2
GC(z, y) u p−εn

n (y) dy ≤ C(λ1n)
− N−2s

2 (λmn )
N−2s
2 (p−εn)

∫

�

GC(z, y) dy = o(1).
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Let us decompose
∫

BN (xi0,r/2)
GC(z, y) u p−εn

n (y) dy

= GC(z, xi0)
∫

BN (xi0,r/2)
u p−εn
n (y) dy

+
∫

BN (xi0,r/2)
(GC(z, y) − GC(z, xi0)) u

p−εn
n (y) dy

for each i ∈ {1, . . . ,m}. Since

(λin)
N−2s
2 un

(
λin y + xin

)
⇀ w(y) weakly in Hs(RN ),

according to Corollary 3.5 and the Lebesgue dominated convergence theorem, we get

(λ1n)
− N−2s

2

∫

BN (xi0,r/2)
u p−εn
n (y) dy → bi

∫

RN
w p(y) dy.

Also, employing the mean value theorem, we calculate
∣
∣
∣
∣
∣
(λ1n)

− N−2s
2

∫

BN (xi0,r/2)
(GC(z, y) − GC(z, xi0)) u

p−εn
n (y) dy

∣
∣
∣
∣
∣

≤ (λ1n)
− N−2s

2

∫

BN (xi0,r/2)
sup

z∈A′
r , a∈(0,1)

∥
∥
∥∇yGC(z, ay + (1 − a)xi0)

∥
∥
∥ · |y − xi0| u p−εn

n (y) dy

≤ C(λ1n)
− N−2s

2 r1−s
∫

BN (xin ,3r/4)
|y − xi0|s u p−εn

n (y) dy

≤ Cbir
1−s

[

(λin)
s
(∫

RN
|y|sw p(y) dy + o(1)

)

+ |xin − xi0|s
(∫

RN
w p(y) dy + o(1)

)]

= o(1).

Therefore, combining all the computations, we see that (4.21) holds uniformly for
z = (x, t) ∈ A′

r . Since r > 0 is arbitrary, it follows that (4.21) is valid in
C0(C′\{(x10 , 0), . . . , (xm0 , 0)}).

In order to show (4.22) and (4.23), we need some results on elliptic regularity. The proof
is deferred to “Appendix 2.” ��

Remark 4.7 For the future use, we rewrite (4.21) as

lim
n→∞(λ1n)

− N−2s
2 Un(x, t) = c3bi

|(x − xi0, t)|N−2s
+ Ti (x, t) (4.25)

for (x, t) ∈ C′\{(x10 , 0), . . . , (xm0 , 0)} and 1 ≤ i ≤ m. Here, c3 := c1γN ,s > 0 and Ti is a
map defined by

Ti (x, t) = −c1bi HC((x, t), xi0) + c1
∑

k �=i

bkGC((x, t), xk0 ). (4.26)

If r ∈ (0, d0/2) where d0 > 0 is set in Lemma 4.3, then (2.9) and (2.10) imply that the
functions Ti , ∂Ti

∂x j
and z · ∇Ti are s-harmonic in BN+1+ ((xi0, 0), r) for all 1 ≤ i ≤ m and
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1 ≤ j ≤ N , i.e.,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

div(t1−2s∇Ti ) = div

(

t1−2s∇
(

∂Ti
∂x j

))

= div
(
t1−2s∇(z · ∇Ti )

) = 0 in BN+1+ ((xi0, 0), r),

∂sνTi = ∂sν

(
∂Ti
∂x j

)

= ∂sν (z · ∇Ti ) = 0 on BN (xi0, r)

(4.27)

holds.

5 Proof of main theorems for the spectral fractional Laplacian

This section is devoted to the proof of our main theorems. To get the desired results, we
will derive two identities regarding blow-up points and rates by exploiting a type of Green’s
identity. For notational simplicity, we use z− xi0 to denote (x − xi0, t) throughout the section.

As before, let {Un}n∈N be a sequence of solutions to (2.4) with ε = εn of the form (4.10).
We remind from (2.4) that Un is a solution of the problem

{
div(t1−2s∇Un) = 0 in C,

∂sνUn = U p−εn
n on � × {0}. (5.1)

By the translation and scaling invariance of (5.1), the functions V = ∂Un
∂x j

and V = (z− xi0) ·
∇Un +

(
2s

p−1−εn

)
Un (for each 1 ≤ i ≤ m and 1 ≤ j ≤ N ) satisfy the equation

{
div(t1−2s∇V ) = 0 in C,

∂sνV = (p − εn)U
p−1−εn
n V on � × {0}. (5.2)

Lemma 5.1 Assume that a function V ∈ H1,2
0 (C; t1−2s) satisfies (5.2). Then, for any point

y ∈ �, the following identity

κs

∫

∂I B
N+1+ ((y,0),r)

t1−2s
(

∂Un

∂ν
V − ∂V

∂ν
Un

)

dSz

= (p − 1 − εn)

∫

BN (y,r)
U p−εn
n V dx (5.3)

holds for any r ∈ (0, dist(y, ∂�)).

Proof Multiplying the first equation of (5.1) by V and that of (5.2) byUn , and then integrating
the results over BN+1+ ((y, 0), r), we obtain

κs

∫

∂I B
N+1+ ((y,0),r)

t1−2s
(

∂Un

∂ν
V − ∂V

∂ν
Un

)

dSz

= −
∫

BN (y,r)
(∂sνUn · V − ∂sνV ·Un) dx

= (p − 1 − εn)

∫

BN (y,r)
U p−εn
n V dx .

Here, the second equality comes from the second equations of (5.1) and (5.2). This proves
(5.3). ��
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Based on the previous identity, we now deduce two kinds of information on the concen-
tration points and rates.

Lemma 5.2 For any 1 ≤ i ≤ m and 1 ≤ j ≤ N, we have ∂Ti
∂x j

(xi0, 0) = 0 for Ti defined in

(4.26), or equivalently,

bi
∂H

∂x j
(xi0, x

i
0) −

∑

k �=i

bk
∂G

∂x j
(xi0, x

k
0 ) = 0. (5.4)

Proof Fix any i ∈ {1, . . . ,m}. Taking V = ∂Un
∂x j

and y = xi0 in (5.3), we have

κs

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Un

∂ν

∂Un

∂x j
− ∂

∂ν

(
∂Un

∂x j

)

Un

]

dSz

= (p − 1 − εn)

∫

BN (xi0,r)
U p−εn
n

∂Un

∂x j
dx

=
(
p − 1 − εn

p + 1 − εn

)∫

∂BN (xi0,r)
U p+1−εn
n ν j dSx . (5.5)

By lemmas 4.1, 4.4 and 4.5,

(λ1n)
−(N−2s)

∣
∣
∣
∣
∣

∫

∂BN (xi0,r)
U p+1−εn
n ν j dSx

∣
∣
∣
∣
∣
= (λ1n)

−(N−2s)O((λin)
N− N−2s

2 εn ) = o(1). (5.6)

Hence, we see from (5.5) and (5.6) that

lim
n→∞(λ1n)

−(N−2s)
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Un

∂ν

∂Un

∂x j
− ∂

∂ν

(
∂Un

∂x j

)

Un

]

dSz = 0. (5.7)

Using (4.25), we evaluate the left-hand side of (5.7) as follows:

lim
n→∞(λ1n)

−(N−2s)
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Un

∂ν

∂Un

∂x j
− ∂

∂ν

(
∂Un

∂x j

)

Un

]

dSz

=
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s

(
(N − 2s)c3bi

|z − xi0|N−2s+1
− ∂Ti

∂ν
(z)

)

·
(

(N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2
− ∂Ti

∂x j
(z)

)

+ t1−2s ∂

∂ν

(
(N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2
− ∂Ti

∂x j
(z)

)

·
(

c3bi
|z − xi0|N−2s

+ Ti (z)
)

dSz

=
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s

[

− (N − 2s)c3bi
|z − xi0|N−2s+1

∂Ti
∂x j

(z) − (N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2

∂Ti
∂ν

(z)

+ ∂

∂ν

(
(N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2

)

Ti (z)
]

dSz

−
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s

[
∂

∂ν

(
∂Ti
∂x j

)
c3bi

|z − xi0|N−2s

]

dSz

+
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Ti
∂ν

∂Ti
∂x j

− ∂

∂ν

(
∂Ti
∂x j

)

Ti
]

dSz := I1 + I2 + I3.
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Let us compute each of the terms I1, I2 and I3. Firstly (4.27) yields that

I3 = −
∫

BN (xi0,r)

[

∂sνTi ·
(

∂Ti
∂x j

)

− ∂sν

(
∂Ti
∂x j

)

· Ti
]

dx = 0. (5.8)

Also, according to estimates (2.11) and (2.12), we have

lim
r→0

|I2| ≤ lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s

∣
∣
∣
∣
∣

∂

∂ν

(
∂Ti
∂x j

)
c3bi

|z − xi0|N−2s

∣
∣
∣
∣
∣
dSz

≤ C lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

(t1−2s + 1)

|z − xi0|N−2s
dSz ≤ C lim

r→0
(r + r2s) = 0. (5.9)

Therefore, we only need to compute limr→0 I1. By homogeneity, its first term is calculated
to be

− lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s (N − 2s)c3bi
|z − xi0|N−2s+1

∂Ti
∂x j

(z) dSz

= − ∂Ti
∂x j

(xi0, 0) · (N − 2s)c3bi

∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz .

For the second term, one can deduce

− lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s (N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2

∂Ti
∂ν

(z) dSz

= −(N − 2s)c3bi · lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

N+1∑

k=1

t1−2s(x − xi0) j (x − xi0)k

|z − xi0|N−2s+3

∂Ti
∂xk

(z) dSz

= − ∂Ti
∂x j

(xi0, 0) · (N − 2s)c3bi

∫

∂I B
N+1+ (0,1)

t1−2s x2j
|z|N−2s+3 dSz,

because the mean value formula with (2.11) and (2.12) imply
∣
∣
∣
∣
∣

t1−2s(x − xi0) j (x − xi0)k

|z − xi0|N−2s+3

(
∂Ti
∂xk

(z) − ∂Ti
∂xk

(xi0, 0)

)∣∣
∣
∣
∣

≤ C
(1 + t1−2s)|z − xi0|3

|z − xi0|N−2s+3
= C

1 + t1−2s

|z − xi0|N−2s

for 1 ≤ j, k ≤ N + 1 so that the value of its integration over the half-sphere
∂I B

N+1+ ((xi0, 0), r) is bounded by C(r + r2s) (see (5.9)). Finally, by direct computation,
we discover

lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s ∂

∂ν

(N − 2s)c3bi (x − xi0) j

|z − xi0|N−2s+2
Ti (z) dSz

= −(N − 2s)(N − 2s + 1)c3bi lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

t1−2s (x − xi0) j

|z − xi0|N−2s+3
Ti (z) dSz

= − ∂Ti
∂x j

(xi0, 0) · (N − 2s)(N − 2s + 1)c3bi

∫

∂I B
N+1+ (0,1)

t1−2s x2j
|z|N−2s+3 dSz
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where we used Ti (x, 0) = Ti (xi0, 0) + (x − xi0) · ∇xTi (xi0, 0) + O(|x − xi0|2) to find the
second equality. Thus (5.7) is reduced to

− ∂Ti
∂x j

(xi0, 0) ·
(∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz

+(N − 2s + 2)
∫

∂I B
N+1+ (0,1)

t1−2s x2j
|z|N−2s+3 dSz

)

= 0.

Therefore, ∂Ti
∂x j

(xi0, 0) = 0, proving the lemma. ��

Remark 5.3 It is shown in [25, Section 4] that

∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz = |SN−1|
2

B

(

1 − s,
N

2

)

(5.10)

and

∫

∂I B
N+1+ (0,1)

t1−2s x21
|z|N−2s+3 dSz = |SN−1|

2N
B

(

1 − s,
N + 2

2

)

= 1

N − 2s + 2

∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz

where B is the Beta function.

Lemma 5.4 For each 1 ≤ i ≤ m, we have

b2i H(xi0, x
i
0) −

∑

k �=i

bi bkG(xi0, x
k
0 ) = c2

2c1
b0 (5.11)

where c2 > 0 in (1.7) and b0 = limn→∞(λ1n)
−(N−2s)εn.

Proof Fix i ∈ {1, . . . ,m}. Taking V = Vn = (z − xi0) · ∇Un +
(

2s
p−1−εn

)
Un and y = xi0 in

(5.3), we find

κs lim
n→∞(λ1n)

−(N−2s)
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Un

∂ν
Vn − ∂Vn

∂ν
Un

]

dSz

= lim
n→∞(λ1n)

−(N−2s)(p − 1 − εn)

∫

BN (xi0,r)
u p−εn
n vn dx (5.12)

where vn = tr|�×{0}Vn . To evaluate the left-hand side of (5.12), we observe from (4.25) that

lim
n→∞(λ1n)

− N−2s
2 Vn(z) = −

(
N − 2s

2

)
c3bi

|z − xi0|N−2s

+(z − xi0) · ∇Ti (z) +
(
N − 2s

2

)

Ti (z)
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for z = (x, t) ∈ C′\{(x10 , 0), . . . , (xm0 , 0)}. Thus, we get

lim
n→∞(λ1n)

−(N−2s)
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Un

∂ν
Vn − ∂Vn

∂ν
Un

]

dSz

= −
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s (N − 2s)c3bi
|z − xi0|N−2s+1

(
(z − xi0) · ∇Ti + (N − 2s)Ti

)
dSz

−
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s c3bi
|z − xi0|N−2s

∂

∂ν

(
(z − xi0) · ∇Ti + (N − 2s)Ti

)
dSz

+
∫

∂I B
N+1+ ((xi0,0),r)

t1−2s
[

∂Ti
∂ν

(

(z − xi0) · ∇Ti +
(
N − 2s

2

)

Ti
)

− Ti
∂

∂ν

(

(z − xi0) · ∇Ti +
(
N − 2s

2

)

Ti
)]

dSz

:= J1 + J2 + J3.

As the previous proof, let us estimate each of J1, J2 and J3. As demonstrated in (5.8), we
have J3 = 0. Besides (2.11) and (2.12) lead us to derive

lim
r→0

|J2| ≤ C lim
r→0

∫

∂I B
N+1+ ((xi0,0),r)

(t1−2s + 1)

|z − xi0|N−2s
dSz = 0.

Lastly, since
[
(z − xi0) · ∇Ti (z) + (N − 2s)Ti (z)

]∣
∣
∣
z=(xi0,0)

= (N − 2s)Ti (xi0, 0),

we have

lim
r→0

J1 = −c3bi (N − 2s)2
(∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz

)

Ti (xi0, 0).

As a result, after the limit r → 0 being taken, the left-hand side of (5.12) becomes

c1c3κs(N − 2s)2
(∫

∂I B
N+1+ (0,1)

t1−2s

|z|N−2s+1 dSz

)⎡

⎣b2i HC((xi0, 0), x
i
0)

−
∑

k �=i

bi bkGC((xi0, 0), x
k
0 )

⎤

⎦ . (5.13)

Meanwhile, using integration by parts, we deduce that
∫

BN (x0i ,r)
u p−εn
n

[

(x − xi0) · ∇xun +
(

2s

p − 1 − εn

)

un

]

dx

= 1

p + 1 − εn

∫

BN (x0i ,r)
(x − xi0) · ∇xu

p+1−εn
n dx + 2s

p − 1 − εn

∫

BN (x0i ,r)
u p+1−εn
n dx

= 1

p + 1 − εn

∫

∂BN (x0i ,r)
(x − xi0) · νu p+1−εn

n dSx

+
(

2s

p − 1 − εn
− N

p + 1 − εn

)∫

BN (x0i ,r)
u p+1−εn
n dx .
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Note that

2s

p − 1 − εn
− N

p + 1 − εn
= (N − 2s)εn

(
4s

N−2s − εn

) (
2N

N−2s − εn

) = (N − 2s)3εn
8Ns

(1 + o(1))

and
∫

∂BN (x0i ,r)
(x − xi0) · νu p+1−εn

n dSx = O
(
(λ1n)

N
)

.

Hence, the right-hand side of (5.12) equals to

(λ1n)
−(N−2s)εn(1 + o(1)) · (N − 2s)2

2N

∫

RN
w p+1dx + O

(
(λ1n)

2s) . (5.14)

From (5.12), (5.13), (5.14) and (5.10), we get

b0
N

∫

RN
w p+1dx = c1c3κs |SN−1|B

(

1 − s,
N

2

)

×
⎡

⎣b2i HC((xi0, 0), x
i
0) −

∑

k �=i

bi bkGC((xi0, 0), x
k
0 )

⎤

⎦

= 2

N − 2s

(∫

RN
w pdx

)2
⎡

⎣b2i H(xi0, x
i
0) −

∑

k �=i

bi bkG(xi0, x
k
0 )

⎤

⎦ .

This completes the proof. ��

We are now prepared to complete the proof of our main theorems.

Proof of Theorem 1.1 Assume that supn∈N ‖un‖H̃ s (�) < ∞. Then, if we let Un be
the s-harmonic extension of un over the half-cylinder C = � × (0,∞), we have
supn∈N ‖Un‖H1,2

0 (C;t1−2s )
< ∞ by inequality (2.5). Thus, we can apply Lemma 2.2 to the

sequence {Un}n∈N to deduce the existence of an integerm ∈ N∪{0} and sequences of positive
numbers and points {(λin, xin)}n∈N ⊂ (0,∞) × � for each i = 1, . . . ,m such that relation
(2.21) holds (in particular λin → 0) and

Un −
(

V0 +
m∑

i=1

PWλin ,x
i
n

)

→ 0 in H1,2
0 (C; t1−2s) as n → ∞ (5.15)

along a subsequence. Here, V0 is the weak limit ofUn in H1,2
0 (C; t1−2s), which is a solution

to (2.20), and PWλin ,x
i
n
is the projected bubble whose definition can be found in (2.17).

We now split the problem into two cases.

Case 1 (m = 0). By (2.2) and the strong maximum principle, v0(x) = V0(x, 0) for
x ∈ � satisfies Eq. (1.4). In addition, by (5.15), it holds that

lim
n→∞ ‖un − v‖H̃ s (�) = lim

n→∞ ‖Un − V0‖H1,2
0 (C;t1−2s )

= 0.

This case corresponds to the first alternative (1) of Theorem 1.1.
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Case 2 (m ≥ 1). Thanks to Lemma 4.2, we have V0 = 0 in this situation. Hence (5.15)
and discussion in Sect. 2.5 give decomposition (1.5) as well as xin → xi0 ∈ �. Also, by
lemmas 4.3 and 4.5, there are constants d0, C0 > 0 independent of n ∈ N such that

|xi0 − x j
0 | ≥ d0 and

λin

λ
j
n

≤ C0 for any 1 ≤ i �= j ≤ m.

Thus, we may set a positive value bi = limn→∞
(

λin
λ1n

) N−2s
2

for each 1 ≤ i ≤ m.

Furthermore, lemmas 5.2 and 5.4 imply that ((b1, . . . , bm), (x10 , . . . , x
m
0 )) ⊂ (0,∞)m ×

�m is a critical point of the function�m introduced in (1.6).We have proved that the case
m ≥ 1 corresponds to the second alternative (2) in Theorem 1.1. The proof is finished.

��
Proof of Theorem 1.3 The fact that M is a nonnegative matrix can be shown as in Appendix
A of [5], so we left it to the reader.

Suppose that M is nondegenerate. Since the left-hand side of (5.11) is finite, it should
hold that b0 ∈ [0,∞). To the contrary, let us assume that b0 = 0. Then, we see

bi H(xi0, x
i
0) −

∑

k �=i

b jG(xi0, x
k
0 ) = 0

for each 1 ≤ i ≤ m. It means that b = (b1, . . . , bm) is a nonzero vector such that Mb = 0.
However, this is nonsense because the nondegeneracy condition of M tells us that b = 0.
Hence, b0 �= 0 should be true, and thus

lim
n→∞ logεn

λin = lim
n→∞ logεn

[

ε
1

N−2s
n

(

b
− 1

N−2s
0 + o(1)

)(

b
2

N−2s
i + o(1)

)]

= 1

N − 2s
.

The proof is now complete. ��

6 The restricted fractional Laplacian and the classical Laplacian

6.1 Proof of Theorems 1.1 and 1.3 for the restricted fractional Laplacian

Here, we briefly mention how the proof for the main theorems 1.1 and 1.3 can be carried out
for the restricted fractional Laplacian.

First of all, as mentioned before, the Struwe’s concentration-compactness principle-type
result (Step 1 in Introduction) can be obtained as in [2,31,48]. Besides the moving plane
argument in Sect. 3 (corresponding to Step 2) is local in nature, so the same proof as in Sect.
3 works. For Sect. 4, one can check each lemma remains valid even if (2.4) is replaced with
(2.6). Finally, we notice that lemmas 5.2 and 5.4 were obtained from the information on the
solutions {Un}n∈N to (2.4) over the half-balls {BN+1+ ((xi0, 0), r)}mi=1. Therefore, the same
argument goes through for (2.6), completing Step 3. Theorems 1.1 and 1.3 for the restricted
fractional Laplacians now follow.

6.2 Proof of Theorem B

To validate Theorem B, we follow the strategy used to prove Theorems 1.1 and 1.3 for
nonlocal problems.
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The representation formula (1.10) of finite energy solutions {un}n∈N to (1.9) is due to
Struwe [59] (Step 1). Also, as in [26, Appendix A], a moving sphere argument can be
applied to deduce a pointwise upper bound of un . It implies lemmas 4.2, 4.3 and 4.5 for the
local case, which are originally given in [55]. It can be easily seen that Lemma 4.1 remains
true, and the local versions of lemmas 4.4 and 4.6 are found in [26, Section 2], whence Step
2 is finished. Regarding Lemma 5.3, we have

Lemma 6.1 Suppose that a function v ∈ H1,2
0 (�) satisfies

−�v = (p − εn) u
p−1−εn
n v in �.

Then, for any point y ∈ �, the following identity

∫

∂BN (y,r)

(
∂u

∂ν
v − ∂v

∂ν
u

)

dSx = (p − 1 − εn)

∫

BN (y,r)
u p−εn
n v dx (6.1)

holds for any r ∈ (0, dist(y, ∂�)).

By taking u = un and v = ∂un
∂x j

for j = 1, . . . , N or v = (x − xi0) · ∇un +
(

2
p−1−εn

)
un for

i = 1, . . . ,m in (6.1), we get lemmas 5.2 and 5.4 where the constants c1 and c2 are given
by (1.7) with s = 1. Thus, Step 3 is done. Putting all the results together, we complete the
proof of Theorem B.

Acknowledgements W. Choi is grateful to the financial support from POSCO TJ Park Foundation. S. Kim
is supported by FONDECYT Grant 3140530. The authors wish to thank the anonymous referee for pointing
out and correcting several inaccuracies occurred in selecting appropriate functional spaces and norms to work
with.

7 Appendix 1: Lower and upper estimates of the standard bubble in R
N+1
+

Here, we shall prove a decay estimate of Wλ,0, which is necessary in applying the moving
sphere argument (see Sect. 3).

Lemma 7.1 For any η > 0 there exists R = R(η) > 1 so large that

αN ,s(1 − η)λ
N−2s
2 |z|−(N−2s) ≤ Wλ,0(z) ≤ αN ,s(1 + η)λ

N−2s
2 |z|−(N−2s) for all |z| > R

(7.1)

where αN ,s > 0 is the constant defined in Notations.

Proof SinceWλ,0(z) = λ− N−2s
2 W (λ−1z), we may assume that λ = 1. Let us prove the lower

estimate first. Taking a small number δ > 0 to be determined later, we consider two exclusive
cases: (1) |x | > δ|t | and (2) |x | ≤ δ|t |.
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For the case (1), we see from Green’s representation formula, (2.8) and (2.13) that

W (x, t) ≥ α
p
N ,sγN ,s

∫

|y|≤δ|x |
1

|(x − y, t)|N−2s

1

(1 + |y|2) N+2s
2

dy

≥ 1

|((1 + δ)x, t)|N−2s · α
p
N ,sγN ,s

∫

|y|≤δ|x |
1

(1 + |y|2) N+2s
2

dy

≥ 1

(1 + δ)N−2s |(x, t)|N−2s

(

α
p
N ,sγN ,s

∫

RN

1

(1 + |y|2) N+2s
2

dy − o(1)

)

= 1

(1 + δ)N−2s |(x, t)|N−2s

(
αN ,s − o(1)

)

(7.2)

where o(1) → 0 as |z| = |(x, t)| → ∞.
For the case (2), we have

W (x, t) ≥ α
p
N ,sγN ,s

∫

|y|≤δ|t |
1

|(x − y, t)|N−2s

1

(1 + |y|2) N+2s
2

dy

≥ 1

(1 + 2δ)N−2s |t |N−2s · α
p
N ,sγN ,s

∫

|y|≤δ|t |
1

(1 + |y|2) N+2s
2

dy

≥ 1

(1 + 2δ)N−2s |(x, t)|N−2s (αN ,s − o(1))

(7.3)

where o(1) → 0 as |z| = |(x, t)| → ∞.
Hence, if we choose δ > 0 small and R > 0 large so that

1

(1 + 2δ)N−2s ≥ 1 − η

2
and αN ,s − o(1) ≥

(
1 − η

2

)
αN ,s,

we obtain the desired estimate from (7.2) and (7.3).
We turn to prove the upper estimate. Again, we take into account the cases (1) |x | > δ|t |

and (2) |x | ≤ δ|t | separately.
For the case (1), we estimate

α
p
N ,sγN ,s

∫

|y|≤δ|x |
1

|(x − y, t)|N−2s

1

(1 + |y|2) N+2s
2

dy ≤ αN ,s

|((1 − δ)x, t)|N−2s

≤ 1

(1 − δ)N−2s

αN ,s

|(x, t)|N−2s

and

α
p
N ,sγN ,s

∫

|y|≥δ|x |
1

|(x − y, t)|N−2s

1

(1 + |y|2) N+2s
2

dy

= α
p
N ,sγN ,s

(∫

2|x |≥|y|≥δ|x |
+

∫

|y|≥2|x |

)
1

|(x − y, t)|N−2s

1

(1 + |y|2) N+2s
2

dy

≤ α
p
N ,sγN ,s

(∫

2|x |≥|y|≥δ|x |
1

|x − y|N−2s

1

(δ|x |)N+2s dy

+
∫

|y|≥2|x |
1

|x |N−2s

1

|(1 + |y|2) N+2s
2

dy

)

≤ α′
N ,s

δN+2s |x |N ≤ 2N/2α′
N ,s

δ2(N+s)|(x, t)|N ,
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where α′
N ,s > 0 is a certain constant relying only on N and s. Observe that the last inequality

came from |(x, t)| <
√
1 + δ−2|x | ≤ √

2δ−1|x | for δ > 0 small enough. Combining the
above estimates, we get

W (x, t) ≤ 1

(1 − δ)N−2s

αN ,s

|(x, t)|N−2s + 2N/2α′
N ,s

δ2(N+s)|(x, t)|N . (7.4)

For the case (2), we have

W (x, t) ≤ α
p
N ,sγN ,s

∫

RN

1

|t |N−2s

1

(1 + |y|2) N+2s
2

dy = αN ,s

|t |N−2s

≤ (1 + δ)N−2s αN ,s

|(x, t)|N−2s . (7.5)

Consequently, with the choices

1

(1 − δ)N−2s ≤ 1 + η

2
and

2N/2α′
N ,s

δ2(N+s)RN
≤ η

2
,

estimates (7.4) and (7.5) imply the second inequality of the lemma. The proof is completed.
��

8 Appendix 2: Elliptic regularity results and derivation of (4.22) and (4.23)

This section is devoted to present some elliptic regularity results and its application to justi-
fication of (4.22) and (4.23). For brevity, we denote

Qr = BN+1+ ((x, 0), r) and Br = BN (x, r) for any fixed x ∈ �, 0 < r < dist(x, ∂�)/2.

Also, ∂i = ∂xi for 1 ≤ i ≤ N .
We need to recall two lemmas which can be proved with the Moser iteration method. One

is an a priori L∞-estimate. See, for example, [25, Lemma 3.8], [34, Theorem 3.4] and [39,
propositions 2.3, 2.6].

Lemma 8.1 Let U ∈ H1,2
0 (Q2r ; t1−2s) be a weak solution to

{
div(t1−2s∇U ) = 0 in Q2r ,

∂sνU = aU + f on B2r

and assume that ‖a‖
L

N
2s (B2r )

< δ for a small value δ = δ(N , s) > 0. If f ∈ Lq(Br ) for

some q > n
2s and θ ∈ (0, 1), then, we have

‖U‖2L∞(Qθr )
+

∫

Qθr

t1−2s |∇U |2dz ≤ C

(∫

Qr

t1−2s |U |2dz + ‖ f ‖2Lq (Br )

)

for some C = C(N , s, r, θ) > 0.

The other is a result on Hölder estimates. Refer to [39, Proposition 2.6] and [12, Lemma 4.5].

Lemma 8.2 Let U ∈ H1,2
0 (Q2r ; t1−2s) be a weak solution to

{
div(t1−2s∇U ) = 0 in Q2r ,

∂sνU = f on B2r ,
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and θ ∈ (0, 1).

(1) If f ∈ Lq(Br ) for some q > N
2s , then for some α ∈ (0, 1), we have

‖U‖Cα(Qθr ) ≤ C
(‖U‖L∞(Qr ) + ‖ f ‖Lq (Br )

)
.

(2) If f ∈ Cβ(Br ) for some β ∈ (0, 1), then there exists α ∈ (0, 1) such that

‖t1−2s∂tU‖Cα(Qθr ) ≤ C
(‖U‖L∞(Qr ) + ‖ f ‖Cβ (Br )

)
.

Now, we are ready to prove the main result of this section.

Proposition 8.3 Let 1 < q ≤ N+2s
N−2s . Suppose that U ∈ H1,2

0 (Q2r ; t1−2s) is a positive
solution of

{
div(t1−2s∇U ) = 0 in Q2r ,

∂sνU = Uq on B2r .
(8.1)

Assume that
∫

B2r
U

N
2s (q−1)2(x, 0) dx ≤ δ for some small value δ = δ(N , s) > 0. Then,

U (x, t) is twice differentiable in the x-variable in Qr/2. Moreover, the following estimates
hold:

‖∇xU‖Cα(Qr/2) ≤ C
(
1 + ‖Uq−1‖L∞(Br )

) ‖U‖L∞(Qr ),

‖t1−2s∂tU‖Cα(Qr/2) ≤ C
(‖U‖L∞(Qr ) + ‖Uq‖C1(Br )

)
,

‖∇2
xU‖Cα(Qr/2) ≤ C

(
1 + ‖Uq−1‖L∞(Br )

) (‖U‖L∞(Qr ) + ‖Uq−2|∇xU |2‖L∞(Br )
)
,

‖t1−2s∂t∇xU‖Cα(Qr/2) ≤ C
(‖∇xU‖L∞(Qr ) + ‖Uq−1|∇xU |‖C1(Br )

)
,

‖t2−2s∂2t U‖Cα(Qr/2) ≤ C
(‖t1−2s∂tU‖Cα(Qr/2) + ‖t2−2s |∇2

xU |‖Cα(Qr/2)

)

for some α ∈ (0, 1).

Proof By Propositions 2.13 and 2.19 of [39], any positive solutionU to (8.1) is twice differ-
entiable in x and it holds that

{
div(t1−2s∇∂iU ) = 0 in Qr ,

∂sν (∂iU ) = qUq−1∂iU on Br
(8.2)

and
{
div(t1−2s∇∂i∂ jU ) = 0 in Qr ,

∂sν (∂i∂ jU ) = qUq−1∂i∂ jU + q(q − 1)Uq−2(∂iU )(∂ jU ) on Br
(8.3)

for any 1 ≤ i, j ≤ N .
Let us prove validity of the estimates. Applying Lemma 8.1 to equations (8.1) and (8.2),

we get
∫

Q4r/5

t1−2s |∇∂iU |2dz ≤ C
∫

Q5r/6

t1−2s |∂iU |2dz

≤ C
∫

Qr

t1−2s |U |2dz ≤ C‖U‖2L∞(Qr )
. (8.4)

Using this chain of inequalities and Lemma 8.1 once more, we find

‖∂iU‖2L∞(Q3r/4)
≤ C

∫

Q4r/5

t1−2s |∂iU |2dz

≤ C‖U‖2L∞(Qr )
.
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Hence, Lemma 8.2 (1) gives the first inequality of Proposition 8.3

‖∂iU‖Cα(Qr/2) ≤ C
(‖∂iU‖L∞(Q3r/4) + ‖Uq−1∂iU‖L∞(B3r/4)

)

≤ C
(
1 + ‖Uq−1‖L∞(Br )

) ‖U‖L∞(Qr ).

Next, by employing Lemma 8.2 (2), we obtain the second inequality, i.e.,

‖t1−2s∂tU‖Cα(Qr/2) ≤ C
(‖U‖L∞(Qr ) + ‖Uq‖Cβ (Br )

)
.

Besides, an application of Lemma 8.1 to (8.3) as well as inequality (8.4) imply that

‖∂i∂ jU‖L∞(Q3r/4) ≤ C

(∫

Q4r/5

t1−2s |∂i∂ jU |2dz
)1/2

+ C‖Uq−2(∂iU )(∂ jU )‖L∞(B4r/5)

≤ C
(‖U‖L∞(Qr ) + ‖Uq−2(∂iU )(∂ jU )‖L∞(Br )

)
.

Therefore, Lemma 8.2 (1) shows

‖∂i∂ jU‖Cα(Qr/2)

≤ C
(‖∂i∂ jU‖L∞(Q3r/4) + ‖Uq−1∂i∂ jU‖L∞(B3r/4) + ‖Uq−2(∂iU )(∂ jU )‖L∞(B3r/4)

)

≤ C
(‖U‖L∞(Qr ) + ‖Uq−2(∂iU )(∂ jU )‖L∞(Br )

)

+ C‖Uq−1‖L∞(Br )
(‖U‖L∞(Qr ) + ‖Uq−2(∂iU )(∂ jU )‖L∞(Br )

)
,

which is the third inequality of Proposition 8.3. On the other hand, by employing Lemma 8.2
(2) to (8.2) again, we deduce the fourth inequality

‖t1−2s∂t∂iU‖Cα(Qr/2) ≤ C
(‖∂iU‖L∞(Qr ) + ‖Uq−1∂iU‖L∞(Br )

)
.

Finally, the last inequality follows from the fact that

t2−2s∂2t U = −(1 − 2s)t1−2s∂tU − t2−2s�xU in Q2r .

This completes the proof. ��
As a corollary of the above result, we get

Corollary 8.4 Let {Un}n∈N is a sequence of solutions of (2.4) with ε = εn. For any r > 0,

let A′
r = C′\ ∪m

i=1 BN+1+ ((xi0, 0), r). Then, there exist α ∈ (0, 1) and a constant C > 0
independent of n ∈ N such that

2∑

k=1

∥
∥
∥∇k

x

(
(λ1n)

− N−2s
2 Un

)∥
∥
∥
Cα(A′

r )
+

∑

0≤k≤1,1≤l≤2,
1≤k+l≤2

∥
∥
∥t l−2s∂ lt∇k

x

(
(λ1n)

− N−2s
2 Un

)∥
∥
∥
Cα(A′

r )
≤ C

for any n ∈ N large enough.

Proof Fix any compact subset K ⊂ A′
r such that K ∩ � �= ∅. By (4.21), we have

‖Un‖L∞(K ) ≤ C(λ1n)
N−2s
2 (cf. Lemma 4.4). Since Green’s function GC is positive in C,

again (4.21) tells us that the value inf z∈K (λ1n)
− N−2s

2 Un(z) is bounded away from zero for
large n ∈ N. Thus, even in the case that p− 2− εn = 6−N

N−2 − εn < 0 (i.e., N ≥ 6), we know

∥
∥U p−2−εn |∇xU |2∥∥L∞(Br )

≤ C(λ1n)
( N−2s

2 )(p−εn).
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As a consequence,

2∑

k=1

∥
∥
∥∇k

xUn

∥
∥
∥
Cα(A′

r )
+

∑

0≤k≤1,1≤l≤2,
1≤k+l≤2

∥
∥
∥t l−2s∂ lt∇k

xUn

∥
∥
∥
Cα(A′

r )
≤ C(λ1n)

N−2s
2 .

The proof is finished. ��
Proof of (4.22) and (4.23) Let us consider the sequence {∇xUn}n∈N. By Corollary 8.4, it
converges to some function F uniformly over a compact subset of A′

r . Then (4.21) and
an elementary analysis imply the fact that F = c1

∑m
i=1 bi ∇xGC((x, t), xi0). The other

functions can be treated similarly. This proves (4.22) and (4.23). ��
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