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Abstract
Objective. Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural
mechanisms of perception and can be used to restore sensation for patients who have lost it.
While sensitivity to ICMS has previously been characterized, no systematic framework has been
developed to summarize the detectability of individual ICMS pulse trains or the discriminability
of pairs of pulse trains. Approach. We develop a simple simulation that describes the responses
of a population of neurons to a train of electrical pulses delivered through a microelectrode. We
then perform an ideal observer analysis on the simulated population responses to predict the
behavioral performance of non-human primates in ICMS detection and discrimination tasks.
Main results. Our computational model can predict behavioral performance across a wide range
of stimulation conditions with high accuracy (R2=0.97) and generalizes to novel ICMS pulse
trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis
for the finding that amplitude discrimination based on ICMS violates Weber’s law. Significance.
The model can be used to characterize the sensitivity to ICMS across the range of perceptible and
safe stimulation regimes. As such, it will be a useful tool for both neuroscience and
neuroprosthetics.

S Online supplementary data available from stacks.iop.org/JNE/14/016012/mmedia

Keywords: intracortical microstimulation, computational model, non-human primates, psycho-
physics, detection, discrimination
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Introduction

Intracortical microstimulation (ICMS) has proven to be a
useful tool to explore the neural mechanisms of behavior [1]
and has yielded important insights into visual [2–4], auditory
[5, 6], and tactile [7–10] processing. As ICMS elicits

meaningful and repeatable percepts, it may also be used to
restore sensation for patients who have lost it [8, 9, 11–17].
Sensitivity to ICMS has been studied by measuring the
detectability and discriminability of different regimes of
electrical stimulation applied to different cortical regions
[1, 8, 12, 18–24]. These previous studies provide important
insights on how changing different parameters affects the
resulting perceptual experience. However, quantitative pre-
dictions about the detectability or discriminability cannot be
made based on these previous studies, given how sparsely the
parameter space is sampled. To fill this gap, we sought to
develop a model that predicts the sensitivity to ICMS whose
parameters span the range that has been deemed safe [25]. To
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this end, we developed a simple simulation of ICMS-evoked
activation in a neuronal population and then used ideal
observer analysis to predict behavioral sensitivity from the
simulated population response. The model was developed
based on behavioral data we had previously collected that
characterize the detectability and discriminability of ICMS
applied to the primary somatosensory cortex (S1) of maca-
ques and spanning a wide range of stimulation parameters
[23]. We find that the simple model can accurately predict
sensitivity to ICMS across all conditions tested.

Methods

Behavioral methods

The methods are described in detail in a previous paper [23]
and are only summarized here.

Animals and implants. Procedures were approved by the
University of Chicago Institutional Animal Care and Use
Committee. Each of two male Rhesus macaques (Macaca
mulatta, 6 years of age, around 10 kg in weight) was
implanted with a Utah electrode array (UEA; Blackrock
Microsystems) in the hand representation of area 1 of the right
hemisphere. After about 2 years of data collection, the array
of one of the animals failed so another array was implanted in
area 1 of its left hemisphere. Each UEA consists of 96
electrodes with 1.5 mm long shanks, spaced 400 μm apart,
and spanning a 4×4 mm area. The electrode tips are coated
with a sputtered Iridium Oxide film using a standard process
[26, 27]. The electrode shaft is insulated with parylene-C
along its length, with the exception of the tip, which has a
targeted exposure length of 50 μm. Electrode impedances
were measured to be between 10 and 80 kΩ prior to
implantation. We mapped the receptive field of each
electrode by identifying which areas of skin evoked
multiunit activity (monitored through speakers). Stimulation
pulses were delivered using a 96-channel constant-current
neurostimulator (CereStim R96, Blackrock Microsystems).

Behavioral tasks. Two animals were trained to perform two
variants of a two-alternative forced choice task: detection and
discrimination. Animals were seated at the experimental table
facing a monitor, which signaled the trial progression. Each
trial comprised two successive stimulus intervals, each 1 s and
separated by a 1 s inter-stimulus interval. The animals
responded by making saccadic eye movements to a left or
right target presented on the visual monitor and correct
responses were rewarded with water or juice. The animals
were first trained with mechanical stimuli, consisting of
mechanical indentation of the skin with varying depth (from 0
to 2000 μm), until performance stabilized. Their task was to
report which stimulus interval contained the only mechanical
indentation (detection) or the mechanical indentation of
greater depth (discrimination). The animals then performed
the same detection and discrimination tasks based on ICMS of
S1 (see below for a detailed description of each behavioral

task). Unless otherwise specified, ICMS consisted of a train of
symmetric biphasic pulses with cathodal phase leading and an
interphase interval of 53 μs. Performance was very similar
across animals, as previously documented [8, 23], so we
combined results from the two animals for the purposes of the
present modeling effort.

Detection. On each trial, ICMS was delivered in one of two
consecutive stimulus intervals and the animal’s task was to
indicate which stimulus interval contained the stimulus. In
different experimental blocks, we investigated the effects of
pulse width (from 50 to 400 μs), pulse train frequency (from
50 to 1000 Hz), and pulse train duration (from 2 to 1000 ms)
on the animals’ ability to detect stimuli varying in amplitude.
We also studied the interaction between frequency and
duration by varying these two parameters while keeping the
pulse amplitude fixed at 40 μA (chosen because it was near
threshold) as well as the interaction between pulse width and
frequency using the range of amplitudes. Each manipulation
was repeated with multiple electrodes to gauge the generality
of our results.

Amplitude discrimination. On each trial, two ICMS pulse
trains were presented sequentially and the animals’ task was
to indicate which of the two was stronger. One of the two
stimuli was a standard stimulus, with amplitude of 70 μA
(approximately half way between threshold and maximum
amplitude), and the other was a comparison stimulus whose
amplitude varied from trial to trial. We varied ICMS
frequency (from 50 to 500 Hz) or pulse train duration (from
50 to 1000 ms). In those conditions, the frequency or duration
was the same for both intervals but varied randomly from trial
to trial.

Computational model

Model overview. The proposed computational model
consists of two parts: (1) simulating the responses evoked
in populations of neurons by ICMS pulse trains and (2)
predicting behavioral responses based on these simulated
neuronal responses (figure 1). To simulate the responses of an
individual neuron, we compute its probability of firing in
response to each ICMS pulse [28–30], taking into
consideration both the properties of the stimulation pulse
and the neuron’s recent spiking history (the latter to
incorporate absolute and relative refractoriness). The firing
probabilities are then summed over all ICMS pulses to
determine that neuron’s response. To simulate the population
response, the current waveform is described as decaying in
amplitude as it spreads away from the stimulation site. The
behavioral response is determined by comparing the
simulated neuronal response to the ICMS pulse train
delivered in each stimulus interval using ideal observer
analysis. The model comprises 11 free parameters, which are
optimized to fit the behavioral data [23]. The model thus
provides a succinct description of a complex behavioral data
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set using a simple description of the process that culminates in
the measured behavior.

Neuronal simulation. Fluctuations of the membrane
potentials at the nodes of Ranvier of myelinated fibers have
been shown to be approximately normally distributed [31].
Accordingly, the threshold current, Ith, which bridges the gap
between resting membrane potential and threshold (assuming
a constant threshold, see [28]), is also distributed normally,
so the firing probability of a neuron can be modeled as
Bernoulli random variable, p, driven by current Ic as follows:
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where Ic is the ICMS current, G is a gain parameter, and Ith50
is the mean threshold current, that is, the current that causes
the neuron to fire with a probability of 50%. Because the
standard deviation of the membrane potential increases
approximately linearly with its mean, the standard deviation
of the threshold current is also a linear function of its mean
σ=sIth50 [28, 31, 32], where s is the ‘relative spread.’ After
each spike, the threshold current Ith50 jumps up then decays
exponentially along a time course that tracks absolute and
relative refractoriness [28]:
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where tabs represents an absolute refractory period (fixed at
1 ms) during which the firing probability equals zero (see
equations (2), (3)); γ and τref reflect the spike-triggered
conductance change and its decay time constant, respectively.
The effect of pulse width PW on threshold I0 is described

according to the following empirical relationship [30, 33]:
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where I0,PW=∞ is the threshold current for long pulses,
equivalent to the rheobase current, and C is the chronaxie,
which is the time required for ICMS that is double the
strength of the rheobase current to stimulate a neuron and is
necessary to incorporate the effects of pulse width on
sensitivity.

Using equations (2)–(4), then, we computed the firing
probability of each simulated neuron in response to a train of
ICMS pulses. After each spike, the membrane potential
returned to its resting state, the threshold increased [34, 35]
then decayed back to its resting level after the absolute
refractory period (see equation (3)), resulting in a decrease in
firing probability during the refractory period (equation (2)).
After computing the firing probability of the first pulse using
equation (2) (with Ith50=I0), the model recursively calculates
the firing probability for the rest of pulses.

The number of spikes evoked in each neuron by a pulse
train is given by the sum of firing probabilities across pulses.
We then calculate the number of spikes generated by neurons
across the volume of simulated tissue, over which the ICMS
current decays at a rate of 1/r2, where r is distance from the
electrode tip. We used 21 neurons from nearest (r=1) to
farthest (r=3) with an increment Δr=0.1, having
established that the results were relatively insensitive to the
number (or density) of simulated neurons. The firing
probability and corresponding spike counts decrease as
distance increases and converges to zero (figure 1).

Because neurons in the stimulated volume fired inde-
pendently (that is, were not synaptically connected) in this
simplified model, spikes were spatially and temporally
integrated to calculate the effective number of spikes, Rp

evoked in the neuronal population (equation (5)). To
incorporate the fact that neuronal signals are not integrated
indefinitely, but rather over tens or hundreds of milliseconds
[36, 37], in making a perceptual decision, we used an
exponentially decaying time window, wn, whose time course

Figure 1. The model generates a population response from simulated neurons placed at different distances from the tip of electrode. The firing
probability for each pulse decreases as the distance increases. The simulated responses are integrated using a time window to calculate a
distribution of the population response for each stimulus and then predict detection and discrimination performance.
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was a parameter.
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where p(n, r) denotes the firing probability of a neuron
located at distance r by the nth pulse, N is the number of
ICMS pulses, and wn is an exponentially decaying function
with time constant τi. The term 4πr2 computes from the
neuronal responses evoked along radius r the responses
evoked over a volume consisting of a series of 21 concentric
spherical shells of radius r.

Given that the spike count follows the binomial
distribution, the variance of the population response is given
by:
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In summary, there are 11 free parameters: I0,PW=∞ (rheobase
current), C (Chronaxie), γ (conductance change), τref (time
constant of refractoriness), s (proportionality constant to relate
variability of the input current to its amplitude), τi (time
constant of the integration time window) (equation (5)), and 5
gain parameters (3 for detection and 2 for discrimination (G in
equation (2) and table 1). The gain parameter was fit to each
protocol separately to account for observed differences in
sensitivity across conditions, likely caused by sensory
adaptation and learning (see below). Note, however, that the
gain parameter changes the overall sensitivity to ICMS but
does not affect the relative sensitivity to different ICMS pulse
trains. Parameters were optimized to minimize the root mean
squared error (RMSE) between actual and predicted perfor-
mance (see below) for the detection and discrimination tasks.
For this, we used a combination of Matlab function fmincon
with multiple initial points and simulated annealing [38].

Ideal observer analysis. From equations (5) and (6), the
population response evoked by stimulus 1 on any given trial

is given by:

r R n , 7p p p1 1 1= + ( )

where np1 is the random deviation (i.e., noise) of the
actual response from the mean response. The ideal observer
analysis assumes that stimulus 1 (the comparison stimulus)
will be perceived as more intense than stimulus 2 (the
standard stimulus) if rp1>rp2, the probability of which is
given by:
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where P stands for the cumulative distribution function of the
random variable indicated in the subscript. Since the
population response is the sum of independent responses of
individual neurons, it is normally distributed, according to the
central limit theorem. The response variance was computed
from equation (6) so equation (8) can be rewritten as:

p r r
R R

d , 9p p
p p

p p

p1 2
1 2

1
2

2
2s s

> = F
-

+
= F ¢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( )

where Φ is the cumulative Gaussian function with zero mean
and unit variance. In signal detection theory, the argument of
Φ is the discriminability, dp¢ [39]. On detection trials, the
responses on a blank interval, Rp2, was calculated from
equation (2) with Ic = 0, yielding a value near zero..

Results and discussion

Behavioral data

As described previously in more detail [23], detection per-
formance improved as ICMS amplitude and duration
increased, regardless of what other parameters were
manipulated (figures 2(A)–(C)). However, the psychometric
functions and resulting detection thresholds were also

Table 1. (A) Fitted values of the IF parameters, used for all protocols. (B) Fitted values of the gain parameter (G) for each protocol (see
equations (2)–(5)).

(A)

I0,PW=∞ (μA) C (ms) s τref (ms) γ τi (ms)

Estimated 3.71 0.43 0.25 112 2.32 40.0

(B)

Manipulation G G (validation)

Detection Pulse phase duration 0.29 0.17
Pulse train frequency 0.20 0.16
Pulse train duration×frequency 0.60
Pulse train duration 0.29

Discrimination Pulse train frequency 0.11
Pulse train duration 0.16
Reference amplitude 0.10
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Figure 2.Behavioral data. (A) Detection, pulse width manipulation (300 Hz, 1 s duration) (8 electrodes, 9666 trials). (B) Detection, frequency
manipulation (200 μs pulse width, 1 s duration) (8 electrodes, 14 320 trials). (C) Detection, frequency and duration manipulation (40 μA,
200 μs pulse width) (8 electrodes, 16 400 trials). (D) Discrimination, frequency manipulation (200 μs pulse width, 1 s duration, standard
amplitude is 70 μA) (3 electrodes, 4449 trials). (E) Discrimination, duration manipulation (300 Hz, 200 μs pulse width, standard amplitude is
70 μA) (3 electrodes, 6584 trials).

Figure 3. Comparison of psychometric functions to ICMS with almost identical parameters but selected from two different experiments (a
subset of those shown in figure 2): (A) Detection experiments, frequency and pulse width manipulations. For both, PW=200 μs and stim.
dur.=1 s; PF is 250 Hz for the PF manipulation and 300 Hz for the PW manipulation. (B) Discrimination experiments, frequency and
duration manipulations. For both, PW=200 μs and stim. dur.=1 s; PF is 250 Hz for the PF manipulation and 300 Hz for the duration
manipulation. The difference in performance across these paired conditions cannot be accounted for based on the small difference in
frequency and reflects differences in sensitivity across these different protocols. These differences may be due to different states of sensory
adaptation or different levels of training (the two were confounded in these data sets).
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dependent on the other parameters [40]. In brief, thresholds
decreased with increases in pulse width and pulse frequency,
both effects tending to level off (∼200 μs for pulse width and
∼250 Hz for frequency). As might be expected, discrimina-
tion performance improved as the difference in amplitude
between the two stimuli increased (figures 2(D), (E)). Unlike
its detection counterpart, however, discrimination perfor-
mance was relatively insensitive to ICMS frequency; dis-
crimination performance improved with increased stimulus
duration up to about 200 ms and leveled off, a phenomenon
that is also observed with the discrimination of mechanical
stimuli applied to the skin [41]. Finally, performance varied
across experiments for the same set of electrodes and identical
stimulation regimes (figure 3). For example, sensitivity was
higher for experimental blocks where pulse width (detection)
or stimulus duration (discrimination) was manipulated than
for blocks where frequency was manipulated. The ICMS
parameters are almost the same except for a small difference
in frequency (250 Hz versus 300 Hz), which is unlikely to
underlie the observed difference. To account for this varia-
bility, the model included a gain parameter that was allowed
to vary across protocols (equation (2), table 1(B)), with higher
gain denoting higher sensitivity.

Neuronal simulation

The goal was to develop a model that predicted performance
on the ICMS detection and discrimination tasks. The model
comprised two components (figure 1): the first was a simu-
lation of the neuronal activity evoked by each ICMS pulse
train; the second was an ideal observer analysis that simulated
the perceptual decision of which of two intervals was selected
on a given detection or discrimination trial. In brief, each
simulated neuron was subjected to the ICMS waveform, with
amplitude decaying as an inverse function of the square of the
neuron’s distance from the electrode tip [42]. Thus, simulated
neurons that were farther away from the electrode tip gener-
ated fewer spikes (figure 4(A)). As expected, larger ICMS
currents induced more spikes from individual neurons and
from the neuronal population. Specifically, the simulated
response increased with both pulse width (figure 4(B)) and
pulse frequency (figure 4(C)). Of course, the population spike
count increased with ICMS durations, but the effect of sti-
mulus duration on detection or discrimination performance
was limited by the integration time window [36, 37]. The
variance of the population response was well approximated
using a power function (figure 4(D)).

Figure 4. (A) Mean firing rate in a single simulated neuron as a function of distance from the electrode tip. The parameters of ICMS for this
simulation: amplitude (from 10 to 80 μA), pulse phase duration (200 μs), frequency (300 Hz), pulse train duration (1 s). Due to relative
refractoriness, the maximum number of spikes was limited—that is, not every ICMS pulse evoked a spike. (B)Mean population response as a
function of ICMS amplitude with varying pulse width. (C) Mean population response as a function of ICMS amplitude with varying
frequency. Error bars indicate the standard deviation of the population response. (D) Relationship between the mean and the variance of the
population response modeled as a power function. (E) The discriminability was calculated from simulated neuronal responses and used to
predict detection and discrimination performance using ideal observer analysis. Circles and triangles indicate detection trials and
discrimination performance, respectively. Different colors denote different experimental conditions (see figures 3 and 5). The black line
shows the predicted probability (see equation (9)).
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Predicting behavioral responses from simulated neuronal
responses

As described above, we simulated the population response to
each ICMS pulse train then computed the behavioral response
using ideal observer analysis (equation (9), figure 4(E)). The
parameters of the model were fit so that the resulting pre-
dictions matched the large behavioral data set, which con-
sisted of 159 different ICMS combinations, 87 from detection
and 72 from discrimination. The parameters of the neuronal
model (table 1(A)) were identical across protocols except for
the gain parameter (table 1(B)), which was allowed to vary
across protocols to account for the varying sensitivity to the
same (or similar) ICMS pulse trains (figure 3). Once model
parameters were optimized to fit the behavioral data, we
constructed psychometric functions for the pulse width and
pulse frequency manipulations in the detection experiments
by simulating the population response for ICMS trains whose
amplitude spanned the range from 10 to 90 μA in 1 μA steps
and computing the resulting detectability (figures 5(A), (B)).
For the duration/frequency manipulation (figure 5(C)), the
number of ICMS pulses was increased in increments of 1. For
the pulse frequency and duration manipulations in the dis-
crimination experiments, we simulated the responses of
comparison stimuli ranging in amplitude from 20 μA to
100 μA and compared these to each of the fixed standards
(figures 5(D), (E)).

This simple model could predict both detection and
discrimination performance with high accuracy (R2=0.97,
RMSE=0.052, figure 5(F)). That is, the dependence of the
simulated population response on stimulation parameters
mirrored the dependence of the behavioral sensitivity to these
same parameters. In other words, the model can accurately
predict the degree to which a given ICMS pulse is detectable
or the degree to which a pair of ICMS pulses are discrimin-
able across all conditions tested. The model is able to predict
behavior across a wide range of conditions even though it
does not take into consideration neuronal morphology
[43, 44], the biophysics of the stimulation and of neuronal
activation [45], and the active spread of neuronal activity
through synaptic connections [43, 44, 46, 47].

Model validation

We validated the model by testing it on behavioral data sets
that were not used to fit its parameters [23]. One of the main
differences between model-fitting and validation datasets was
that the polarity of the pulses was reversed in the validation
set (from cathodal to anodal phase leading). One validation
dataset consisted of behavioral performance on a detection
task, with varying pulse width, pulse train frequency, or pulse
train duration. The other consisted of performance on a dis-
crimination task with two different reference amplitudes (at
30 and 100 μA). These datasets consisted of 100 different

Figure 5. Model prediction: Predicted detection performance with manipulations of (A) pulse width, (B) frequency, (C) duration and
frequency; predicted discrimination performance with manipulations of (D) pulse frequency and (E) pulse train duration. (F) Model fit. The
model somewhat underestimates the effect of frequency on detectability but otherwise captures the behavioral data very accurately,
accounting for 97% of the variance. Circles and triangles indicate detection and discrimination performance, respectively. Color codes are
matched with ones shown in figure 4(E) and in panels (A)–(E); circles denote detection, triangles denote discrimination. (G)Model prediction
for the validation data, which were not used to fit the model parameters. Discrimination: 16 electrodes, 20 052 trials; detection—pulse width:
5 electrodes, 18 460 trials; detection—frequency: 4 electrodes, 33 281 trials; detection—duration: 4 electrodes, 13 337 trials. The same color
and shape codes are used as in previous panels.
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conditions, 90 from the detection experiments and 10 from
the discrimination experiments. All the model parameters
were fixed, except for the gain parameter, which was fit to
individual behavioral sets to compensate for differences in
overall sensitivity, especially necessary given the well-docu-
mented phenomenon that anodal phase leading pulses lead to
lower sensitivity [21, 48, 49]. The model accounted for 91%
in the variance of the validation set (figure 5(G)) (R2=0.91,
0.89, 0.79 for the three detection protocols, respectively, and
0.99 for the discrimination protocol). Thus, the model gen-
eralizes to a data set that was not used to obtain its parameters
(except for the G, which was refit).

We also wished to assess whether a simpler possible
model, one in which detection and discrimination predictions
are based solely on charge delivery, could predict behavioral
performance. To this end, we computed the amount of charge
delivered during each stimulus and fit a logistic function to
detection performance as a function of charge delivered and
to discrimination performance as a function of difference in
charge delivered. This model comprised two free parameters
for each experiment condition for a total of 10 parameters.
Model performance accurately predicted the effects of phase
duration on detection and those of pulse train duration on
discrimination but fared very poorly in all other conditions
(see table S1). Thus, the present model outperforms a mar-
ginally simpler model, suggesting that its (relatively low)
level of complexity is warranted.

Comparison of simulated ICMS-evoked responses to
measured mechanically evoked responses

Having established that the computational model can accu-
rately predict behavioral performance, we compared the
simulated responses to ICMS with measured neuronal
responses to mechanical stimulation. To this end, we used

neurophysiological recordings from S1 obtained while the
animals performed detection and discrimination tasks based
on mechanical stimulation of the skin that were analogous to
those described above for ICMS. From these data, we cal-
culated the effective spike count using the same integration
time window used for the simulated responses. For the
measured responses to mechanical stimulation, we found that
the rate-intensity was a negatively accelerating function of
stimulus amplitude and could be well approximated using a
power function with exponent less than 1 (α≈0.3)
(figure 6(A)); furthermore, variance increased slightly supra-
linearly with firing rate (β≈1.3) (figure 6(B)). In contrast,
simulated neuronal responses to ICMS exhibited the opposite
pattern: The rate-intensity function was accelerating
(α≈2.6) (figure 6(A)) and the variance-rate function
decelerating (β≈0.9) (figure 6(B)). The shallow variance
rate function reflects the highly synchronized population
responses to ICMS [50]. According to this model, which
accurately captures the behavioral performance of the animal,
the neuronal activation evoked by ICMS has different prop-
erties than does its counterpart evoked by mechanical sti-
mulation of the skin. These differences in rate-intensity and
variance-rate functions across modes of activation might
account for the fact that mechanical discrimination follows
Weber’s law whereas electrical stimulation does not [23].

Model parameters

The optimized parameters for the neuronal model are com-
parable to equivalent quantities measured in cortical neurons
(table 1(A)). In visual cortex, measured rheobase currents, I0,
PW=∞, span a wide range, from 1 to 500 μA [51] as do
chronaxies, C, from 0.03 to 31 ms, depending on the cell type
[48, 52]. These two parameters are required to capture the
dependence of sensitivity on pulse width (figures 2(A), 5(A)).

Figure 6. Comparison of effective spike count resulting from mechanical stimulation (measured) and ICMS (simulated). (A) Firing rates as a
function of stimulus intensity, mechanical indentation (blue, recorded) and ICMS amplitude (black, modeled). (B) Relationship between the
mean and the variance of the mean effective spike count for mechanical stimulation (blue, recorded) and ICMS (black, modeled).
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The fitted relative spread, s (0.25), is comparable to that
measured in auditory neurons of cats (which ranges from 0.05
to 0.4) [29, 53]. The two parameters modulating relative
refractoriness, γ and τref (2.32 and 112 ms respectively), are
in the same order of magnitude as those used in previous
models (γ=0.97 in [28–30] and τref=100 ms in [54]).
These two parameters were optimized to capture the satur-
ation of sensitivity at high frequencies shown in figures 2(B)–
(D), 5(B)–(D)) Lastly, the time constant of the integrating
window, τi (40 ms), is comparable to that derived in previous
studies (5–8 ms in [37], 12–22 ms in [36]) and this parameter
is required to capture the effect of the pulse train duration
(figures 2(C), (E), 5(C), (E)).

We also tested how sensitive the predictions of the model
were to the value of each of its parameters (figure S1). We
found that model performance was highly sensitive to the two
time constant parameters, τref and τi, but much less sensitive
to parameters such as rheobase current, I0,PW=∞ and spike-
triggered conductance change, γ.

Comparison with a previous model

In a previous model [24], the performance of rodents on an
ICMS discrimination task was predicted based on a leaky
integrator of delivered charge. A logistic function (with 4 free
parameters) was fit to the data relating discrimination per-
formance to integrated charge, so variability in the underlying
percepts was not explicitly represented in the model. The
model could predict the animals’ ability to distinguish ICMS
pulse trains varying in amplitude, frequency, or duration.
Importantly, however, a different logistic function was fit to
each condition. Unlike the present model, then, a single set of
parameters could not account for discrimination across all
conditions. Thus, while the study concluded that changes in
ICMS amplitude, frequency, and duration all have con-
sequences on perceived magnitude, the relative contributions
of these to discriminability could not be inferred from the
model. The present model fills that gap by accounting for the
effects of all stimulation parameters with a single set of
parameters (in addition to the variable gain). It is important to
note that the gain parameter would be unnecessary if all sti-
mulation conditions had been interleaved within each exper-
imental block.

Model limitations

First, simulated neurons are excited by current that is pas-
sively diffusing away from the electrode tip, which is at odds
with the observation that ICMS excites primarily axons rather
than cell bodies [55]. Second, neurons in the model are not
interconnected even though circuit-level dynamics may play a
role in shaping the detectability and discriminability of ICMS
pulse trains. Third, the gain parameter needs to be adjusted to
the animal’s sensitivity. In practice, this parameter could be
estimated based on a few threshold measurements and the
resulting model could then be used to predict a much larger
data set. Note also that, while the gain parameter determines
the overall sensitivity to ICMS, it does not affect the relative

sensitivity to different ICMS trains. Fourth, the model does
not take into account the neuronal adaptation—the pro-
gressive desensitization to ICMS over the course of an
experimental block—caused by prolonged stimulation.
Indeed, adaptation may have in part underlied the requirement
for different gain parameters for different conditions, each
with different overall levels of stimulation (the other cause for
different gains being learning).

Conclusions

Despite its simplicity, the proposed model accurately captures
detection and discrimination behavior across the behaviorally
relevant range of stimulation conditions. The model can thus
be an invaluable tool to develop ICMS regimes with known
psychometric properties without time-consuming preliminary
psychophysical experiments. Furthermore, results from the
neuronal simulation suggest a reason why ICMS amplitude
discrimination violates Weber’s law.
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