
Research Article
Best Speed Fit EDF Scheduling for Performance
Asymmetric Multiprocessors

Peng Wu1 and Minsoo Ryu2

1Department of Electronics and Computer Engineering, Hanyang University, Seoul, Republic of Korea
2Department of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea

Correspondence should be addressed to Minsoo Ryu; msryu@hanyang.ac.kr

Received 10 October 2016; Revised 19 January 2017; Accepted 1 February 2017; Published 20 February 2017

Academic Editor: Alessandro Gasparetto

Copyright © 2017 Peng Wu and Minsoo Ryu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In order to improve the performance of a real-time system, asymmetric multiprocessors have been proposed. The benefits of
improved system performance and reduced power consumption from such architectures cannot be fully exploited unless suitable
task scheduling and task allocation approaches are implemented at the operating system level. Unfortunately, most of the previous
research on scheduling algorithms for performance asymmetricmultiprocessors is focused on task priority assignment.They simply
assign the highest priority task to the fastest processor. In this paper, we propose BSF-EDF (best speed fit for earliest deadline first)
for performance asymmetric multiprocessor scheduling. This approach chooses a suitable processor rather than the fastest one,
when allocating tasks. With this proposed BSF-EDF scheduling, we also derive an effective schedulability test.

1. Introduction

Modern semiconductor technology adopts the use of mul-
tiple processors in their motherboard design because of the
growing demand of performance and saving energy which
cannot be handled by single processor systems. In this regard,
performance asymmetric multiprocessors, where individual
cores possess different performance, are believed to provide
improved performance and low power consumption when
compared to performance symmetricmultiprocessors, where
the cores are identical [1].This is because such heterogeneous
architecture allows the allocation of computing resources
according to the needs of an application and better handling
of dynamic workload requirements by exploiting speed of the
fast cores and power efficiency of the slow cores available.
One example of heterogeneous multiprocessor architectures
is the ARM big.LITTLE architectures that combine slow
and fast processing cores that possess identical instruction
set but different execution speeds. The ARM big.LITTLE
architectures are already used by Samsung in their Galaxy
Note 5 and S6 Edge.

For embedded real-time systems, in addition to resource
and power optimization, guaranteeing the deadlines of a real-
time system is a critical requirement. Scheduling on such a

performance asymmetric multicore platform is much more
challenging than scheduling on identical multicore platform
since the processing speed depends not only on the processor
type, but also on the task executed. Thus, on heterogeneous
multicore platforms, a decision that which type of processor
will execute a given task over a period of time is also
important.

Liu and Layland proposed earliest deadline first (EDF)
scheduling algorithm on real-time single processor first in
1973 [2]. It is proved to be an optimal algorithm on single
processor. Baker demonstrated an efficiently computable
schedulability test for EDF scheduling on an asymmetric
multiprocessors platform [3]. However, most of the previous
research on EDF scheduling algorithm and relative schedul-
ing algorithms for performance asymmetric multiprocessors
is focused on the task priority approach [4–8]. They simply
assign the highest priority task to the fastest processor. Since
processors have different processing speeds in performance
asymmetric multiprocessors, we believe that task allocation
to an appropriate processor is also an important issue to be
considered.

In the current research we focus on providing an
improved scheduling algorithm based on EDF for handling

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 1237438, 7 pages
https://doi.org/10.1155/2017/1237438

https://doi.org/10.1155/2017/1237438


2 Mathematical Problems in Engineering

real-time tasks for performance asymmetric multiprocessor
systems. More specifically, we propose a new EDF scheduling
algorithm, best speed fit EDF (BSF-EDF). For BSF-EDF, the
priorities of the tasks are chosen according to the original
EDF scheduling algorithm, whereas it differs in terms of task
allocation to processors, such that in the former approach the
highest priority task is assigned to a faster processor and in
the latter approach the highest priority task is allocated to
the appropriate idle processor. We also obtain a new schedu-
lability test for the BSF-EDF on performance asymmetric
multiprocessors.

The rest of the paper is organized as follows. In
Section 2, we describe system model and background.
Section 3 presents the BSF-EDF scheduling with an example.
In Section 4, we describe the proposed schedulability test for
the BSF-EDF scheduling algorithm.

2. System Model and Background

We consider an 𝑚-core performance asymmetric multi-
processor system and we use 𝜋 to denote the set of 𝑚
performance asymmetric processors. We use 𝑠𝑖 to represent
the processing speed of any processor 𝑃𝑖. For convenience we
use 1 to represent the speed of the slowest processor, such
that the speed of faster processors can be represented by a
multiple of 1; for example, 𝑠𝑖 = 3. We also assume that the
speeds of processors are specified in nondecreasing order:𝑠𝑖 ≤ 𝑠𝑖+1 for all 𝑖. Let 𝑆𝑖 be the cumulative sum of processor
speeds of the first 𝑖 processors in a performance asymmetric
multiprocessors platform 𝜋:

𝑆𝑖 =
𝑖∑
𝑗=1

𝑠𝑗. (1)

Immediately, 𝑆𝑚 denotes the cumulative sum of 𝜋.
In this paper, we consider a sporadic task model. Let

D = {𝜏1, 𝜏2, 𝜏3, . . . , 𝜏𝑛} be a set of 𝑛 sporadic tasks. A sporadic
task 𝜏𝑖 is defined by a 3-tuple (𝑒𝑖, 𝑑𝑖, 𝑇𝑖), where 𝑒𝑖 is the worst
case execution time when it is executed in the lowest speed
processor, 𝑑𝑖 is the relative constrained deadline such that𝑒𝑖 ≤ 𝑑𝑖 ≤ 𝑇𝑖, and𝑇𝑖 is theminimum interarrival time, which is
also referred as period of the task. The minimum interarrival
time 𝑇𝑖 means that any two consecutive requests of 𝜏𝑖 are
separated by at least 𝑇𝑖. We use 𝜏𝑖,𝑗 to represent the jth job
of task 𝜏𝑖 and 𝐴 𝑖,𝑗 to denote the arrival time of 𝜏𝑖,𝑗. Note that
a task can have different execution time based on different
speeds of processors. Therefore, a job executing on the jth
processor for a duration of 𝑡 time can receive 𝑡 × 𝑠𝑗 units of
execution.

Now we introduce several further notions that we will
use for schedulability analysis. Since processors have varying
speeds, we use the slowest processor to measure the worst
case execution time 𝑒𝑖 of a task 𝜏𝑖. The utilization 𝑢𝑖 of a task𝜏𝑖 is the ratio of the worst case execution time to its period,
that is, 𝑒𝑖/𝑇𝑖. The total utilization𝑈sum(Γ) and the largest task
utilization 𝑢max(Γ) of a task set are defined as follows:

𝑈sum (Γ) = ∑
𝜏𝑖∈Γ

𝑢𝑖,
𝑢max (Γ) = max

𝜏𝑖∈Γ
𝑢𝑖.

(2)

The density 𝛿𝑖 of a task 𝜏𝑖 is defined to be the ratio of 𝑒𝑖/𝑑𝑖,
that is, ratio of the worst case execution time to the relative
deadline. The maximum density 𝛿max(Γ) of a task set Γ is
defined as follows:

𝛿max (Γ) = max
𝜏𝑖∈Γ

𝛿𝑖. (3)

The concepts of processor demand bound function
DBF (𝜏𝑖, Δ𝑡) and processor load are used in the analysis
of multiprocessor scheduling and are well-studied in detail
in [9]. DBF (𝜏𝑖, Δ𝑡) is used to represent an upper bound on
the maximum cumulative processing time demand by jobs
of 𝜏𝑖 that arrive in and also have deadline within any interval
of length Δ𝑡. It has been shown that

DBF (𝜏𝑖, Δ𝑡)
def= {{{

max(0, (⌊Δ𝑡 − 𝑑𝑖𝑇𝑖 ⌋ + 1) 𝑒𝑖) if Δ𝑡 ≥ 𝑑𝑖
𝑒𝑖 if Δ𝑡 < 𝑑𝑖.

(4)

The processor load parameter is based on the DBF function
which is themaximumvalue of the ratio of processor demand
bound and length of the time interval Δ𝑡 [10].

LOAD (D) def= max
Δ𝑡>0

(∑𝜏𝑖∈D DBF (𝜏𝑖, Δ𝑡)Δ𝑡 ) . (5)

3. BSF-EDF Scheduling
Algorithm for Performance Asymmetric
Multiprocessor Platform

Our scheduling algorithm proposed in this paper is a pri-
ority driven scheduling algorithm, which means that the
highest priority task always runs first. Moreover, we choose
global multiprocessor scheduling policy. Global scheduling
maintains a single system-wide queue of ready tasks, from
which tasks are extracted at run-time, to be scheduled on
the available computing resources. Global scheduling is more
appropriate for open systems, as there is no need to run
load balancing algorithms when the set of tasks changes.
We also allow preemption of tasks in our proposed BSF-
EDF scheduling algorithm and migration of tasks between
different speed processors is also permitted.

Now there are two crucial issues to be addressed, task
priority assignment and task allocation to processors. For
BSF-EDF scheduling we assign the priorities to tasks accord-
ing to their absolute deadline, such that the task with earlier
deadline has higher priority. In previous research work,
individuals simply assign the highest priority task to the
fastest idle processor. Contrary to this, we assign the highest
priority task to the appropriate idle processor rather than
the fastest idle one. The appropriate processor is the slowest
speed processor which ensures that a task can be executed
without missing its deadline. In other words, we choose the
slowest speed idle processor whose speed is no less than the
utilization of the task. If there does not exist such appropriate
processor, we allocate the task to the slowest idle processor.
We should reschedule all the tasks whenever a schedule event



Mathematical Problems in Engineering 3

Time20 1 876543 109 11 12

P2(2)

P1(1)

𝜏2,1 𝜏3,1 𝜏1,2 𝜏2,2 𝜏1,3 𝜏2,3

𝜏1,1 𝜏1,1 𝜏3,1 𝜏3,2𝜏3,2𝜏3,2

Figure 1: Task schedule under BSF-EDF.

occurs. Schedule events include two cases, when (a) a running
job is finished and (b) a new job has arrived. Specifically,
we say that (1) no processor is idle while there is an active
task, (2) a scheduled task always executes on the best speed
fit processor, if there exists such a processor, and (3) higher
priority task always runs first.

Example 1. Figure 1 manifests a simple BSF-EDF scheduling
example on a performance asymmetric multiprocessor plat-
form. Consider a performance asymmetric multiprocessor
platform 𝜋 = {1, 2} which has two processors and a task
set D = {𝜏1(4, 4, 4), 𝜏2(4, 4, 4), 𝜏3(6, 6, 6)}. Initially, 𝜏1,1 has the
highest priority, and 𝑃1 is the appropriate idle processor, so
we allocate it to 𝑃1. The second priority job 𝜏2,1 is allocated
to processor 𝑃2. Job 𝜏2,1 finishes at time 𝑡 = 2; therefore, time𝑡 = 2 is a schedule event time.All tasks should be rescheduled.𝜏1,1 still has the highest priority; we allocate it to 𝑃1, and
we allocate second priority job 𝜏3,1 to 𝑃2. 𝜏1,1 finishes its
execution at time 𝑡 = 4, so a schedule event appears. Now 𝜏3,1
has the highest priority, so we allocate it to𝑃1, and we allocate
job 𝜏1,2 to 𝑃2. It is easy to see that all tasks will satisfy their
deadline under BSF-EDF. The processors are used to their
100% utilization. As shown in the figure, 𝑡 = {2, 4, 6, 8, 10, 12}
are schedule event points.

4. BSF-EDF Schedulability
Analysis for Performance Asymmetric
Multiprocessor Platform

With respect to a given platform, a given sporadic task set is
said to be BSF-EDF schedulable if the schedule is able tomeet
all deadlines for every collection of jobs thatmay be generated
by the task set. In this section, we derive a schedulability
test for the BSF-EDF scheduling on performance asymmetric
multiprocessors.

We first obtain a necessary condition when a task misses
its deadline for the BSF-EDF scheduling. By taking the
contrapositive of the condition, we obtain a sufficient schedu-
lability condition.

Suppose that a job 𝜏𝑖,𝑗 of task 𝜏𝑖 is the one to first miss its
deadline at time-instant 𝐴 𝑖,𝑗 + 𝑑𝑖 (see Figure 2). 𝐴 𝑖,𝑗 denotes
the arrival time of job 𝜏𝑖,𝑗. Due to the properties of BSF-
EDF scheduling, we discard the legal sequence of jobs with
deadlines later than 𝐴 𝑖,𝑗 + 𝑑𝑖. We only consider the BSF-
EDF schedule of the remaining legal sequence of job requests,
since the later deadline jobs have no effect on the scheduling
of earlier deadline ones under BSF-EDF. It follows that a

0 Time

Δ
dp

di

t0Ap,q Ai,j Ai,j + di

𝜙p,q

Figure 2: A job 𝜏𝑖,𝑗 of task 𝜏𝑖 arrives at 𝐴 𝑖,𝑗 and misses its deadline
at time-instant 𝐴 𝑖,𝑗 + 𝑑𝑖.

Time

P3

P2

P1

Ai,j Ai,j + di

Figure 3: An example: there are three processors, and the total
length of blue color units is 𝐵3.The total length of orange color units
is 𝐵2. The total length of purple color units is 𝐵1.

deadline miss of 𝜏𝑖 occurs at time-instant𝐴 𝑖,𝑗 +𝑑𝑖 (and this is
the earliest deadline miss).

For a given task set D = {𝜏1, 𝜏2, 𝜏3, . . . , 𝜏𝑛}, let 𝑊(𝑡𝑝, 𝑡𝑞)
be the total amount of work done during [𝑡𝑝, 𝑡𝑞), and let𝑅(𝑡𝑝, 𝑡𝑞) be the total amount of processor time demand in[𝑡𝑝, 𝑡𝑞) required by all the jobs in this legal sequence of task
set D.

We derive a necessary condition for a task 𝜏𝑖 to miss its
deadline, by following three steps: (1) deriving a lower bound
on the total amount of processor time demand during the
time interval [𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) in Section 4.1, (2) deriving an
upper bound on the total amount of processor time demand
during the time interval [𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) in Section 4.2, and(3) combining the lower bound and upper bound into a
necessary condition for task 𝜏𝑖 missing its deadline. Note that𝑡0 is a special time point that will be explained in the coming
section.

4.1. Lower Bound. In this section, we obtain a lower bound of𝑅(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖).
Consider job 𝜏𝑖,𝑗 arriving at time 𝐴 𝑖,𝑗 misses its deadline

at time-instant 𝐴 𝑖,𝑗 + 𝑑𝑖. Let 𝐵V be the total duration over[𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) for which exactly V processors are busy in
this BFS-EDF schedule, 0 ≤ V ≤ 𝑚. Note that 𝐵0 is neces-
sarily zero, since 𝜏𝑖,𝑗 does not finish before its deadline.
Figure 3 manifests an example to understand this definition.𝑆󸀠V denotes the cumulative speed of the currently running V
processors. We can then write

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) =
𝑚∑
V=1
𝑆󸀠V𝐵V. (6)

Since ∑𝑚V=1 𝑆󸀠V𝐵V = 𝑆𝑚𝐵𝑚 + ∑𝑚−1V=1 𝑆󸀠V𝐵V and 𝑆𝑚𝐵𝑚 = 𝑆𝑚(𝑑𝑖 −∑𝑚−1V=1 𝐵V), we can write

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) = 𝑆𝑚𝑑𝑖 −
𝑚−1∑
V=1

(𝑆𝑚𝐵V − 𝑆󸀠V𝐵V) . (7)

As we mentioned in Section 2, 𝑆V means the cumulative
speed of the first V lowest speed processors. The tasks may



4 Mathematical Problems in Engineering

be allocated to the faster speed processors under BSF-EDF;
therefore we can get

𝑆󸀠V ≥ 𝑆V. (8)

From (7) and (8) above, we conclude that

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≥ 𝑆𝑚𝑑𝑖 −
𝑚−1∑
V=1

(𝑆𝑚𝐵V − 𝑆V𝐵V)

= 𝑆𝑚𝑑𝑖 −
𝑚−1∑
V=1

𝑆𝑚 − 𝑆V𝑠1 𝑠1𝐵V.
(9)

Let 𝜆(𝜋) = max1≤𝑖≤𝑚(∑𝑚𝑗=𝑖+1 𝑠𝑗/𝑠1). It immediately follows
that

𝜆 (𝜋) ≥ 𝑆𝑚 − 𝑆V𝑠1 for 1 ≤ V ≤ 𝑚 − 1. (10)

Combining (9) and (10), we have

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≥ 𝑆𝑚𝑑𝑖 − 𝜆 (𝜋)
𝑚−1∑
V=1
𝑠1𝐵V. (11)

Due to the work conserving property of BSF-EDF, 𝜏𝑖,𝑗 must
always be running in one of processors in time interval[𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖), except when all the processors are busy. The
processor time that 𝜏𝑖,𝑗 receives during [𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 +𝑑𝑖) cannot
be less than ∑𝑚−1V=1 𝑠1𝐵V, which is the worst case processor
time when 𝜏𝑖,𝑗 is running on the slowest processor 𝑠1. The
processor time that 𝜏𝑖,𝑗 receives must not exceed 𝑒𝑖, since job𝜏𝑖,𝑗 misses its deadline. Thus, we have

𝑒𝑖 >
𝑚−1∑
V=1
𝑠1𝐵V. (12)

By applying this to (11), we have

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝑆𝑚𝑑𝑖 − 𝜆 (𝜋) 𝑒𝑖,
𝑊 (𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖)

𝑑𝑖 > 𝑆𝑚 − 𝜆 (𝜋) 𝛿𝑖.
(13)

Since 𝛿max(Γ) ≥ 𝛿𝑖, we can write

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖)
𝑑𝑖 > 𝑆𝑚 − 𝜆 (𝜋) 𝛿max (Γ) . (14)

Let

𝜇 = 𝑆𝑚 − 𝜆 (𝜋) 𝛿max (Γ) . (15)

Then we have

𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇𝑑𝑖. (16)

Based on this, we now obtain a lower bound of𝑅(𝑡0, 𝐴 𝑖,𝑗+𝑑𝑖),
where 𝑡0 is the earliest time point 𝑡 such that 𝑡 ≤ 𝐴 𝑖,𝑗 and𝑊(𝑡, 𝐴 𝑖,𝑗 +𝑑𝑖) > 𝜇(𝐴 𝑖,𝑗 +𝑑𝑖 − 𝑡). Note that we can always find

such a time instant since at least 𝐴 𝑖,𝑗 satisfied 𝐴 𝑖,𝑗 ≤ 𝐴 𝑖,𝑗 and𝑊(𝐴 𝑖,𝑗, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇(𝐴𝑖,𝑗 + 𝑑𝑖 − 𝐴 𝑖,𝑗). Let Δ = 𝐴 𝑖,𝑗 + 𝑑𝑖 − 𝑡0;
then we finally have

𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇Δ. (17)

Note that the job 𝜏𝑖,𝑗 cannot be completed before time𝐴 𝑖,𝑗+𝑑𝑖,
so the total amount of work processed can never exceed the
amount of processor time demand. Thus, we have

𝑅 (𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≥ 𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) . (18)

It immediately follows that

𝑅 (𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇Δ. (19)

As a result, 𝜇Δ is a lower bound of the total amount of
processor time demand during the time interval [𝑡0, 𝐴 𝑖,𝑗+𝑑𝑖).
4.2. Upper Bound. We now obtain an upper bound of𝑅(𝑡0, 𝐴 𝑖,𝑗 +𝑑𝑖) of the total amount of processor time demand.
For this, we need to consider two types of jobs, regular jobs
that arrived at or after 𝑡0 and the jobs that arrive before 𝑡0 but
have not completed execution in the BSF-EDF schedule by
the time-instant 𝑡0. We will refer to jobs arriving prior to 𝑡0
that need execution over [𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) as carry-in jobs. We
use 𝑅𝑐 to denote the total amount of processor time demand
caused by carry-in jobs and use𝑅𝑟 to denote the total amount
of processor time demand caused by the regular jobs.

We first compute the upper bound of 𝑅𝑐 by (1) determin-
ing an upper bound on the remaining processor time demand
for each carry-in job, (2) determining a maximum value of
the number of carry-in jobs, and (3) combining the per-job
bounds to obtain an upper bound on the total remaining
processor time demand of all carry-in jobs.

Lemma 2. Each carry-in job has less than 𝛿max(Γ)Δ remaining
execution requirement at time-instant 𝑡0.
Proof. Let us consider a carry-in job 𝜏𝑝,𝑞 of a task 𝜏𝑝 that
arrives at time-instant 𝐴𝑝,𝑞 < 𝑡0 and has not completed its
execution by time 𝑡0 (see Figure 2). Let𝜙𝑝,𝑞 = 𝑡0−𝐴𝑝,𝑞. Let 𝑒󸀠𝑝,𝑞
be the processing time that 𝜏𝑝,𝑞 receives during time interval[𝐴𝑝,𝑞, 𝑡0). By using the same approach as in Section 4.1, let𝐼V be the total duration over [𝐴𝑝,𝑞, 𝑡0) for which exactly V
processors are busy in this BSF-EDF schedule. 𝐽V denotes
the cumulative speed of the currently running V processors
over [𝐴𝑝,𝑞, 𝑡0). Thus, the total amount of work processed in
[𝐴𝑝,𝑞, 𝑡0) can be calculated by 𝑆𝑚𝜙𝑝,𝑞−∑𝑚−1V=1 (𝑆𝑚𝐼V−𝐽V𝐼V). Since𝐽V ≥ 𝑆V, it immediately follows that

𝑒󸀠𝑝,𝑞 ≥ 𝑆𝑚𝜙𝑝,𝑞 −
𝑚−1∑
V=1

(𝑆𝑚𝐼V − 𝑆V𝐼V) . (20)

Since we can also express the total amount of work done
during the time interval [𝐴𝑝,𝑞, 𝑡0) by 𝑊(𝐴𝑝,𝑞, 𝐴 𝑖,𝑗 + 𝑑𝑖) −𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖), we can write

𝑊(𝐴𝑝,𝑞, 𝐴 𝑖,𝑗 + 𝑑𝑖) −𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) = 𝑒󸀠𝑝,𝑞. (21)



Mathematical Problems in Engineering 5

By applying (20) to (21), we have

𝑊(𝐴𝑝,𝑞, 𝐴 𝑖,𝑗 + 𝑑𝑖) −𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖)
≥ 𝑆𝑚𝜙𝑝,𝑞 −

𝑚−1∑
V=1

(𝑆𝑚𝐼V − 𝑆V𝐼V) .
(22)

By the definition of 𝑡0 (see (17)), it must satisfy

𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇Δ. (23)

Note that 𝑡0 is the earliest time point 𝑡 such that 𝑡 ≤ 𝐴 𝑖,𝑗 and𝑊(𝑡, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇(𝐴𝑖,𝑗 + 𝑑𝑖 − 𝑡), and we can also get

𝑊(𝐴𝑝,𝑞, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≤ 𝜇 (Δ + 𝜙𝑝,𝑞) . (24)

It immediately follows that

𝜇 (Δ + 𝜙𝑝,𝑞) − 𝜇Δ > 𝑊(𝐴𝑝,𝑞, 𝐴 𝑖,𝑗 + 𝑑𝑖)
−𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) .

(25)

By combining it to (22), we have

𝜇 (Δ + 𝜙𝑝,𝑞) − 𝜇Δ > 𝑆𝑚𝜙𝑝,𝑞 −
𝑚−1∑
V=1

(𝑆𝑚𝐼V − 𝑆V𝐼V) 󳨐⇒

𝜇𝜙𝑝,𝑞 > 𝑆𝑚𝜙𝑝,𝑞 −
𝑚−1∑
V=1

(𝑆𝑚𝐼V − 𝑆V𝐼V) 󳨐⇒

𝜇𝜙𝑝,𝑞 > 𝑆𝑚𝜙𝑝,𝑞 −
𝑚−1∑
V=1

𝑆𝑚 − 𝑆V𝑠1 𝑠1𝐼V.

(26)

Since

𝜆 (𝜋) = max
1≤𝑖≤𝑚

∑𝑚𝑗=𝑖+1 𝑠𝑗
𝑠1 ,

𝜆 (𝜋) ≥ 𝑆𝑚 − 𝑆V𝑠1 for 1 ≤ V ≤ 𝑚 − 1,
(27)

we can write

𝑆𝑚𝜙𝑝,𝑞 −
𝑚−1∑
V=1

𝑆𝑚 − 𝑆V𝑠1 𝑠1𝐼V ≥ 𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋)
𝑚−1∑
V=1
𝑠1𝐼V. (28)

Equation (26) then becomes

𝜇𝜙𝑝,𝑞 > 𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋)
𝑚−1∑
V=1
𝑠1𝐼V. (29)

Observe that the amount of execution that carry-in job 𝜏𝑝,𝑞
receives over [𝐴𝑝,𝑞, 𝑡0) is no less than ∑𝑚−1V=1 𝐼V𝑠1 since 𝜏𝑝,𝑞
must be executing on one of the processors during any
instant, when any processor is idle. Thus, we have

𝑒󸀠𝑝,𝑞 ≥
𝑚−1∑
V=1
𝑠1𝐼V. (30)

It immediately follows that

𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋)
𝑚−1∑
V=1

𝑠1𝐼V ≥ 𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋) 𝑒󸀠𝑝,𝑞. (31)

By (29) and (31), we can write

𝜇𝜙𝑝,𝑞 > 𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋) 𝑒󸀠𝑝,𝑞. (32)

Using 𝜇 = 𝑆𝑚 − 𝜆(𝜋)𝛿max(Γ) (defined in Section 4.1) in (32),
it follows that

(𝑆𝑚 − 𝜆 (𝜋) 𝛿max (Γ)) 𝜙𝑝,𝑞 > 𝑆𝑚𝜙𝑝,𝑞 − 𝜆 (𝜋) 𝑒󸀠𝑝,𝑞, (33)

resulting in

𝑒󸀠𝑝,𝑞 > 𝛿max (Γ) 𝜙𝑝,𝑞. (34)

Note that 𝑒𝑝,𝑞 = 𝑑𝑝𝛿𝑝 and that the remaining processing time
demand of the carry-in job 𝜏𝑝,𝑞 of task is 𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞. Thus, we
have

𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞 < 𝑑𝑝𝛿𝑝 − 𝛿max (Γ) 𝜙𝑝,𝑞. (35)

The absolute deadline of carry-in job 𝜏𝑝,𝑞 is no later than time𝐴 𝑖,𝑗 + 𝑑𝑖; that is, 𝑑𝑝 − 𝜙𝑝,𝑞 ≤ Δ. Also, 𝛿𝑝 ≤ 𝛿max(Γ); therefore
𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞 < 𝑑𝑝𝛿𝑝 − 𝛿max (Γ) 𝜙𝑝,𝑞,
𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞 < 𝑑𝑝𝛿max (Γ) − 𝛿max (Γ) 𝜙𝑝,𝑞,
𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞 < 𝛿max (Γ) (𝑑𝑝 − 𝜙𝑝,𝑞) ,
𝑒𝑝,𝑞 − 𝑒󸀠𝑝,𝑞< 𝛿max (Γ) Δ.

(36)

As a result, an upper bound of the remaining processor
time demand for each carry-in job can be expressed as𝛿max(Γ)Δ.

We obtained the upper bound on the remaining processor
time demand for each carry-in job. We will now determine
the maximum value of the number of carry-in jobs.

Lemma 3. The number of carry-in jobs is bounded by

Ω = max {𝜔 : 𝑆𝜔 < 𝜇} . (37)

Proof. Let 𝜀 be an arbitrarily small positive number. From the
definition of 𝑡0, it follows that

𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇Δ,
𝑊(𝑡0 − 𝜀, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≤ 𝜇 (𝜀 + Δ) .

(38)

Therefore, the work processed during [𝑡0 − 𝜀, 𝑡0) is less than𝜇𝜀 since𝑊(𝑡0 − 𝜀, 𝐴 𝑖,𝑗 + 𝑑𝑖) −𝑊(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) < 𝜇𝜀. Based on
the definition of 𝜇 ≤ 𝑆𝑚, it follows that the work processed
during [𝑡0 − 𝜀, 𝑡0) is less than 𝜀𝑆𝑚. Therefore some processor
is idle during [𝑡0 − 𝜀, 𝑡0). This implies that all carry-in jobs



6 Mathematical Problems in Engineering

are running in this interval and the number of carry-in jobs
is the same as the number of busy processors. Let 𝜔 be the
number of busy processors over [𝑡0 − 𝜀, 𝑡0) and let Ω be an
upper bound of 𝜔. Thus, we have

Ω = max {𝜔 : 𝑆𝜔 < 𝜇} . (39)

Therefore the upper bound of 𝑅𝑐 isΩΔ𝛿max(Γ).
Now let us consider the upper bound of the total amount

of processor time demand caused by regular jobs. Fortunately,
it is a well-studied subject, and algorithms are known for
computing DBF and LOAD [9, 10]. Baruah et al. showed that
the upper bound of 𝑅𝑟 can be calculated by Δ × LOAD(Γ),
where

LOAD (D) def= max
Δ𝑡>0

(∑𝜏𝑖𝜖D DBF (𝜏𝑖, Δ𝑡)Δ𝑡 ) ,
DBF (𝜏𝑖, Δ𝑡)

def= {{{
max(0, (⌊Δ𝑡 − 𝑑𝑖𝑇𝑖 ⌋ + 1) 𝑒𝑖) if Δ𝑡 ≥ 𝑑𝑖
𝑒𝑖 if Δ𝑡 < 𝑑𝑖.

(40)

As a result, an upper bound of the total amount of processor
time demand can be expressed as

𝑅 (𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≤ LOAD (Γ) Δ + ΩΔ𝛿max (Γ) . (41)

4.3. BSF-EDF Schedulability Test. We now describe a suffi-
cient schedulability test for the BSF-EDF scheduling algo-
rithm.

Theorem 4. A task set D = {𝜏1, 𝜏2, 𝜏3, . . . , 𝜏𝑛} is schedulable
by BSF-EDF on an m-core performance asymmetric multipro-
cessor platform 𝜋 = {𝑃1, 𝑃2, . . . , 𝑃𝑚}, with processing speeds𝑠1 = 𝑠2 = ⋅ ⋅ ⋅ = 𝑠𝑞 = 1, and 𝑠𝑖 > 1 for 𝑞 < 𝑖 ≤ 𝑚, if it
satisfies the following condition:

𝐿𝑂𝐴𝐷 (D) ≤ 𝜇 − Ω𝛿max (Γ) , (42)

where 𝜇 and Ω are defined in (15) and (37), respectively.

Proof. We prove it through the principle of contradiction.
We obtain necessary condition for the job 𝜏𝑖,𝑗 missing its
deadline. Negating this condition yields a sufficient condition
for the BSF-EDF schedulability.

From the foregoing discussion, we already got the upper
bound and lower bound of the total amount of processor time
demand during the time interval [𝑡0, 𝐴 𝑖,𝑗 +𝑑𝑖). As a result, we
obtain the following bound on 𝑅(𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖):

𝑅 (𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) ≤ LOAD (Γ) Δ + ΩΔ𝛿max (Γ) ,
𝑅 (𝑡0, 𝐴 𝑖,𝑗 + 𝑑𝑖) > 𝜇Δ.

(43)

Based on (43), we can get the necessary condition for a task𝜏𝑖 to miss its deadline:

LOAD (Γ) Δ + ΩΔ𝛿max (Γ) > 𝜇Δ
≡ LOAD (Γ) + Ω𝛿max (Γ) > 𝜇
≡ LOAD (Γ) > 𝜇 − Ω𝛿max (Γ) .

(44)

Equivalently, the negation of this condition is sufficient to
ensure BSF-EDF schedulability:

LOAD (D) ≤ 𝜇 − Ω𝛿max (Γ) , (45)

which is as claimed inTheorem 4.

5. Conclusions

In this paper, we presented a unique approach to task allo-
cation in a performance asymmetric multiprocessor system
based on EDF, called BSF-EDF. In BSF-EDF we chose the
appropriate slowest speed processor to execute the highest
priority task. To our knowledge, this is the first piece of work
that considers the task allocation problem on performance
asymmetric multiprocessors. We hold the view that choosing
an appropriate processor instead of a fastest one gives oppor-
tunities of improved scheduling, by reserving fast processors
for future tasks that will arrive later. We have also presented
an effective schedulability test for performance asymmetric
multiprocessors based on the properties of the proposed BSF-
EDF.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported partly by the ICT R&D Program
of MSIP/IITP [R01141600460001002, Software Black Box for
Highly Dependable Computing] and partly by the National
Research Foundation of Korea (NRF) Grant funded by the
Korean Government (MSIP) (NRF-2015R1A5A7037751).

References

[1] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and
E. Ayguadé, “Performance, power efficiency and scalability
of asymmetric cluster chip multiprocessors,” IEEE Computer
Architecture Letters, vol. 5, no. 1, pp. 14–17, 2006.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of the
Association for Computing Machinery, vol. 20, pp. 46–61, 1973.

[3] T. P. Baker, “Multiprocessor EDF and deadline monotonic
schedulability analysis,” in Proceedings of the 24th IEEE Inter-
national Real-Time Systems Symposium (RTSS ’03), pp. 120–129,
Washington, DC, USA, December 2003.

[4] J. Lee and I. Shin, “EDZL schedulability analysis in real-
time multicore scheduling,” IEEE Transactions on Software
Engineering, vol. 39, no. 7, pp. 910–916, 2013.



Mathematical Problems in Engineering 7

[5] M. Cirinei and T. P. Baker, “EDZL scheduling analysis,” in
Proceedings of the 19th Euromicro Conference on Real-Time
Systems (ECRTS ’07), pp. 9–18, Pisa, Italy, July 2007.

[6] H. W. Wei, Y. H. Chao, S. S. Lin, K. J. Lin, and W. K. Shih,
“Current results on EDZL scheduling for multiprocessor real-
time systems,” in Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA ’07), pp. 120–130, 2007.

[7] Y.-H. Chao, S.-S. Lin, and K.-J. Lin, “Schedulability issues
for EDZL scheduling on real-time multiprocessor systems,”
Information Processing Letters, vol. 107, no. 5, pp. 158–164, 2008.

[8] P. Wu andM. Ryu, “EDZL scheduling and schedulability analy-
sis for performance asymmetric multiprocessors,” International
Journal of Foundations of Computer Science, vol. 27, no. 1, pp.
1–14, 2016.

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively
scheduling hard-real-time sporadic tasks on one processor,” in
Proceedings of the 11th Real-Time Systems Symposium (RTSS ’90),
pp. 182–190, IEEE, Lake Buena Vista, Fla, USA, December 1990.

[10] T. P. Baker, N. Fisher, and S. Baruah, “Algorithms for determin-
ing the load of a sporadic task system,” Tech. Rep. TR-051201,
2005.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


