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Context: The programming language ecosystem has diversified over the last few decades. Non-trivial pro- 

grams are likely to be written in more than a single language to take advantage of various control/data 

abstractions and legacy libraries. 

Objective: Debugging multilingual bugs is challenging because language interfaces are difficult to use 

correctly and the scope of fault localization goes beyond language boundaries. To locate the causes of 

real-world multilingual bugs, this article proposes a mutation-based fault localization technique (MU- 

SEUM). 

Method: MUSEUM modifies a buggy program systematically with our new mutation operators as well 

as conventional mutation operators, observes the dynamic behavioral changes in a test suite, and reports 

suspicious statements. To reduce the analysis cost, MUSEUM selects a subset of mutated programs and 

test cases. 

Results: Our empirical evaluation shows that MUSEUM is (i) effective: it identifies the buggy statements 

as the most suspicious statements for both resolved and unresolved non-trivial bugs in real-world mul- 

tilingual programming projects; and (ii) efficient: it locates the buggy statements in modest amount of 

time using multiple machines in parallel. Also, by applying selective mutation analysis (i.e., selecting sub- 

sets of mutants and test cases to use), MUSEUM achieves significant speedup with marginal accuracy loss 

compared to the full mutation analysis. 

Conclusion: It is concluded that MUSEUM locates real-world multilingual bugs accurately. This result 

shows that mutation analysis can provide an effective, efficient, and language semantics agnostic analysis 

on multilingual code. Our light-weight analysis approach would play important roles as programmers 

write and debug large and complex programs in diverse programming languages. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Modern software systems are written in multiple programming

languages to reuse legacy code and leverage the languages best

suited to the developers’ needs such as performance and produc-

tivity. A few languages cover the most use in part due to open

source libraries and legacy code while many languages exist for
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iche uses [30] . This ecosystem encourages developers to write

 multilingual program which is a non-trivial program written in

ultiple languages. Correct multilingual programs are difficult to

rite due to the complex language interfaces such as Java Native

nterface (JNI) and Python/C that require the programs to respect

 set of thousands of interface safety rules over hundreds of ap-

lication interface functions [22,26] . Moreover, if a bug exists at

nteractions of code written in different languages, programmers

ave to understand the cause-effect chains across language bound-

ries [21] . 

Despite the advance of automated testing techniques for com-

lex real-world programs, debugging multilingual bugs (e.g., a bug
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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hose cause-effect execution chain crosses language boundaries)

n real-world programs is still challenging and consumes signifi-

ant human effort. For instance, Bug 322222 in the Eclipse bug

epository crashes JVMs with a segmentation fault in C as an effect

hen the program throws an exception in Java as the cause [21] .

ocating and fixing this bug took a heroic debugging effort for

ore than a year from 2009 to 2010 with hundreds of comments

rom dozens of programmers before the patch went into Eclipse

.6.1 in September 2010. The existing bug detectors targeting mul-

ilingual bugs [20,22,24,25,40,41,44] are not effective in debugging

his case, because they can only report violations of predefined in-

erface safety rules, but cannot indicate the location of the bug, es-

ecially when the bug does not involve any known safety rule vi-

lations explicitly. Moreover, these bug detectors do not scale well

o a large number of languages and various kinds of program bugs

ince they have to deeply analyze the semantics of each language

or each kind of bug. 

This article proposes MUSEUM, a mutation-based fault localiza-

ion technique which locates the cause of a multilingual bug by ob-

erving how mutating a multilingual code feature changes the tar-

et program behaviors. Mutation-based fault localization (MBFL) is

n approach recently proposed for locating code lines that cause a

est failure accurately. An MBFL technique takes target source code

nd a test suite including failing test cases as input, and assesses

uspiciousness of each statement in terms of its relevance to the

rror through mutation analysis of target code. In more detail, an

BFL technique calculates suspiciousness scores of statements by

bserving how testing results (i.e., pass/fail) change if the state-

ent is modified/mutated. MUSEUM extends an MBFL technique

USE [31] which is limited for targeting monolingual bugs (i.e.,

ugs in C). MUSEUM applies new mutation operators that system-

tically modify the multilingual features/behaviors of a target pro-

ram (see Section 3.3 ). 

Our empirical evaluation on the eight real-world Java/C bugs

 Sections 4 – 7 ) demonstrates that MUSEUM locates the bugs in

on-trivial real-world multilingual programs far more accurately

han the state-of-the-art spectrum based fault localization tech-

iques. MUSEUM identifies the buggy statements as the most sus-

icious statements for all eight bugs ( Section 4 ). For example, for

ug 322222 in the Eclipse bug repository, MUSEUM indicates the

tatement at which the developer made a fix as the most suspi-

ious statement among total 3494 candidates ( Table 2 ). Further-

ore, one case study on an unresolved Eclipse bug (i.e., an open

ug whose fix is not yet made) clearly demonstrates that MUSEUM

enerates effective information for developers to identify and fix

he bug ( Section 7 ). 

In summary, this article’s contributions are: 

1. An automated fault localization technique (i.e., MUSEUM) which

is effective to detect multilingual bugs which are known as no-

toriously difficult to debug. 

2. New mutation operators on multilingual behavior which are

highly effective to locate multilingual bugs ( Section 3.3 ) 

3. Detailed report of the three case studies to figure out why and

how the proposed technique can localize real-world multilin-

gual bugs accurately ( Sections 5 –7 ). 

This article extends our prior conference publication [15] in

hree ways: (i) Section 3.3 elaborates the program mutation with

he four additional mutation operators to increase the accuracy

f localizing multilingual bugs (ii) Sections 5 and 6 describe the

ase studies on two additional resolved bugs (Bug5 and Bug7). 1 

lso, Section 7 illustrates a case study on one unresolved open bug
1 The full description of all eight case studies is available at http://swtv.kaist.ac. 

r/publications/museum-techreport.pdf . 

n  

f  

w  

t

Bug8) to demonstrate how MUSEUM can guide developers to de-

ug a complex multilingual bug (iii) Section 8 shows that MUSEUM

an significantly speedup the fault localization with marginal accu-

acy loss by selecting subsets of mutants and test cases to use. 

. Background and related work 

.1. Multilingual bugs 

A multilingual program is composed of several pieces of code

n different languages that execute each others through language

nterfaces (e.g., JNI [26] and Python/C). These multilingual pro-

rams introduce new classes of programming bugs which obso-

ete the existing monolingual debugging tools and require much

ore debugging efforts of programmers than monolingual pro-

rams [21,43] . We classify multilingual bugs into language interface

ugs and cross-language bugs . 

.1.1. Language interface bugs 

Language interfaces require multilingual programs to follow

afety rules across language boundaries. Lee et al. [22] classify

afety rules in Java/C programs into the following three classes: 

• State constraints ensure that the runtime system of one lan-

guage is in a consistent state before transiting to/from a system

of another language. For instance, JNI requires that the program

is not propagating a Java exception before executing a JNI func-

tion from a native method in C. 

• Type constraints ensure that the programs in different languages

exchange valid arguments and return values of expected types

at a language boundary. For instance, the NewStringUTF
function in JNI expects its arguments not to be NULL in C. 

• Resource constraints ensure that the program manages resources

correctly. For example, a local reference l to a Java object ob-

tained in a native method m 1 should not be reused in an-

other native method m 2 since l becomes invalid when m 1 ter-

minates [26] . 

or instance, the manuals for JNI [26] and Python/C describe thou-

ands of safety rules over hundreds of API functions. When a pro-

ram breaks an interface safety rule, the program crashes or gen-

rates undefined behaviors [22] . 

.1.2. Cross-language bugs 

Cross-language bugs have a cause-effect chain that goes

hrough language interfaces while respecting all interface safety

ules. For instance, a program would leak a C object referenced

y a Java object that is garbage collected at some point without

iolating any safety rules of language interfaces. In this case, the

ause of the memory leak is in Java at the last reference to this

ava object while the effect is in C (see Section 3.1 ). 

.2. Mutation-based fault localization (MBFL) 

Fault localization techniques [45] aim to locate the buggy state-

ent that causes an error in the target program by observing test

uns. Fault localization has been extensively studied for monolin-

ual programs both empirically [18,31,39] and theoretically [46] . 

Spectrum-based fault localization (SBFL) techniques infer that a

ode entity is suspicious for an error if the code entity is likely

xecuted when the error occurs. Note that SBFL techniques are

anguage semantics agnostic because they calculate the suspicious-

ess scores of target code entities by using the testing results (i.e.,

ail/pass) of test cases and the code coverage of these test cases

ithout complex semantic analyses. However, the accuracy of SBFL

echniques are often too low for large real-world programs. 

http://swtv.kaist.ac.kr/publications/museum-techreport.pdf
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To improve the accuracy of fault localization, MBFL is proposed

recently, which analyze diverse program behaviors by using mu-

tants (i.e., target program versions that are generated by apply-

ing simple syntactic code change such as replacing if(x > 10)
with if(x < 10) ). MBFL techniques are also language semantics

agnostic since they utilize only the testing results (i.e., fail/pass) of

test cases on the original target program and its mutants. Moon

et al. [31] demonstrate that their MBFL technique (calling it MUSE)

is 6.5 times more precise than the state-of-the-art SBFL techniques

such as Ochiai and Op2 on the 15 versions of the SIR subjects. The

key idea of MUSE is as follows. Consider a faulty program P whose

executions with some test cases result in error. Let m f be a mu-

tant of P that mutates the faulty statement, and m c be one that

mutates a correct statement. MUSE assesses the suspiciousness of

a statement based on the following two observations: 

• Observation 1: a failing test case on P is more likely to pass on

m f than on m c . Mutation is more likely to cause the tests that

failed on P to pass on m f than on m c because a faulty program

might be partially fixed by modifying (i.e., mutating) a faulty

statement, but not by mutating a correct one. Therefore, the

number of the test cases whose results change from fail to pass

will be larger for m f than for m c . 

• Observation 2: a passing test case on P is more likely to fail on

m c than on m f . A program is more easily broken by mutating

a correct statement than by mutating a faulty statement. Thus,

the number of the test cases whose results change from pass to

fail will be greater for m c than m f . 

Our intuition behind Observation 1 is that we can view a

bug at line l as a result of mutation operator M to l and there

can be another mutation operator M 

′ among many ones which

works as M 

−1 (an inverse function of M ) with some context of

l and some test cases. Also, an intuition of Observation 2 is that

a correct statement is more fragile than a faulty statement in

terms of pass/fail results. Note that the aforementioned observa-

tions are on multiple statements to compare relative suspicious-

ness scores identify more suspicious statements than the others

(e.g., a statement s 1 is more suspicious than s 2 and s 3 ). Moon

et al. [31] showed that these observations are valid through the

experiments on the 15 versions of SIR subjects (e.g., the number of

the failing test cases on P that pass on m f is 1,435.9 times larger

than the number on m c on average). Also note that Observation 2

is important because Observation 2 can serve as a tiebreaker by

differentiating statements that are equally suspicious in terms of

Observation 1 (for instance, see the case study results on Bug 7

( Section 5.2 )). 

There exist a few other MBFL approaches which focus on dif-

ferent characteristics of various executions caused by mutants. Pa-

padakis and Traon developed Metallaxis-FL [37] which evaluates

the suspiciousness of code elements by using the similarity of the

behaviors of the mutants and the faulty program. The intuition of

Metallaxis-FL is that a mutant m 1 has higher suspiciousness than

another mutant m 2 if more failing tests kill m 1 than m 2 because

m 1 is more sensitive to the characteristics of faulty executions than

m 2 . Metallaxis-FL considers a code element l whose mutants (i.e.,

mutants generated by mutating l ) have high suspiciousness as a

faulty statement. Zhang et el. [49] use mutation analysis to find

a fault-inducing change between an old correct program P and a

new faulty program P ′ in regression testing. This approach takes a

regression test suite T , an old and correct program P with respect

to T , and a new and faulty program P ′ . The intuition is that if a

change c made by mutation to P makes test results similar to those

of P ′ , the code location changed by c is highly suspicious because c

is similar to the fault in P ′ . Consequently, this technique reports a

change between P and P ′ which is similar to c as a fault-inducing

change. 
. Mutation-based fault localization for real-world multilingual 

rograms 

To alleviate the difficulty of debugging multilingual programs,

e have developed a MUtation-baSEd fault localization technique

or real-world mUltilingual prograMs (MUSEUM). 

.1. Motivating example 

This section illustrates how MUSEUM locates the cause of a

on-trivial bug in a target multilingual program with passing and

ailing test cases. 

.1.1. Target program 

Fig. 1 presents a target Java/C program with a memory leak bug

ailing the assertion at Line 71. The program is composed of source

les in C and Java defining three Java classes: CPtr , Client , and

lientTest . 
CPtr (Lines 2–31) characterizes the peer class idiom [26,

. 123] of wrapping native data structures, which is widely used

n language bindings for legacy C libraries. The peer field (Line 4)

s an opaque pointer from Java to C to point to a dynamically al-

ocated integer object in C. The CPtr constructor (Line 9) exe-

utes the nAlloc native method (Lines 17–21) to allocate an in-

eger object in C and stores the address of the integer object in

eer . While JVMs automatically reclaim a CPtr object once the

bject becomes unreachable in the Java heap, the clients of CPtr
re required to dispose manually the integer object by executing

ispose (Line 12) on the CPtr object. If the client does not dis-

ose an CPtr object before it becomes unreachable, the peer in-

eger object becomes a unreachable memory leak in C. 

Client (Lines 34–45) is a client Java class of using CPtr .
he m field (Line 35) holds a reference to a CPtr object. add
Lines 36–39) and remove (Lines 40–45) write/read a value

o/from the CPtr object respectively. add instantiates a CPtr ob-

ect, assigns the reference of the new object to m , and then writes

 value to the object. remove reads the value of the CPtr object

ointed by m , disposes the CPtr object, deletes the reference to

he object, and returns the value of the CPtr object. 

ClientTest (Lines 48–73) is a Java class of driving test cases

irectly for Client and indirectly for CPtr . It contains one

assing test passingTest (Lines 55–63) and one failing test

ailingTest (Lines 64-73). The testing oracle validates a pro-

ram execution by using (1) the assertion statements (Lines 59

nd 69) and (2) the exception handler statements (Lines 61 and

1). The assertion statements at Line 59 and Line 69 validate the

rogram state after executing a sequence of add and remove by

hecking if remove correctly returns the last value given by add .
n the other hand, the exception handler statements at Lines 60

nd 70 detect failures at arbitrary locations. For instance, runtime

onitors such as QVM [28] would take a user-specified typestate

pecification of disposing native resources of a Java object before

t becomes unreachable, detect a failure to dispose these native

esources during garbage collection, and throw an asynchronous

utOfMemoryError exception at a GC safe point. 

.1.2. Passing test 

passingTest executes successfully. It satisfies the assertion

tatement at Line 59 because both the CPtr object and the peer

nteger object in Java and C are reachable, and remove at Line 59

eturns 1 stored at Line 58. The runtime monitor does not throw

ny Java exception indicating a memory leak in C because the na-

ive integer object is released in the call to remove . 

.1.3. Failing test 

failingTest fails at Line 71 because the runtime monitor

hrows an exception due to a memory leak in C. The test case cre-
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Fig. 1. A Java/C program leaking memory in C after garbage collection in Java. 
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tes one Client object (Line 66) and two CPtr objects (Lines 67–

8), and two native integer objects. The first native peer integer

bject is a leak in C heap while all the other objects are reclaimed

utomatically by garbage collectors and manually by C memory

eallocator (i.e., dispose ). The first CPtr object and its peer inte-

er object are created in a call to add at Line 67. Both become un-

eachable after the second call to add at Line 68. The CPtr object
ould be garbage collected while the program does not manually

xecute dispose on the unreachable native integer peer object.

he runtime monitor would perform a garbage collection and find

ut the native integer peer object is an unreachable memory leak

e.g., QVM [28] , Jinn [22] ). This memory leak bug appears because

dd does not call dispose if m already points to a CPtr object.

hus, we indicate Line 37 as the buggy statement. 

.1.4. Our approach 

MUSEUM generates mutants each of which is obtained by mu-

ating one statement of the target code. Then, MUSEUM checks the

esting results of the mutants to localize buggy statements. For ex-

mple, suppose that MUSEUM generates the following three mu-

ants m 1 , m 2 , and m 3 by mutating each of Lines 19, 37, and 44. 

m 1 , a mutant obtained by removing Line 19 

This mutation resolves the memory leak as the mutant will

not allocate any native memory. However, both test cases

fail with the mutant because an access to p raises an invalid

memory access (at nGet/nPut of CPtr ). 
m 2 , a mutant obtained by inserting a statement of pinning the

Java reference before Line 37 

This mutation inserts a statement of pinning the ob-

ject: ClientTest.pinObject(m); before Line 37, where

pinObject stores the Java reference m into a global data

structure pinnedObjects (see Pin-Java-Object mu- 

tation operator in Section 3.3 ). 

This mutation intends to prolong the lifetime of the Java ob-

ject referenced by m to the end of the program run. This mu-

tation resolves the memory leak in failingTest because

the first CPtr object will not be reclaimed and, thus, will

not leak its peer native integer object. The two test cases

pass with the mutant because the mutation does not intro-

duce any new bug. 

m 3 , a mutant obtained by replacing the return value with 0 in

Line 44 

This mutation replaces the variable x with an integer con-

stant 0 at Line 44. This mutation fails the assertion at

Lines 59 and 69 since the return value of remove is always

0 . 

From these testing results, MUSEUM concludes that Line 37 is

ore suspicious than Line 19 and Line 44 because the failing test

ase passes only on m 2 and the passing test case fails on m 1 and

 3 (see Step 4 of Section 3.2 ). 

Locating the root cause of this memory leak poses challenges

n runtime monitoring and fault localization techniques. Mem-

ry leak detectors [19,48] locate memory leaks and their allo-

ation sites, not the cause of the leaks in general. While some

eak chasers [17,28,47] locate the cause of memory leak, they

o not scale well across language boundaries since they do not

rack opaque pointers and their staleness values across languages.

BFL cannot localize the bug because both passingTest and

ailingTest cover the same branches/statements in their exe-

utions (i.e., SBFL cannot indicate any code element that is more

orrelated with the failure than the others). 

.2. Fault localization process of MUSEUM 

MUSEUM takes the target source code and the test cases as in-

ut, and returns the suspiciousness scores of the target code lines

s output. MUSEUM has the following basic assumptions on a tar-

et program P and a test suite 

1. Existence of test oracles 

A target program has test oracle mechanism (i.e., user-specified

assert , runtime failure such as null-pointer dereference,
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2 154 among total 229 JNI functions may throw an exception [26] . 
and/or runtime monitor such as Jinn [22] ) which can detect er-

rors clearly. 

2. Existence of a failing test case 

A target program has test cases, at least one of which violates

a test oracle. 

MUSEUM operates in the following four steps: 

• Step 1: MUSEUM receives P and T and selects target statements

S t and test cases T S . S t is the set of the statements of P that

are executed by at least one failing test case in T . MUSEUM se-

lects S t as target statements for bug candidates. Also, MUSEUM

selects and utilizes a set of test cases T S , each of which covers

at least one target statement because the other test cases may

not be as informative as test cases in T S for fault localization.

To select S t and T S , MUSEUM first runs P with T while storing

the test results and the test coverage for each test case. Test-

ing results are obtained from the user given assert statements,

runtime failures, and multilingual bug checkers such as Check-

JNI, Jinn [22] , and QVM [28] . 

• Step 2: MUSEUM generates mutant versions of P (i.e.,

m 1 , m 2 , . . . m k ) each of which is generated by mutating each of

the target statements. MUSEUM may generate multiple mutants

from a single statement since one statement may contain mul-

tiple mutation points [11] . MUSEUM can localize a bug span-

ning on multiple statements (not limited for locating a single-

line bug). This is because mutating a part of a bug (i.e., one

statement among multiple statements that constitute a bug)

can still change a failing test case into passing one, which will

increase the suspiciousness of the statement constituting the

bug [31] . 

To reduce the runtime cost, MUSEUM generates only one mu-

tant for every applicable operator at each mutation point. For

example, if(x+2 > y+1) has one mutation point ( > ) for ORRN

(mutation operator on relational operator) and two points ( 2
and 1 ) for CCCR (mutation operator for constant to constant

replacement) [11] . MUSEUM generates only one mutant like

if(x+2 < y+1) using ORRN and only if(x+0 > y+1) and

if(x+2 > y+0) using CCCR. 

• Step 3: MUSEUM tests all generated mutants with T S and

records the testing results. MUSEUM runs a mutant with a

passing test case only if the test case covers the mutated state-

ment. We consider a test fails if the testing time exceeds a

given time limit since a mutation may induce an infinite loop.

Note that this step can be parallelized on multiple machines for

fast fault localization. 

• Step 4: MUSEUM compares the test results of T S on P with the

test results of T S on all mutants. Based on these results, MU-

SEUM calculates the suspiciousness scores of the target state-

ments of P as follows. 

For a statement s of P , let f ( s ) be the set of tests that covers s

and fails on P , and p ( s ) the set of tests that covers s and passes

on P . Let mut(s ) = { m 1 , . . . , m k } be the set of all mutants of P

that mutates s . For each mutant m i ∈ mut ( s ), let f m i 
and p m i 

be

the set of failing and passing tests on m i respectively. And let

f 2 p and p 2 f be the numbers of changed test result from fail to

pass and vice versa between P and all mutants of P . The suspi-

ciousness metric of MUSEUM is defined as follows: 

Susp(s ) = 

1 
| mut(s ) | 

∑ 

m i ∈ mut(s ) ( 
| f (s ) ∩ p m i | 

f 2 p 
− | p(s ) ∩ f m i | 

p2 f 
) 

The first term, 
| f (s ) ∩ p m i | 

f 2 p 
, reflects the first observation: it is the

proportion of the number of tests that failed on P but now pass

on a mutant m i that mutates s over the total number of all fail-

ing tests that pass on a some mutant (the suspiciousness of s

increases if mutating s causes failing tests to pass). Similarly,

the second term, 
| p(s ) ∩ f m i | 

p2 f 
, reflects the second observation, be-

ing the proportion of the number of tests that passed on P but
now fail on a mutant m i that mutates s over the total number

of all passing tests that fail on a some mutant (the suspicious-

ness of s decreases if mutating s causes passing tests to fail).

After dividing the sum of the first term and the second term

by | mut ( s )|, Susp ( s ) indicates the probability of s to be a faulty

statement based on the changes of test results on P and mut ( s ).

If a target statement has no mutant (i.e., | mut ( s )| = 0), Susp ( s ) is

defined as 0. MUSEUM defines the first term as 0 if f 2 p is 0.

Similarly, the second term is defined as 0 if p 2 f is 0. 

.3. New mutation operators for multilingual behavior 

In addition to the conventional mutation operators which tar-

ets monolingual features of C [11] or Java [1] , MUSEUM utilizes

ew mutation operators to directly mutate interactions at lan-

uage interfaces and effectively localize multilingual bugs. We in-

roduce 15 new mutation operators which change the semantics of

 target program regarding the JNI constraints based on the lan-

uage interface specifications [10,26] and the previous bug stud-

es [5,13,22,29,42] . 

.3.1. New mutation operators for state constraints 

1–3. The Clear-pending-exceptions mutation

operator clears a pending exception in a native

method to ensure the JVM state constraints. Sim-

ilarly, Propagate-pending-exception and

Throw-new-exceptions propagate or generate a

pending exception in a native method. Targets of these

three mutation operators are all JNI function calls (i.e.,

( ∗env)- >< JNIFunction > (...); ). For example,

Clear-pending-exceptions clears a pending exception

in a current thread by inserting 

( ∗env)- > ExceptionClear(env); 

immediately before a JNI function call and immediately af-

ter a JNI function call that may throw a Java exception. 2 

Propagate-pending-exceptions propagates a pend-

ing exception to the caller by inserting 

if(( ∗env)- > ExceptionOccurred(env)) return;

immediately before a JNI function call and immediately af-

ter a JNI function call that may throw a Java exception.

Throw-new-exceptions creates a new Java exception by

inserting 

Throw_New_Java_Exception(env, 
“java/lang/Exception ”); 

immediately before a JNI function call and immediately af-

ter a JNI function call that may throw a Java exception. As

exception handling is a regular feature of the Java control-

flow, a native function is obligated to create, modify, or

eliminate Java exceptions depending on execution paths. The

suggested mutation operators intend to alter an exception-

related JNI function call to check if the JNI function call is

related to the multilingual bug. The first and the second

mutation operators are defined based on a best practice in

JNI programming [29] and general solutions for JNI excep-

tion bugs [23] . The third mutation operator is motivated by

a case of a real-world multilingual bug regarding exception

handling across language boundaries [8] . 

.3.2. New mutation operators for type constraints 

4. Type-cast-to-jboolean explicitly converts an integer

expression to JNI_TRUE or JNI_FALSE when the ex-



S. Hong et al. / Information and Software Technology 82 (2017) 80–95 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

J  

S  

J  

i  

o  

u  

a

 

P  

m  

t  

e  

m  

m  

A  

t  

o  

b

4

 

b  

p  

/

pression is assigned to a jboolean variable. In other

words, Type-cast-to-jboolean changes an assignment 

jbool_var = int_expr; with 

jbool_var = int_expr?JNI_TRUE:JNI_FALSE; 

jboolean is an 8 bit integer type. If a 32 bit integer

value is assigned to a jboolean variable, the variable can

have an unintended Boolean value due to the truncation

(e.g., jboolean_var = 256 will make jboolean_var
as false). This mutation operation is motivated by the com-

mon pitfall of JNI programming [26, pp.132–133] . 

5. Type-cast-to-superclass changes a JNI call that gets

the reference of a class of a given object to get the reference

of the superclass of the class by mutating jclass cls =
( ∗env)- > GetObjectClass(env,obj); with 

jclass cls = ( ∗env)- > GetSuperclass(env, 
(( ∗env)- > GetObjectClass(env,obj))); 

This mutation operator would generate interesting mutants

for fault localization if the target bug is related with an in-

correct casting. This mutation operator is motivated by a re-

port of a real-world bug found in Eclipse 3.4 [22] . 

6. Replace-array-elements-with-constants replaces 

a Java array reference with another constant Java array.

This mutation operator changes a Java array reference used

at a JNI function call to the reference to the prede-

fined constant array. For example, this mutation operator

change ( ∗env)- > GetIntArrayElements(env, arr,
null); into 

( ∗env)- > GetIntArrayElements(env, 
IntConstArr, null); 

This mutation operator intends to mutate the values in an

array copied from Java to C. This mutation is inspired by

a real-world bug with an incorrect array data transfer from

Java to C [2] . 

7. Replace-target-Java-member replaces a target 

field in a class member access with the field of a dif-

ferent class member with the same type, by mutat-

ing ( ∗env)- > GetFieldID(env, class, NAME1,
SIG); with 

( ∗env)- > GetFieldID(env, class, NAME2, 
SIG); 

where NAME1 , NAME2 , and SIG are the strings of the orig-

inal and the changed field names and their type signature,

respectively. This mutation operator is motivated by a com-

mon pitfall in JNI programming [26, pp.131–132] . 

.3.3. New mutation operators for resource constraints 

8–13. There are six mutation operators,

Make-global-reference , Remove-global 
-reference , Make-weak-global-reference , 
Remove-weak-global-reference , Make-local- 
reference and Remove-local-reference , each of

which increases or decreases the life time of a reference to

a Java object (and probably the life time of the referenced

Java object too). For example, Make-global-reference 
increases the life time of a local reference l by mak-

ing the reference as a global one. In other words,

Make-global-reference inserts the following state- 

ment after an assignment statement to a local reference l

(i.e., l = expr ): 

l = ( ∗env)- > NewGlobalRef(env, l ); 
In contrast, Remove-global-reference decreases the 

life time of a global reference g (and probably the referenced

Java object too) by inserting the following statement for a

global reference g : 

( ∗env)- > DeleteGlobalRef(env, g ); 

We have developed four other mutation operators for local

references and weak global references. These mutation op-

erators are related to a bug fix pattern regarding reference

errors in native code [5] . 

14. Pin-Java-object prevents garbage collectors from re-

claiming a Java object by placing a Java reference to the ob-

ject into a class variable in Java before a reference to the

object is removed by an assignment statement. Before an as-

signment statement x = obj; , the mutation operator in-

serts a statement: 

Test.pinnedObjects.add(x) ; 

where Test.pinnedObjects is a Java class variable of a

list container type. The Java object pointed by x is transi-

tively reachable from a class variable, and Java garbage col-

lectors cannot reclaim the object. This mutation operator in-

tends to extend the lifetime of Java objects in a target pro-

gram and influence interactions of Java and native memory

management. This mutation operator is inspired by a safe

memory management scheme of SafeJNI [42] . 

15. Switch-array-release-mode alternates the re- 

lease mode of a Java array access. The release mode

decides whether an updated native array will be

copied back to the Java array or discarded. For every

( ∗env)- > Release < Type > ArrayElements(env, 
arr, elems, mode) , this mutation operator changes

the mode value from 0 to JNI_ABORT , or vice versa. This

mutation operator is motivated by a best practice in JNI

programming [29] . 

.4. Implementation 

We have implemented MUSEUM targeting programs written in

ava and C (support for other languages will be added later). MU-

EUM is composed of the existing mutation testing tools for C and

ava, together with the fault localization module that analyzes test-

ng results and computes suspiciousness scores. MUSEUM consists

f 1500 lines of C/C++ code and 1802 lines of Java code. MUSEUM

ses gcov and PIT to obtain the coverage information on C code

nd Java code of a target program, respectively. 

MUSEUM uses the mutation tools Proteum/IM 2.0 [27] for C and

IT version 0.33 for Java bytecode [1] together with the 15 new

utation operators for multilingual behaviors ( Section 3.3 ). Pro-

eum/IM implements 107 mutation operators defined in Agrawal

t al. [11] . Among the 107 mutation operators, MUSEUM uses 75

utation operators that change only one statement. PIT imple-

ents 14 mutation operators all of which are used by MUSEUM.

mong the 15 new mutation operators, 14 new mutation opera-

ors for C code are implemented with Clang version 3.4, and the

ne new mutation operator for Java (i.e., Pin-Java-object ) is

uilt with the ASM bytecode engineering tool version 3.3.1. 

. Experiment setup and result 

We have evaluated the effectiveness of MUSEUM on the eight

ugs in four real-world multilingual software projects. The full ex-

eriment data and the target program code are available at http:

/swtv.kaist.ac.kr/data/museum.zip . 

http://swtv.kaist.ac.kr/data/museum.zip
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Table 1 

Target multilingual Java/C bugs, their symptoms, sizes of the target code, the number of test cases used, and references. 

Bug Target program Symptom Size of target program # of Bug report or bug-fixing revision 

Java NativeC TC 

Files LOC Files LOC used 

Bug1 Azureus 3.0.4.2 Memory leak in C 2705 340.6K N/A N/A 8 Rev. 1.64 of ListView.java [3] 

Bug2 sqlite-jdbc 3.7.8 Assertion violation in Java 20 4.6K 3 1.8K 150 Issue 16 [6] 

Bug3 sqlite-jdbc 3.7.15 Assertion violation in Java 19 4.2K 2 1.7K 159 Issue 36 [7] 

Bug4 java-gnome 4.0.10 Invalid JNI reference in C 1097 64.2K 496 65.6K 170 Bug 576111 

Bug5 java-gnome r-658 Segmentation fault in C 1134 67.1K 514 69.2K 184 Subversion revision 659 [4] 

Bug6 SWT 3.7.0.3 Segmentation fault in C 582 118.7K 29 43.3K 50 Bug 322222 [21] 

Bug7 sqlite-jdbc 3.6.0 Exception state violation in C 25 4.9K 2 0.6K 112 UDFTest bug [21] 

Bug8 SWT 4.3.0 Segmentation fault in C 591 126.6K 29 48.5K 204 Bug 419729 [9] 

Table 2 

Overview of the experiment data. 

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 

# of the target lines 1939 299 443 186 186 3494 294 4998 

# of mutants 2861 691 965 718 369 9479 844 14 ,490 

# of lines which 1575 219 327 132 103 2524 226 3855 

have a mutant 

# of mutants that make a 305 462 681 364 311 3044 542 8766 

passing test case fails 

# of mutants that make a 1 3 7 2 51 32 3 1 

a failing test case passes 

Time cost (in minutes) 12 60 45 25 23 175 50 511 
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4.1. Experiment setup 

4.1.1. Real-world multilingual program bugs 

Table 1 presents the eight multilingual bugs in four real-world

software projects with their programs, symptoms, line of code

(LOC) in Java and C, the number of the test cases used to local-

ize the fault, and bug reports or bug-fixing revisions of the tar-

get programs. Azureus is a popular P2P file-sharing application.

Sqlite-jdbc is a Java Database Connectivity (JDBC) library to access

the SQLite relational database management system written in C.

Java-gnome is a set of language bindings for the Java program-

ming language for use in the GNOME desktop environment. SWT

(Standard Widget Toolkit) is an Eclipse widget toolkit for Java to

provide user-interface facilities. We selected these projects as tar-

get projects because these projects have multilingual bugs that had

been analyzed by other practitioners and researchers. 

The bug reports/commit logs in the last column describe the

symptoms of the target bugs. A corresponding bug report indicates

both buggy version and its fixed version. All target programs are

written in Java and C (except Azureus which is a pure Java pro-

gram but triggers a memory leak in C when it misuses the appli-

cation program interface of the Eclipse SWT library written in Java

and C). 

4.1.2. Test cases 

We used the test cases maintained by the developers of the tar-

get programs. We utilize the test cases of the fixed version, at least

one of which reveals the target bug in the buggy version. If the

fixed version has no test case that fails on the buggy version, we

create a failing test case based on the bug report. For Bug1, since

Azureus code repository has no test case, we created one failing

test case and seven passing test cases to cover reasonable fraction

of the source files. In addition, for those test cases which require

manual operations, we carefully encoded the operations described

in the bug reports. 3 
3 We tried to make only unavoidable changes at the original test cases. All edit 

records are found at the experiment data on the web. t
To localize a fault accurately, we focus to localize one bug at a

ime by building a new test suite out of the original test suite. The

ew test suite consists of one failing test case and all passing test

ases that cover at least one statement executed by the failing test

ase. 

.1.3. System platform 

The experiments were performed on the 30 machines equipped

ith Intel i5 3.4 GHz with 8GB memory (we performed exper-

ment on one core per machine). All machines run Ubuntu 8.10

2-bits, gcc 4.3.2, and OpenJDK 1.6.0. MUSEUM distributes tasks

f testing each mutant to the 30 machines. We set the time limit

10 s) for each test run on a mutant to avoid the infinite loop prob-

em caused by mutation. Time taken to execute a test run was less

han 1 s on the eight subjects on average. 

.2. Experiment results 

Table 2 reports the experiment data on the eight bugs. The sec-

nd row shows the number of the target source lines executed

y the failing test case (see Step 1 of Section 3.2 ). The third row

hows the total number of the mutants generated by MUSEUM,

nd the fourth row describes the total number of the target lines

n which at least one mutant is generated. The fifth and sixth rows

how the number of the mutants on which testing results have

hanged. The last row describes the runtime cost. 

For example, to localize Bug4, we built a test suite containing

ne failing test case and 169 passing test cases out of the original

est suite (see the eighth column of the fifth row of Table 1 ). MU-

EUM generated 718 mutants (at least one mutant for 71% of the

arget lines ( = 132/186)). Among the 718 mutants, there are two

utants on which the failing test case passes (see the sixth row of

able 2 ). 4 We call such mutants as “partial fix” because the failing

est case passes on the mutant (but passing test cases may fail on

hese mutants). The table shows that only 0.28% of the mutants are
4 The number of mutants that make the failing test case pass is equal to f 2 p since 

he test suite contains only one failing test case in our experiments. 
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Table 3 

The ranking of the buggy line identified by MUSEUM and the SBFL techniques. 

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 

MUSEUM 1 2 1 1 8 3 1 1 

(0 .1%) (0 .7%) (0 .2%) (0 .1%) (4 .3%) (0 .2%) (0 .2%) (0 .02%) 

Jaccard 80 4 5 83 61 3494 84 574 

(4 .1%) (1 .3%) (1 .1%) (44 .6%) (32 .8%) (100 .0%) (17 .5%) (10 .2%) 

Ochiai 80 4 5 83 61 3494 84 574 

(4 .1%) (1 .3%) (1 .1%) (44 .6%) (32 .8%) (100 .0%) (17 .5%) (10 .2%) 

Op2 80 4 5 83 61 3494 84 574 

(4 .1%) (1 .3%) (1 .1%) (44 .6%) (32 .8%) (100 .0%) (17 .5%) (10 .2%) 
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artial fixes ( = 2/718). Note that partial fix mutants at s can largely

ncrease the suspiciousness score of s since partial fix mutants in-

rease the numerator of the first term of the suspiciousness for-

ula whose denominator f 2 p is usually small (e.g., 2 for Bug4) (see

he formula in the Step 4 of Section 3.2 ). MUSEUM takes 25 min

o localize Bug4 using 30 machines. 

Table 3 compares the fault localization results of MUSEUM

nd the cutting-edge SBFL techniques including Jaccard [16] ,

chiai [33] , and Op2 [32] . Each entry reports the suspiciousness

anking which is the maximum number of the statements to ex-

mine until finding the faulty statement described in the bug re-

ort. The percentage number in the parentheses indicates the nor-

alized ranking of the faulty statement out of the total target

tatements (i.e., ranking 
# of the target statements 

). The second row of the table

learly shows that MUSEUM accurately identifies the buggy state-

ent. MUSEUM ranks the buggy statements in Bug1, Bug3, Bug4,

ug7, and Bug8 as the most suspicious statements (i.e., the first

anking). Even for Bug2, Bug5, and Bug6, MUSEUM identifies the

uggy statement as the most suspicious statement with the other

ne, seven, and two statements together (e.g., for Bug5, the suspi-

iousness scores of the eight statements including the buggy state-

ent are equal). Thus, we conclude that MUSEUM localizes a mul-

ilingual bug accurately. 

In contrast, SBFL techniques fail to localize multilingual bugs ac-

urately. For example, Op2 ranks the buggy statement of Bug6 as

he 3,494nd among the 3494 target statements (see the fifth row

f Table 2 ), which means that a developer has to examine all target

tatements to identify the faulty statement. 

.3. Threats to validity 

A major external threat to validity is that the experiment uses a

imited number of target programs. To limit this threat, we chose

he target subjects that include both language interface bugs and

ross-language bugs, and have different sym ptoms and various re-

ated language features. Also, we collected these target programs

rom various real-world projects used by the related work. 

Another threat is that the test cases used in the experiments

re limited. To limit this threat, we utilized all available test cases

n the real-world target subjects (except Azureus that has no test

ases for Bug1). 

A construct threat is that there may be statements that can be

ecognized as buggy statements other than the ones indicated by

he bug reports/fixes used in the studies. Although there might be

ther buggy statements, we believe that the conclusions still hold

ecause MUSEUM localized the buggy statements reported by the

ug reports/fixes as most suspicious ones. 

Possible internal threats are that the target programs may have

nidentified nondeterminism and/or the MUSEUM tool may have

aults. To limit these threats, we carefully reviewed the target pro-

rams, the MUSEUM tools, and the experiment results. For fur-

her analysis, full experiment data and the target program code are

vailable at http://swtv.kaist.ac.kr/data/museum.zip . 
. Case study with language interface bug (bug7) 

Language interface bugs violate one of the three classes of the

afety rules on language interfaces [22] : state constraints, type

onstraints, and resource constraints. This section presents the case

tudy of Bug7 to illustrate how MUSEUM locates the causes of the

ugs of violating state constraints. 

.1. Bug overview 

Bug7 violates a safety rule on a language interface that the na-

ive code must not invoke a JNI function while the current thread

s propagating a pending Java exception. For instance, consider

ines 183 and 184 of NativeDB.c in the sqlite-jdbc 3.6.0
ource release: 

In an erroneous run, the native code at Line 183 invokes a

ava method identified by the method argument, which throws

 Java exception and abruptly returns to the native code. Then,

he current thread is propagating the pending Java exception, and

he call statement at Line 184 executes the SetLongField JNI

unction. These event series of throwing Java exception and calling

 JNI function violate the exception state rule. The semantics of

he SetLongField JNI function is left undefined, and JVMs may

rash [21] . 

The bug fix checks and clears explicitly the pending Java ex-

eption before calling the SetLongField JNI function with the

ollowing updates: 

The conditional part of the inserted statement examines if

 Java exception is pending. When a Java exception is pending,

Func_error clears the pending Java exception and records this

rror state. Then, the native code executes the SetLongField JNI

unction without violating the JNI exception state rule. 

.2. Detailed experiment result 

We use the 112 tests cases in the Xerial SQLite JDBC regres-

ion test suite. MUSEUM successfully finds the location where the

eveloper inserts the new code to fix the bug as the most sus-

icious statement. Table 4 shows the mutants generated from the

op four most suspicious statements. Line 184 of NativeDB.c has

he highest suspiciousness score because it has two fail-to-pass

est runs. Line 183 of NativeDB.c is ranked as the second most

uspicious statement because it has one fail-to-pass test run. The

http://swtv.kaist.ac.kr/data/museum.zip
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Table 4 

Four most suspicious statements of the Xerial SQLite JDBC target code (Bug7). 

Rank Susp. score Statement Mutant | f ( s ) ∩ p m | | p ( s ) ∩ f m | 
1 0 .111 / ∗ NativeDB.c:184 ∗/ if (( ∗env)- > ExceptionOccured(env)) 1 16 

( ∗env)- > SetLongField(env,...); return; 
( ∗env)- > SetLongField(env,...); 
return ; 1 16 

2 0 .055 / ∗ NativeDB.c:183 ∗/ return ; 64 

( ∗env)- > CallVoidMethod(env,...); 
114 0 .0 / ∗ Conn.java:81 ∗/ Test.pinnedObjects.add(url); 0 0 

this.url = url; this.url = url; 
114 0 .0 / ∗ Conn.java:188 ∗/ ; // remove a statement at Line 188 0 0 

checkCursor(rst, rsc, rsh); 
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other statements have no fail-to-pass test run (see the sixth row

of Table 2 ). Note that the three partial fix mutants on Lines 183–

184 do not call an JNI function with a pending exception on the

failing test case. The statements of the fourth and the fifth rows of

Table 4 are ranked as the 114th together with other 110 statements

on which their test results do not change at all. 

6. Case study with cross-Language bug (Bug5) 

Cross-language bugs have their cause-effect chains across a lan-

guage boundary while respecting all safety rules on language in-

terfaces. To demonstrate how MUSEUM locates the causes of these

cross-language bugs, this section presents the case study of Bug5.

Bug5 has its effect of a segmentation fault in C while the cause is

an attempt to access the freed native peer resource from Java. 

6.1. Bug overview 

Bug5 crashes JVMs due to a segmentation fault at Line 738 of

gtkspell.c in Revision 658 of Java-gnome because the spell
pointer parameter is dangling: 

Detailed description of Bug5 is as follows. The TextView
class of Java-gnome creates a text editor by creating a native

peer GtkTextView object. The TextView class may contain

a Spell object that provides a spell-checking feature by creat-

ing a native peer GtkSpell object. In such case, Java-gnome

deallocates the GtkSpell object by calling gtkspell_detach
when the corresponding GtkTextView object is deallocated.

Also, when a Spell object is reclaimed, the Spell.finalize
method calls Spell.release method which eventually calls

gtkspell_detach to deallocate the GtkSpell object of the

Spell object. Thus, a segmentation fault occurs when JVM

garbage collector reclaims a TextView object (and consequently

deallocating GtkTextView and GtkSpell objects), and then the

Spell object contained in the TextView object. 

The bug fix removes Line 57 in the release method to avoid

the failure: 

Although the fix looks simple, analyzing the buggy statement is

challenging because the execution path involves complicated fea-

tures such as garbage collection, finalization, and reference count-
ng memory management in the external library execution (e.g.,

lib signal mechanism). 

.2. Detailed experiment result 

We make one failing test case that reveals Bug5 based on the

ug report, and used 183 passing test cases in the Java-gnome re-

ression test suite (revision 659). Our test environment triggers

arbage collection at the end of test runs to trigger finalization ac-

ivities for reclaimed Java objects. To handle the non-deterministic

ehaviors of garbage collection, we repeatedly execute the failing

est case 3 times per mutant, and our test oracle reports that a test

un fails if at least one execution with the test case fails. 

Table 5 presents the four most suspicious statements. Line 57

f Spell.java gets the highest suspiciousness score. The mu-

ant at Line 57 is identical to the bug fix. The other seven

tatements have the same suspiciousness score because the mu-

ants of these statements also deactivate gtkspell_detach
n the Java finalization context. For example, Line 68 of

ointer.java and Line 42 of Proxy.java (the third and

he fourth rows of Table 5 ) belong to the call sequence from

pell.finalize to gtkspell_detach ; the mutation at

ine 48 of GtkSpell.java changes the GtkSpell.detach
ethod not to call gtkspell_detach . 

. Case study of debugging open bug in eclipse SWT (Bug8) 

This section demonstrates how MUSEUM supports debugging

pen bugs in real-world software projects. Specifically, our qualita-

ive evaluation demonstrates how to utilize partial fix mutants and

he suspicious rankings in diagnosing the cause of bug and sug-

esting a bug patch. Note that an Eclipse maintainer acknowledged

ur debugging analysis and patch posted at the Eclipse Bugzilla [9] .

.1. Methodology 

ug Description. Bug 419729 (Bug8) in the Eclipse bug repository

or Standard Widget Toolkit (SWT) was reported first on October

7, 2013, and it was open and unresolved since this case study. This

ug is chosen for the case study because it appears to be critical

or developers and nontrivial to diagnose. First, this bug crashes a

VM and the “Importance” field of the report is marked as “P3 crit-

cal” based on the votes by more than dozens of developers. Sec-

nd, this bug is difficult to debug because this bug had not been

esolved for more than 22 months (at the time when this case

tudy begins). Bug 419729 is related to the Eclipse SWT module,

specially to a subcomponent that binds the SWT interface with

he Ubuntu Unity graphics library. 

articipants. Two graduate students with little background on the

arget project (i.e., Eclipse SWT and Ubuntu Unity) used debugging
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Table 5 

Four most suspicious statements of Java-gnome r-695 (Bug5). 

Rank Susp. score Statement Mutant | f ( s ) ∩ p m | | p ( s ) ∩ f m | 

8 0 .020 / ∗Spell.java:57 ∗/ ; //the statement is removed. 1 0 

GtkSpell.detach(this); 
8 0 .020 / ∗Pointer.java:68 ∗/ ; //the statement is removed. 1 0 

release(); 
8 0 .020 / ∗Proxy.java:42 ∗/ ; //the statement is removed. 1 0 

super.finalize(); 
8 0 .020 / ∗GtkSpell.java:48 ∗/ if(self ! = null){ 1 0 

if (self == null){ 

t  

a

D  

b  

t  

p

D  

2  

fi  

m

7

 

p  

b

7

 

e  

a  

T  

u

 

f  

i  

a  

o  

t  

m  

i  

a  

r  

s

 

4  

m  

a  

M  

o

 

t  

a  

c  

g

t  

R
o  

a

 

t  

u  

r  

T  

c

7

 

i  

w  

t  

h

 

i  

n  

t  

w  

T  

l  

t

7

 

t  

(  
ools, diagnosed the causes of bugs, produced bug fixing patches,

nd reported their analysis to the bug report database. 

ebugging Process. First, MUSEUM was run to identify a suspected

ug location and obtain a partial fix mutant that makes the failing

est case pass. Based on these results, the participants refined the

artial fix mutant into a complete patch for the failure. 

ebugging Tools. MUSEUM (version 1.3.21) and Blink [21] (version

.4.0) are used to locate buggy statements, examined the partial

x mutant, and compared the program states after applying these

utants. 

.2. Debugging the open bug using MUSEUM 

Our debugging process consists of fault localization, refining a

artial fix mutant, validating the refined mutant, and suggesting a

ug patch from the refined mutant. 

.2.1. Fault localization 

Bug 419729 triggers a segmentation fault by deref-

rencing the NULL value in the state_name vari-

ble at Line 921 of unity-gtk-action-group.c .
his NULL value is assigned to state_name by

nity_gtk_action_group_get_state_name at Line 920. 

To reproduce this bug and localize the buggy statements, one

ailing test case is created based on the bug report. Since the orig-

nal code snippet in the bug report is not a fully self-contained

utomated test case, the following two features are added to the

riginal code snippet. First, the user scenario (e.g., mouse-click) in

he bug report is encoded as automatic GUI events to eliminate hu-

an interaction at the test case executions. Second, the test case

s maded to fail when any GUI event in the user scenario is not

ctivated at the test case execution. Also, 203 passing test cases

elated to the Eclipse SWT are selected from whole Eclipse regres-

ion test suite. 

MUSEUM generated 14,490 mutants on the 3855 out of the

998 target source lines covered by the failing test case. Only one

utant makes the failing test case pass (i.e., a partial fix mutant)

nd the 8766 mutants make some of the 203 passing test cases fail.

USEUM generated the partial fix mutant by mutating Line 39339

f os.c and reported that line the as most suspicious one: 
Line 39339 calls the JNI function GetByteArrayElements
o copy a Java array indicated by arg1 into a new native array,

nd the address of the new array is stored in lparg1 . If the

opy operation successes, the address value in lparg1 flows into

tk_radio_menu_with_label as an argument (Line 39341). 

MUSEUM generated the following par- 

ial fix mutant at Line 39339 using

eplace-array-elements-with-constants mutation 

perator that replaces the arg1 with a predefined constant byte

rray ByteConst . 

This mutation changes the flow of values such that

he NULL value at the failure site (i.e., Line 921 of

nity-gtk-action-group.c ) with the failing test case is

eplaced with a pointer to a C string derived from ByteConst .
his mutation does not change the results of the passing test

ases. 

.2.2. Refining the partial fix mutant with failure-inducing condition 

The participants manually refine the partial fix mutant by figur-

ng out a failure-inducing condition and applying the partial fix only

hen the condition is true (i.e., the partial fix mutant is refined

o execute the mutated source line (i.e., 39339++) if the condition

olds; the original source line (i.e., 39339–) otherwise). 

To identify the failure-inducing condition, the participants mon-

tored and compared the program states at Line 39339 when run-

ing both failing and passing test cases. In the failing executing,

he byte array pointed by lparg1 has its first element as ’ \ 0’
hile the first element in the passing executions is not ’ \ 0’ .

hus, the participants guess that the failure-inducing condition is

parg1[0] == ’ \ 0’ . Using this condition, the participants refine

he partial fix mutant into the following one: 

.2.3. Validating the refined partial fix mutant 

The participants validate the refined partial fix mu-

ant by checking if the obtained failure-inducing condition

i.e., lparg1[0] == ’ \ 0’ ) is general to trigger the failure. For
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that purpose, the participants compared the execution paths of

the original program (i.e., failing execution path) and the refined

mutant (i.e., passing execution path) with the same failing test

case because the participants guess that the diversing point be-

tween the two execution paths indicates the general condition to

trigger the failure. The participants found that the these executions

diverse at Line 766 of unity-gtk-action-group.c in the

following code snippet: 

After code review, the participants found that the then-

branch of Line 766 never makes name as NULL, which

makes unity_gtk_action_group_get_state_name return

non-NULL-value and avoids the segmentation fault at Line 921. But

the else-branch can assign NULL to name . With the failing test

case, the original program execution takes the else-branch while

the refined mutant execution takes the then-branch. 

As the branch decision at Line 766 depends on label , the

label values are monitored in the aforementioned two executions

(i.e., the executions on the original program and the refined fixing

mutant with the failing test case) and the executions with all pass-

ing test cases that cover Line 766. The monitoring result shows

that, in every test case execution, the array pointed by label
at Line 766 has the same value as the array pointed by lparg1
at Line 39339 of os.c . For the failing execution, lparg1[0] at

Line 39339 has ’ \ 0’ value. Meanwhile, in the passing executions,

the array pointed by lparg1 has a non-NULL-value and avoids

the crash. Thus, the participants conclude that the failure-inducing

condition lparg1[0] == ’ \ 0’ is general to trigger the failure and

the refined partial fix mutant can fix Bug8. 

7.2.4. Suggesting a bug fixing patch 

Finally, the participants revised the refined mutant and

designed a bug fixing patch. For readability, instead of mod-

ifying the second argument of GetByteArrayElement ,
the participants replaced the byte array lparg1 given to

gtk_radio_menu_item_with_label with ’’ ’’ (a string

literal containing one space character) if lparg1[0] == ’ \ 0’ .
We posted our analysis on the fault and the following patch to

the Eclipse Bugzilla and an Eclipse maintainer acknowledged our

analysis and patch [9] : 

8. Selective mutation analyses for runtime cost reduction 

8.1. Overview 

Although MUSEUM consumes modest amount of time to local-

ize a fault accurately (i.e., 112.6 min using 30 machines on aver-
ge over the eight bugs ( Table 2 )), we can reduce the runtime cost

urther with marginal accuracy loss by carefully selecting mutants

nd test cases to utilize. Also, by selecting mutants and test cases

n various ways, we can control the time cost of fault localization,

hich is desirable for real-world projects where testing/debugging

ime budget is tightly given. 

We present selective use of mutants and test cases and re-

ort the effects of various selection strategies on the accuracy and

he cost of fault localization. We have designed total 184 selection

trategies based on how to select mutants (23) and how to select

est cases (8) and their combinations. If a selection strategy in-

olves randomness, we repeated the selection 30 times to obtain

tatistical confidences of the result. We found that, with selected

utants and test cases, MUSEUM can reduce 96% of the time cost

or the eight target programs on average (see Table 10 ) while still

ocating the buggy statements as the most suspicious statements. 

There exist related works that selectively use mutation opera-

ors to reduce computational cost of mutation-based fault local-

zation. Papadakis et al. [36] present a mutation-based fault lo-

alization tool that uses a small number of mutation operators

o avoid heavy cost of mutant executions. Subsequently, Papadakis

nd Le Traon [38] suggest four sets of selected mutation operators,

ased on their empirical study of different mutation operator uses

nd the fault localization results. While the earlier work concen-

rated on selecting mutation operators, our study explores differ-

nt chances of selective mutation analyses. For example, our study

ses different test case selection criteria and their combinations

ith new mutant selection criteria. 

.2. Selection strategies 

We have examined 184 ( = 23 × 8) selection strategies based on

he 23 mutant selection strategies ( Section 8.2.1 ) and the eight test

ase selection strategies ( Section 8.2.2 ). 

.2.1. Mutant selection strategies 

We have developed total 23 mutant selection strategies based

n the following four criteria where MR( x ) and MP( p ) are from

he existing mutation testing research [12,34,35] while MS( n ) and

PS( p, n ) are developed by the authors: 

• MR( x ) : this strategy randomly selects x % of all generated mu-

tants [35] where x ∈ {10, 20, 30}. 

• MS( n ) : it randomly selects n mutants per target line where n

∈ {1, 2, 3}. If a target line has only m mutants ( m < n ), MS( n )

selects m mutants. 

• MP( p ) : it selects the mutants generated by a mutation operator

p in the three sets of mutation operators (i.e., SD, CR, and SM)

and the set that includes all mutation operators of the three

sets: 

– MP(SD) : it uses the statement deletion mutation opera-

tor [12] together with the 15 new mutation operators for

multilingual behavior. 

– MP(CR) : it uses the constant replacement mutation opera-

tors [35] together with the 15 new mutation operators for

multilingual behavior. 

– MP(SM) : it uses the five mutation operators [34] (i.e., ‘re-

place a constant value with its absolute value’, ‘replace

an arithmetic operator with another arithmetic operator’,

‘change a logical connector’, ‘change a relational operator’,

and ‘insert an unary operator’) with the 15 new mutation

operators. Offutt et al. [34] claim that mutants generated by

these five mutation operators are consistent with the mu-

tants generated by more mutation operators. 

– MP(All) : it uses all mutants selected by MP(SD), MP(CR),

and MP(SM). 
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Table 6 

Ratio of the number of the selected mutants to the number of all mutants (%). 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

MR(10) 10 .0 10 .0 10 .0 9 .8 10 .0 9 .9 10 .0 10 .0 10 .0 

MR(20) 20 .0 20 .0 19 .9 19 .8 19 .4 20 .0 20 .0 20 .0 19 .9 

MR(30) 30 .0 30 .0 29 .9 30 .1 30 .1 30 .0 30 .1 30 .0 30 .0 

MS(1) 55 .5 31 .8 32 .7 27 .1 29 .4 25 .0 29 .7 25 .6 32 .1 

MS(2) 76 .9 55 .1 56 .3 46 .8 50 .0 44 .7 53 .6 44 .9 53 .5 

MS(3) 89 .2 68 .8 69 .7 60 .1 63 .0 60 .5 69 .1 60 .3 67 .6 

MP(SD) 10 .4 22 .9 21 .2 26 .1 28 .6 20 .0 24 .9 22 .3 22 .1 

MP(CR) 56 .0 38 .5 35 .3 19 .3 20 .9 30 .0 35 .7 33 .6 33 .7 

MP(SM) 18 .5 21 .3 20 .0 13 .7 15 .9 11 .9 21 .5 16 .1 17 .4 

MP(All) 74 .7 56 .3 53 .6 43 .1 45 .7 51 .0 53 .5 55 .8 54 .2 

MPS(SD,1) 57 .6 41 .2 40 .8 35 .1 39 .2 29 .5 40 .8 33 .2 39 .7 

MPS(SD,2) 77 .5 62 .3 62 .5 52 .8 57 .4 46 .9 61 .9 49 .4 58 .8 

MPS(SD,3) 89 .3 74 .2 74 .3 64 .2 68 .1 61 .7 74 .8 63 .2 71 .2 

MPS(CR,1) 66 .2 49 .9 47 .6 36 .8 40 .2 39 .1 46 .2 41 .8 46 .0 

MPS(CR,2) 79 .5 65 .7 65 .1 52 .3 56 .7 52 .0 63 .1 53 .4 61 .0 

MPS(CR,3) 90 .3 75 .3 74 .9 62 .9 66 .6 63 .4 74 .5 64 .3 71 .5 

MPS(SM,1) 60 .9 40 .4 40 .3 33 .1 36 .9 29 .7 38 .5 33 .2 39 .1 

MPS(SM,2) 78 .4 60 .7 61 .2 50 .8 55 .1 46 .7 59 .3 48 .7 57 .6 

MPS(SM,3) 89 .8 72 .5 72 .8 62 .9 66 .6 61 .2 72 .5 62 .0 70 .0 

MPS(All,1) 77 .6 60 .0 57 .9 48 .1 51 .5 51 .7 56 .6 56 .7 57 .5 

MPS(All,2) 84 .9 70 .7 69 .5 58 .1 62 .5 58 .2 67 .5 61 .8 66 .7 

MPS(All,3) 92 .7 79 .0 77 .9 66 .4 70 .5 66 .3 77 .9 68 .7 74 .9 
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– MPS( p, n ) : this strategy is a combined strategy of MP( p ) and

MS( n ). Among the mutants selected by MP( p ), MPS( p, n ) ran-

domly selects n mutants per a target line. If a target line has

only m mutants selected by MP( p ) ( m < n ), MPS( p, n ) randomly

selects more mutants generated by other mutation operators to

make the target line has n mutants. In this study, we used 12

strategies by combining p = { SD, CR, SM, All} and n = { 1 , 2 , 3 } . 
– MA : it selects all generated mutants. 

.2.2. Test case selection strategies 

We have developed eight test case selection strategies based on

he random selection and coverage based selection as motivated by

he test case selection work [14] . All test case selection strategies

elect the failing test case in the test suite. 

• TR( x ) : it randomly selects x % of the passing test cases where x

∈ {10, 20, 30}. 

• TC( x ) : it selects x % of the passing test cases that achieve high

coverage of the target lines (i.e., the source code lines covered

by the failing test case) where x ∈ {10, 20, 30}. TC( x ) uses a

greedy algorithm which repeats to select a passing test case

that covers a largest number of uncovered target lines. If there

are multiple such passing test cases, the algorithm selects one

among the choices. 

• TM : it selects a small number of passing test cases that cover

all target lines. TM uses a greedy algorithm which repeats to se-

lect a test case that covers a largest number of uncovered target

lines until the selected test cases cover all target lines (the al-

gorithm stops selection when no passing test case can increase

the coverage). 

• TA : TA uses all given passing test cases. 

.2.3. Reduction in mutants and test cases 

Table 6 shows that our mutant selection strategies except MA

educe the generated mutants. Each entry reports the ratio of the

umber of the selected mutants to the number of all generated

utants. For example, MP(All) selects 2137 mutants ( = 2,861 mu-

ants × 74.7%) for the target code of Bug1 (see the second column

f the 11th row of the table). 

Table 7 shows that our test case selection strategies except TA

educe test cases significantly while reducing target line coverage

odestly. Table 7 (a) presents the ratio of the reduced test set size

o the original test set size. For example, TM selects 2.3 test cases
 = 150 × 1.5%) for Bug2 on average (see the third column of the

ighth row of Table 7 (a)). TM selects less test cases than TR( x ) and

C( x ) for all bugs except Bug1 with x = 10 or 20 and Bug6 with

 = 10 . Table 7 (b) presents the target line coverage achieved by the

assing test cases selected by the test case selection strategies. For

xample, TR(20) covers the 96% of the target lines for Bug1 on av-

rage (see the second column of the third row of Table 7 (b)). TC( x )

chieves the highest target line coverage in all cases except TC(10)

n Bug1. TM also achieves the highest coverage with the smallest

umber of selected test cases among the all strategies that achieve

he highest coverage for all target programs (see Table 6 (a)). The

est case selection strategies do not achieve the 100% coverage if a

arget line is not covered by any passing test case. 

.3. Effects of the selection strategies on fault localization 

.3.1. Effect on the fault localization accuracy 

Table 8 shows how much the ranking of the faulty line im-

roves with the selection strategies. Table 8 (a) presents the im-

roved ranking of the faulty line with the mutant selection strate-

ies (except MA) with all test cases. Table 8 (b) presents the im-

roved ranking of the faulty line with the test case selection strate-

ies (except TA) with all mutants. Table 8 (c) presents the improved

anking with 12 combined strategies of the four mutant selection

trategies (i.e., MPS( p , 1) with p ∈ {SD, CR, SM, All}) and the three

est case selection strategies (i.e., TR(10), TC(10), and TM). Note

hat 0 in the table indicates that the ranking of the faulty state-

ent does not change with a given selection strategy (i.e., keeping

he same fault localization accuracy). 

Table 8 (a) shows that all 12 MPS strategies do not improve the

anking of the faulty statement in all target bugs except Bug5, Bug6

nd Bug7. Note that even for Bug5, Bug6, and Bug7, MUSEUM still

eports the faulty line as the most suspicious one (i.e., MPS in-

reases the number of the most suspicious lines whose suspicious-

ess scores are all equal to that of the faulty statement). For ex-

mple, MUSEUM with MPS(SD,1) reports the suspiciousness rank-

ng of the faulty statement in Bug6 as 5.0 ( = 3 + 2.0) on average,

ut still reports the faulty statement as the most suspicious one

ith other 4.0 statements. However, the other selection strategies

n Table 8 (a) improves the ranking significantly. For example, MR

nd MS improve the ranking at least by 853.6 and 148.6 on aver-

ge. 
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Table 7 

Results of the test cases selection strategies. 

(a) Ratio of the number of the selected test cases to the number of all test cases (%) 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

TR(10) 12 .9 10 .0 11 .0 11 .9 11 .0 11 .0 9 .8 10 .9 10 .1 

TR(20) 25 .2 19 .7 18 .9 20 .3 22 .0 24 .7 20 .9 20 .0 20 .1 

TR(30) 38 .8 29 .1 31 .3 32 .3 32 .0 31 .6 30 .9 30 .7 30 .0 

TC(10) 12 .9 10 .2 10 .6 13 .9 12 .4 13 .3 10 .6 11 .4 10 .1 

TC(20) 25 .9 20 .4 20 .6 23 .6 21 .5 23 .0 20 .8 21 .2 20 .1 

TC(30) 38 .3 30 .2 30 .5 32 .3 31 .1 32 .5 30 .8 30 .8 30 .0 

TM 25 .9 1 .5 2 .4 6 .0 3 .7 13 .3 3 .6 7 .6 3 .3 

(b) Target line coverage achieved by the passing test cases selected by the selection strategies (%) 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

TR(10) 0 100 100 55 69 50 93 86 69 .1 

TR(20) 96 100 98 55 92 81 93 88 87 .9 

TR(30) 100 100 100 90 94 82 93 95 94 .3 

TC(10) 0 100 100 90 94 82 93 99 82 .3 

TC(20) 100 100 100 90 94 82 93 99 94 .8 

TC(30) 100 100 100 90 94 82 93 99 94 .8 

TM 100 100 100 90 94 82 93 99 94 .8 

Table 8 

Ranking improvements of the faulty statements with various selection strategies. 

(a) Strategies that reduce the mutants only 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

MR(10) 1590 .7 218 .5 340 .2 140 .3 135 .3 2867 .8 207 .6 3760 .8 1157 .7 

MR(20) 1571 .3 192 .0 232 .7 97 .5 112 .6 1968 .3 110 .5 3226 .0 938 .9 

MR(30) 1368 .5 166 .8 201 .0 62 .2 82 .6 2039 .8 94 .5 2813 .4 853 .6 

MS(1) 1141 .0 0 .0 0 .0 103 .2 1 .9 2 .2 118 .0 2257 .8 453 .0 

MS(2) 824 .9 0 .0 0 .0 85 .6 0 .4 0 .4 60 .7 1879 .3 356 .4 

MS(3) 409 .3 0 .0 0 .0 73 .8 0 .0 0 .0 32 .0 673 .4 148 .6 

MP(SD) 0 .0 238 .0 367 .0 0 .0 −1 . 0 0 .0 0 .0 0 .0 75 .5 

MP(CR) 0 .0 −1 . 0 0 .0 0 .0 153 .0 2960 .0 1 .0 0 .0 389 .1 

MP(SM) 0 .0 244 .0 358 .0 0 .0 162 .0 3213 .0 1 .0 0 .0 497 .3 

MP(All) 0 .0 −1 . 0 0 .0 0 .0 1 .0 2 .0 0 .0 0 .0 0 .3 

MPS(SD,1) 0 .0 0 .0 0 .0 0 .0 2 .7 2 .0 0 .0 0 .0 0 .6 

MPS(SD,2) 0 .0 0 .0 0 .0 0 .0 0 .3 1 .0 0 .0 0 .0 0 .2 

MPS(SD,3) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .1 0 .0 0 .0 0 .0 

MPS(CR,1) 0 .0 0 .0 0 .0 0 .0 0 .6 3 .3 1 .0 0 .0 0 .6 

MPS(CR,2) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .9 1 .0 0 .0 0 .2 

MPS(CR,3) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .1 1 .0 0 .0 0 .1 

MPS(SM,1) 0 .0 0 .0 0 .0 0 .0 2 .1 2 .2 1 .0 0 .0 0 .7 

MPS(SM,2) 0 .0 0 .0 0 .0 0 .0 0 .4 0 .7 1 .0 0 .0 0 .3 

MPS(SM,3) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .2 1 .0 0 .0 0 .2 

MPS(All,1) 0 .0 0 .0 0 .0 0 .0 1 .0 2 .0 0 .0 0 .0 0 .4 

MPS(All,2) 0 .0 0 .0 0 .0 0 .0 0 .0 1 .4 0 .0 0 .0 0 .2 

MPS(All,3) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .4 0 .0 0 .0 0 .1 

(b) Strategies that reduce the test cases only 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

TR(10) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 

TR(20) 0 .0 0 .0 0 .0 0 .0 3 .0 0 .0 0 .0 0 .0 0 .4 

TR(30) 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 

TC(10) 0 .0 0 .0 0 .0 0 .0 1 .8 0 .0 0 .0 0 .0 0 .2 

TC(20) 0 .0 0 .0 0 .0 0 .0 1 .6 0 .0 0 .0 0 .0 0 .2 

TC(30) 0 .0 0 .0 0 .0 0 .0 1 .1 0 .0 0 .0 0 .0 0 .1 

TM 0 .0 0 .4 0 .0 0 .0 3 .0 0 .0 0 .0 0 .0 0 .4 

(c) Strategies that reduce both mutants and test cases 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

Mutant Test case 

MPS(SD,1) TR(10) 0 .0 0 .0 0 .2 0 .0 8 .7 2 .2 0 .3 0 .0 1 .4 

MPS(SD,1) TC(10) 0 .0 0 .0 0 .0 0 .0 6 .6 2 .1 0 .0 0 .0 1 .1 

MPS(SD,1) TM 0 .0 0 .5 0 .0 0 .0 8 .5 2 .2 0 .0 0 .0 1 .4 

MPS(CR,1) TR(10) 0 .0 0 .0 0 .1 0 .0 7 .6 3 .6 1 .0 0 .0 1 .5 

MPS(CR,1) TC(10) 0 .0 0 .0 0 .0 0 .0 4 .4 3 .3 1 .0 0 .0 1 .1 

MPS(CR,1) TM 0 .0 0 .4 0 .0 0 .0 5 .0 3 .4 1 .0 0 .0 1 .2 

MPS(SM,1) TR(10) 0 .0 0 .1 0 .0 0 .0 9 .2 1 .9 1 .0 0 .0 1 .5 

MPS(SM,1) TC(10) 0 .0 0 .0 0 .0 0 .0 6 .6 1 .9 1 .0 0 .0 1 .2 

MPS(SM,1) TM 0 .0 0 .4 0 .0 0 .0 7 .8 1 .9 1 .0 0 .0 1 .4 

MPS(All,1) TR(10) 0 .0 0 .0 0 .2 0 .0 7 .6 2 .0 0 .0 0 .0 1 .2 

MPS(All,1) TC(10) 0 .0 0 .0 0 .0 0 .0 5 .0 2 .0 0 .0 0 .0 0 .9 

MPS(All,1) TM 0 .0 0 .3 0 .0 0 .0 6 .0 2 .0 0 .0 0 .0 1 .0 
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Table 9 

Ratio of the number of the selective mutant executions to the full mutant executions (%). 

Strategy Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

Mutant Test case 

MPS(SD,1) TR(10) 7 .4 4 .2 4 .2 3 .9 4 .4 3 .6 4 .3 3 .6 4 .5 

MPS(SD,1) TC(10) 7 .4 4 .1 4 .3 4 .4 4 .7 4 .2 4 .4 3 .8 4 .7 

MPS(SD,1) TM 14 .8 0 .6 1 .0 1 .6 1 .4 4 .2 1 .5 2 .5 3 .5 

MPS(CR,1) TR(10) 8 .5 5 .0 4 .9 4 .3 4 .5 4 .6 4 .8 4 .5 5 .1 

MPS(CR,1) TC(10) 8 .5 5 .0 5 .0 4 .8 4 .8 5 .3 5 .0 4 .8 5 .4 

MPS(CR,1) TM 17 .0 0 .7 1 .1 1 .8 1 .4 5 .3 1 .6 3 .2 4 .0 

MPS(SM,1) TR(10) 7 .8 4 .1 4 .1 3 .8 4 .2 3 .6 4 .0 3 .6 4 .4 

MPS(SM,1) TC(10) 7 .8 4 .2 4 .1 4 .1 4 .5 4 .2 4 .2 3 .8 4 .6 

MPS(SM,1) TM 15 .7 0 .6 1 .0 1 .5 1 .3 4 .2 1 .4 2 .6 3 .5 

MPS(All,1) TR(10) 10 .0 6 .0 5 .8 5 .6 5 .7 6 .2 5 .9 6 .1 6 .4 

MPS(All,1) TC(10) 10 .0 6 .0 6 .1 6 .3 6 .3 7 .1 6 .0 6 .6 6 .8 

MPS(All,1) TM 20 .0 0 .9 1 .4 2 .5 1 .8 7 .1 2 .0 4 .4 6 .5 

Table 10 

Overall time cost of fault localization (in minutes). 

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6 Bug7 Bug8 Average 

MUSEUM with all mutants 360 1785 1346 738 682 5262 1501 15 ,334 3376 .0 

and all test cases 

MUSEUM with 29 21 34 10 10 186 63 1166 189 .9 

MPS(SD,1) and TM 

Ratio 8 .1% 1 .2% 2 .5% 1 .4% 1 .5% 3 .5% 4 .2% 7 .6% 3 .8% 
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Fig. 2. Ranking improvement of the faulty statements and the ratio of the number 

of selective mutant executions to the full mutant executions. 
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Table 8 (b) shows that the test case selection with all mutants

o not improve the ranking of the faulty statement in all target

ugs except Bug2 and Bug5 (these strategies still report the faulty

tatement of Bug2 and Bug5 as the most suspicious statement with

ther statements in a tie). 

Table 8 (c) presents the improved ranking of the faulty state-

ents with the 12 balanced combinations of the four MPS( p , 1)

trategies where p ∈ {SD, CR, SM, All} and the three test case selec-

ion strategies TR(10), TC(10) and TM. These 12 selection strategies

mprove the ranking by 1.3 on average over all eight target pro-

rams. More importantly, these 12 strategies still report the faulty

tatement as the most suspicious statement with other statements

n a tie. For Bug5 and Bug6, the improved ranking is larger than

he other target programs because the number of mutants that

hange the test case execution results is reduced significantly for

ug5 and Bug6. For example, the MPS(SD,1) and TM selection strat-

gy decreases the number of mutants that make the failing test

ase pass from 51 to 26 for Bug5 and from 32 to 7 for Bug6; conse-

uently, more lines have the same numbers of the fail-to-pass mu-

ant executions and pass-to-fail mutant executions after the mu-

ant and test case selections. For the other six mutants, the num-

er of mutants that make the failing test case pass is decreased by

–2. We do not present the results of the other selection strate-

ies because they are worse than these 12 presented strategies.

or example, as shown in Table 8 (a), MR, MP, and MS degrade the

ault localization accuracy significantly. We do not present MPS( p ,

) and MPS( p , 3) because they are similar to MPS( p , 1) in terms

f the accuracy but they select much more mutants than MPS( p ,

) ( Table 6 ). For the similar reason, we present the results with

R(10), TC(10) and TM, not the other test case selection strategies. 

.3.2. Effect on the fault localization time cost 

Table 9 presents the ratio of the number of the selective mutant

xecutions (i.e., the number of all pairs ( m i , t ij ) where m i is a se-

ected mutant and t ij is a selected test case that covers the mutated

ine of m i ) to that of the full mutant executions (i.e., mutant execu-

ions with all mutants and all test cases). The 12 strategies execute

nly 3.5%–6.8% of the full mutant executions for the eight target

ugs on average. MPS(SD,1) with TM executes the smallest number
f mutant executions on average (i.e., MPS(SD,1) with TM removes

9.4% ( = 100%-0.6%) of the full mutant executions for Bug2). 

Fig. 2 visualizes the accuracy-cost trade-offs in the 12 selection

trategies. The x axis represents the average ratio of the cost of the

elective mutant testing to the full mutant testing. The y axis rep-

esents the average ranking improvement of the faulty statement.

ach data point represents the cost and accuracy of a selection

trategy. For example, MPS(SD,1) with TM reduces the number of

he mutant executions to 3.5% of the full mutant executions on av-

rage (the last column of the fourth row of Table 9 ) and improve-

ents the ranking by 1.4 on average (the last column of the fourth

ow of Table 8 (c)). In general, more mutant testing achieves higher

ccuracy. For example, MPS(SD,1) with TC(10) is represented by ‘ ×’

ocated at x = 4.7 and y = 1.1, which indicates that MPS(SD,1)

ith TC(10) executes more mutant testing than MPS(SD,1) with TM

4.7% v.s. 3.5%) but it improves the ranking less than MPS(SD,1)

ith TM (1.1 vs. 1.4). Note that these 12 strategies achieve both

igh accuracy (i.e., the average ranking improvement is less than

.0) and high cost reduction (i.e., the number of the selective mu-

ant executions is reduced to less than 7% of the full mutant exe-

utions). 

Finally, Table 10 shows the overall time cost of the fault local-

zation with all mutants and all test cases (the second row) and
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that of the fault localization with MPS(SD,1) and TM (the third

row) on one machine. The numbers in the second row are calcu-

lated by multiplying 30 to the time cost in Table 2 . MUSEUM with

the MPS(SD,1) and TM selection strategies consumes only 3.8% of

the time cost with all mutants and all test cases for the eight target

bugs on average (see the last column of the last row). Thus, this re-

sult confirms that the selection strategy can effectively reduce the

time cost of MUSEUM as the number of the mutant executions is

reduced. 5 

9. Discussions 

9.1. Advantages of the mutation-based fault localization for 

real-world multilingual programs 

For large real-world programs, it is challenging to build test

cases that exercise diverse execution paths because it is non-trivial

to understand and control a target program. Also, generating di-

verse test cases for multilingual programs has additional burden to

learn and satisfy safety rules on language interfaces. Thus, multi-

lingual programs are often developed with only simple test cases,

which makes the SBFL techniques fail to accurately localize the

eight real-world multilingual bugs ( Table 3 ). 

For example, the statement coverages of the test suites used

for Bug2 and Bug3 are around 85% and 86% and the SBFL tech-

niques localize these bugs somehow precisely (i.e., the suspicious-

ness rank of Bug2 and Bug3 are 4 and 5, respectively). However,

the statement coverages of the test suites used for Bug1, Bug4,

Bug5, Bug6, and Bug8 are around 1%, 22%, 24%, 19%, and 11% and

the accuracy of the SBFL techniques for these bugs are very low

( Table 3 ). In contrast, MUSEUM can alleviate this limitation by

achieving the effect of diverse test cases through the diverse mu-

tants with limited test cases. Thus, MUSEUM can be a promis-

ing technique for debugging complex real-world multilingual pro-

grams. 

9.2. Effectiveness of the new mutation operators for localizing 

multilingual bugs 

The experiment results show that the new mutation operators

are effective to generate informative mutants (i.e., partial fix mu-

tants) to localize multilingual bugs. For Bug1, Bug4, and Bug8, only

the new mutation operators generate partial fix mutants. For Bug5

and Bug7, the new mutation operators and the existing ones gen-

erate partial fix mutants. For Bug2, Bug3 and Bug6, only existing

mutation operators generate partial fix mutants. 

To assess the impact of the new mutation operators on fault lo-

calization, we ran MUSEUM for Bug1, Bug4, Bug8, Bug5 and Bug7

without the new mutation operators. For Bug1, Bug4 and Bug8, the

suspiciousness ranking of the faulty line becomes significantly low

(1,737 (89.6%) for Bug1, 117 (62.9%) for Bug4, and 3,061 (61.2%) for

Bug8). For Bug5, the ranking of the faulty line changes from the

eighth to the ninth and the faulty line is not anymore the most

suspicious statement. For Bug7, the ranking of the faulty line re-

mains unchanged. 

9.3. High accuracy with low runtime cost through selective mutation 

analysis 

The selective mutation analysis for MUSEUM can achieve high

fault localization accuracy with significantly reduced runtime cost
5 The ratio in Table 10 can be different from the ratio in Table 6 because the 

time cost of MUSEUM involves mutant generations, data processing and other op- 

erational steps in addition to mutant executions (also execution time of a mutant 

can be different depending on the mutant and the test case used). 

 

 

 

e.g., MPS(SD,1) and TM can reduce the runtime cost up to 96%

nd identifies the faulty statements as the most suspicious ones)

 Section 8.3.1 ). Also, more mutants and test cases can increase

he fault localization accuracy with the selective mutation analy-

is ( Fig. 2 ). 

Thus, MUSEUM should start with the mutants and test cases se-

ected by a selection strategy (e.g., MPS(SD,1) and TM). Then, MU-

EUM can add more mutants and test cases by relaxing the pa-

ameter of the selection strategy or changing the selection strategy.

n this way, MUSEUM can achieve high fault localization accuracy

ith low runtime cost first and then increase the fault localization

ccuracy gradually within the given time budget. 

0. Conclusion and future work 

We have presented MUSEUM which localizes bugs in complex

eal-world multilingual programs in a language semantics agnos-

ic manner through mutation analyses. The experiments and the

ase studies show that MUSEUM accurately locates the faulty state-

ents for all non-trivial Java/C bugs. Also, we show that the ac-

uracy of fault localization for multilingual programs can be in-

reased by adding new mutation operators relevant with language

nterface constraints. Finally, our selection strategies over mutants

nd test cases significantly reduce the analysis time with marginal

ccuracy loss. 

As future work, we will add more mutation operators tar-

eting multilingual features and higher-order mutation opera-

ors to reduce equivalent mutants and generate useful mutants.

lso, we will apply MUSEUM to an interactive debugger such as

link [21] to maximize the debugging effectiveness. Finally, we will

nvestigate how to utilize MUSEUM to improve program repair and

earch-based program analysis for multilingual programs. 
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