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Abstract
In this study we examined the relationships between the built environment and urban air temperature in 

Seoul city, Korea. We developed multivariate regression models that address the relationship between built 
environment characteristics and the ambient air temperature with spatial statistics techniques. In addition, 
we analyzed the difference in daytime and nighttime air temperature to identify the built environment 
characteristics that affect the intensity of the nocturnal urban heat island effect (UHI). The large sample size 
of AWS locations in Seoul makes it possible to analyze the factors that influence ambient air temperature 
and UHI effect. The analysis results indicate that the sky view factor (SVF) and gross floor area significantly 
influence the daytime air temperature, while the building coverage and albedo showed strong relationships 
with the nocturnal air temperature. This study also demonstrated the importance of advanced spatial statistics 
techniques that control spatial autocorrelation and spatial heteroscedasticity in urban air temperature 
research. Our models confirmed the need to capture the effects of spatial autocorrelations within our spatial 
data. The findings of this study are valuable for understanding the complicated associations between the built 
environment and urban air temperature and to develop public policies to mitigate UHI effects.

Keywords: air temperature; built environment; urban heat island effect; automatic weather stations; spatial statistics

1. Introduction
During the past several decades, urban planners and 

public policy makers have had great concerns about the 
impact of built environments on urban climate. Many 
studies have already tried to address the relationship 
between surface temperature and land use or land 
cover. Other studies focused on air temperature and its 
determining factors. In particular, urban scholars are 
interested in the urban heat island effect and its driving 
forces. Previous studies on the urban heat island effect 
however, have not fully addressed the impacts of three-
dimensional characteristics and spatial autocorrelations 
in the analysis models (Chun and Guldmann, 2014). 

This study examines the relationship between built 
environment and the urban heat island effect in Seoul 
city, Korea. We focused on the impact of urban built 
environmental fabrics on ambient urban temperature. 
The data source we used is the "SK Automatic Weather 
Stations (AWS) API", which provides ambient 

temperature, humidity, and wind direction and velocity. 
Apart from the 30 AWS locations managed by the 
government, this study also employed the 295 AWS 
across Seoul city, which improved the accuracy of 
analysis. 

We built a dataset for the built environment factors 
and urban ambient temperature. Then, we developed 
multivariate regression models that addressed the 
relationship between the built environment factors and 
urban heat island effect during daytime and nighttime. 
From the multivariate regression models, we identified 
determinant factors of the built environment that 
have a significant impact on urban heat island effects. 
Lastly, we suggest urban planning and design policies 
that could mitigate urban heat island effects in the city 
of Seoul.

2. Literature Review
Climate change and the urban heat island (UHI) 

effect have been increasingly important issues in 
urban and regional planning. Urban heat island 
effects indicate that the air temperature of urban areas 
is relatively higher than that of rural areas. Rapid 
urbanization has transformed open spaces into built-
up areas with buildings, roads, and other impervious 
surfaces, which may increase surface temperature as 
well as air temperature. Many studies have already 
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addressed the relationship between land surface 
temperature (LST) and urbanization (Oke, 1976; 
Jenerette et al., 2007; Yuan and Bauer, 2007; Xiao et 
al., 2007). 

Scholars have also tried to address the relationship 
between land use/land cover and air temperature 
(Bowler et al., 2010; Shudo et al., 1997; Jusuf et 
al., 2007). Bowler et al. (2010) asserted that green 
space can moderate the air temperature in urban 
environments. In addition, Shashuabar and Hoffman 
(2000) argued that many small-scale distributed 
green spaces would be beneficial for reducing air 
temperature. Trees provide substantial benefits for 
pedestrians by shading street canyons during the 
hot summer and also have a cooling effect on air 
temperature. Jusuf et al. (2007) pointed out that we 
could improve the urban environment through land use 
planning because land use/land cover has a significant 
impact on urban temperature.

The UHI effect is the outcome of complicated 
interactions among many determinant factors. Beyond 
basic determinant factors such as humidity, wind 
speed, and altitude, UHI is strongly associated with 
human activities including urban development that 
change land use and land cover (Jusuf et al., 2007; 
Schwarz et al., 2012). In addition, three-dimensional 
urban environment factors (a long with urban 
canyon effects) may have significant impacts on air 
temperature and UHI effects because they affect air 
circulation, wind flow, area shaded by buildings, and 
so on. Higher floor area ratios and higher building 
footprint areas reduce the speed of wind (Kubota et 
al., 2008). In addition, urban design measures such 
as sky view factors, obtained from the relationship 
between height and spacing of buildings, have an 
important effect on urban temperature (Barring et 
al., 1985; Giridharan et al., 2004). Gál et al. (2009) 
reported a strong linear negative association between 
annual mean temperatures and SVF. Other studies also 
showed statistically significant associations between 
SVF and urban temperature (Chen et al., 2012; Unger, 
2009; Svensson, 2004).

Chun and Guldmann (2014) pointed out the 
shortcomings in previous UHI studies noting that 
2-D information rather than 3-D information was 
used, a small set of variables was used and a simple 
ordinary least squares was used that cannot control 
spatial autocorrelation. They examined the association 
between three-dimensional urban design factors and 
LST using a spatial statistics technique that can control 
for spatial autocorrelation. Their study included solar 
radiation, sky view factor, building floor area ratios by 
type, building volume, roof-top areas, ratio of building 
height to road width, open space, and vegetation for 
the city of Columbus, Ohio. They concluded that solar 
radiation, open spaces, vegetation, building roof-
top areas, and water have strong impacts on surface 
temperatures using spatial statistics that capture 

neighboring effects. Similarly, Giridharan et al. (2004) 
examined design-related variables on the outdoor 
micro-level daytime heat island effect in a residential 
development in Hong Kong. They concluded that 
energy efficient design can improve the urban thermal 
environment by manipulating surface albedo, sky view 
factor, and total height to floor area ratio. 

Although previous studies over the past several 
decades have tried to address the UHI effect and 
its determinant factors, they have a few critical 
limitations. First, most studies have focused on land 
surface temperature because the land coverage data 
and land surface temperature information are available 
from satellite imagery. However, the UHI effect should 
be addressed with air temperature measurements. A 
couple of studies used air temperature obtained from 
automatic weather station (AWS) information, but 
these studies are usually limited due to small sample 
sizes. Second, most existing studies have focused on 
two-dimensional land coverage information to examine 
its impact on land surface temperature. However, 
two-dimensional land coverage information may 
have a limited impact on air temperature. Actually, 
air temperature may have significant correlations 
with three-dimensional urban environments such as 
building height, building spacing, sky view factor, 
and open space in addition to meteorological effects 
like humidity, wind speed, and altitude. Third, 
methodological advances in statistical analysis should 
be applied for analyzing the UHI and its determinant 
factors. Most existing studies have employed simple 
OLS regression models. However, as a recent study 
of Chun and Guldmann (2014) indicated, research 
on LST or UHI should employ advanced statistical 
methods that control for spatial autocorrelation and 
spatial heterogeneity. 

3. Case Study and Methodology
3.1 Case Study Area

This study focuses on Seoul, the capital city of 
Korea. Seoul is one of the most populated cities in 
the world with an area of 605km2 and a population 
dens i ty o f 17,000 peop le /km2 (Demograph ia 
World Urban Areas, 2016). Seoul accommodates 
more than 10 million people and has a variety of 
geographical characteristics with mountainous terrain, 
a river and streams (see Fig.1.). In addition, built 
environments in Seoul are very diverse, including 
high-density residential complexes, middle-and 
low-density residential areas, and commercial and 
industrial districts. Due to global climate change and 
the increasing air temperature in Seoul, demands 
for managing the urban thermal environment are 
increasing. For example, the highest air temperature 
recorded last year (2015) was 36.0°C on 11 July, and 
there were two heat wave warnings, which are issued 
when the hottest daily temperature exceeds 33.0°C for 
two days or more. 
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As seen in Fig.1., 295 AWSs are evenly distributed 
across the city of Seoul. Compared to most previous 
studies such as Chen et al. (2012) and Giridharan et al. 
(2008) that focus on urban air temperature with a small 
number of AWSs, the level of spatial resolution of 
AWSs in this study enables us to examine the various 
attributes of the built environment in modeling urban 
air temperature during the day and night.
3.2 Dependent Variable

Most of the previous studies that analyzed the 
urban temperature have focused on the land surface 
temperature (LST) extracted from the satellite images. 
Therefore, the analysis results of previous LST studies 
have critical limitations because there are differences 
between LST and the air temperature. By using the 
air temperature information observed from the AWSs, 
we were able to analyze realistic effects of built 
environments on air temperature. 

The dependent variable is air temperature, observed 
by 295 AWSs in Seoul. The locations of the AWSs is 

shown in Fig.1. Among these 295 AWSs, 240 AWSs 
are managed by the 'SK Planet' company, and the 
others are operated by government organizations 
including the Korea Meteorological Administration 
(KMA) and the Seoul Metropolitan Government 
(SMG). All of the AWS were authenticated as having 
standard equipment. However, the 11 AWS sites 
operated by the Korea Meteorological Administration 
were incapable of observing humidity, and were 
therefore finally excluded from our analysis data. Even 
so, our analysis results covered the entire city of Seoul 
since the remainder of the sites were widely distributed 
as shown in Fig.1.

We collected climate information such as air 
temperature, humidity, and wind strength observed 
on 11 July, 2015, since it was reported as the hottest 
day in 2015. Moreover, since our research focused on 
the temporal effect of UHI, we used the average air 
temperature observed during both day and night. We 
have selected our study periods as 10AM-6PM, and 
9PM-11PM for day and night, respectively. In the case 
of the daytime, we identified the time period when the 
air temperature was above 30ºC. On the other hand, 
9PM-11PM was selected as the nighttime based on the 
work of Oke (1981), who argued that the nocturnal 
UHI occurs 3-5 hours after sunset. 
3.3 Independent Variables

As presented in Table 1., selected variables include 
the properties of AWS, climate characteristics, and two 
and three-dimensional urban environment indices. The 
detailed descriptions of each variable are as follows: 

First, the elevation of each AWS location was used 
since the air temperature was expected to be different 
based on the altitude. Second, climate characteristics 
such as the wind velocity and humidity were used as 
the control variables. Those variables, measured by 

Table 1. Description of Variables
Category Variables Definition Unit Data source*

AWS

AWS elevation Altitude of each AWS m
KMA / SMG /
SK Planet
(11 July, 2015)

Air temperature Average air temperature of day and night time ºC
Wind velocity Average wind velocity of day and night time m/s
Humidity Average humidity of day and night time %

Built
Environ-
ment

Building coverage Proportion of built area (area of the building 
footprint / area of urban zone) % New Address 

Database, 2015

Green area ratio Proportion of green area
(area of green / area of the 500m circular buffer) % Biotope Map 

Database, 2014

Albedo Albedo index calculated using satellite image
(using the DN value of Landsat 8 image) - Landsat 8 image

(30, May, 2014)

Surface solar radiation Amount of surface solar radiation for all day MJ/ m2 ArcMap Solar 
Radiation Tool

Proximity to natural open 
space

Minimum length between natural open space and 
the AWS location point m New Address 

Database, 2015Road width Average road width for each 500m circular buffer m

Sky view factor (SVF) Areal SVF calculated for each buffer using the 
'Skyline Graph' tool in ArcScene - New Address 

Database, 2015

Building Ledger 
Database, 2015

GFA_res (residential use) Gross floor area of residential use inside the 500m 
circular buffer m2

GFA_com (commercial use) Gross floor area of commercial use inside the 500m 
circular buffer m2

* Korea Meteorological Administration (KMA); Seoul Metropolitan Government (SMG) 

Fig.1. Locations of AWS in Seoul City
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each AWS, were provided with the air temperature 
data by each organization operating AWS equipment 
in Seoul. We have selected those variables because 
wind velocity and humidity significantly affect 
the air temperature. Third, two-dimensional urban 
environment indices such as the surface albedo, 
surface solar radiation, road width, and green area, and 
the proximity to natural open spaces were used as the 
independent variables. Those variables were calculated 
based on the 500m circular buffer drawn for each 
AWS location point in ArcGIS software. For the road 
width, we selected this variable because it may affect 
both the ventilation and solar radiation. Therefore, we 
assume that the average road width is more likely to be 
associated with urban air temperature. We calculated 
the average road width within the 500m circular buffer. 
The surface albedo was computed using the equation 
developed in previous studies using the Landsat 8 
satellite image. Surface solar radiation was calculated 
using the 3D dataset of Seoul and the solar radiation 
tool in ArcMap. Variables such as road and park area, 
and the proximity value to natural open spaces were 
calculated using the 2015 New Address database for 
Seoul. 

Lastly, three-dimensional indices including the gross 
floor area of each land use and the sky view factor (SVF) 
were used. Those urban indices were calculated by 
using the ArcGIS and the 3D dataset built by linking 
the 2015 New Address database and building ledger 
database of Seoul. The descriptive statistics of the 
variables used in our study are presented in Table 2. 
Before conducting the analysis, a log transformation 
was used on the altitude of AWS, albedo, and the gross 
floor area of residential and commercial uses to adjust 
them to a normal distribution.
3.4 Methodology

We used multivariate regression models to examine 
the relationship between the built environment and 
air temperature. We also included descriptive analysis 
and advanced spatial statistics. In order to analyze the 
impact of independent variables on air temperature, we 

first applied the OLS regression model. However, the 
outputs of OLS regression could be biased if spatial 
autocorrelation and spatial heterogeneity are present. 
Chun and Guldmann (2014) pointed out that spatial 
regression models are more suitable (especially when 
modelling the UHI intensity or the air temperature) 
because the temperature is predicted to be spatially 
correlated with the temperature observed nearby.

Therefore, we applied spatial statistics techniques 
such as Moran's I and spatial statistical models. For 
the application of spatial statistics, we used 'GeoDa' 
and 'GeoDaSpace', which are well-known software 
packages for spatial analysis and modelling developed 
by the Spatial Analysis Laboratory at Arizona State 
University (Anselin, 2004; Anselin and Rey, 2014). 

To determine the analysis model for our spatial 
data, the Moran I test and the Breusch Pagan (BP) test 
were performed. These tests are used to identify the 
spatial autocorrelation effect and the heterogeneity of 
the spatial data. We first performed the OLS model 
using GeoDa software in order to examine the Moran 
I test result. Then, based on the Moran I test value, we 
decided whether there was a need to construct a spatial 
regression model. The spatial regression model has 
advantages over the simple OLS model, therefore we 
identified the Lagrange Multiplier (LM test) value of 
both the spatial lag model and the spatial error model. 
According to Anselin (2004), the model which shows 
the higher value in the LM test is more appropriate. 
Based on the previous decision, we then used the 
most suitable spatial regression model to analyze the 
relationships between the independent and dependent 
variables. Furthermore, by examining the BP test of 
the selected model, we confirmed whether there is 
heterogeneity in the estimated residuals. 

When we had both spatial autocorrelation and 
spatial heterogeneity in the OLS model, we conducted 
a spatial regression model with the KP HET (Kelejian-
Prucha consistent estimator for heteroskedastic error 
terms) option in the GeoDaSpace software. Using 
the KP HET option, we controlled both the spatial 

Table 2. Descriptive Statistics of Variables
Variables Unit Obs. Mean Std. Dev. Min. Max.

Altitude of the AWS equipment m 295 59.600 30.907 5.000 332.000
Daytime Average air temperature ºC 295 32.881 0.576 30.267 34.378
(10AM-6PM) Average wind velocity m/s 295 2.035 0.717 0.567 4.478

Average humidity % 284 57.285 4.955 22.256 100.0
Nighttime Average air temperature ºC 292 28.831 0.969 23.800 30.900
(9PM-11PM) Average wind velocity m/s 292 2.101 1.045 0.133 6.133

Average humidity % 281 76.347 7.017 41.733 100.0

Built
Environment

Building coverage % 295 0.294 0.102 0.000 0.487
Green area ratio % 295 21.481 16.079 1.401 89.647
Albedo - 295 0.152 0.008 0.122 0.177
Surface solar radiation MJ/m2 295 4587.859 408.815 3575.350 5736.520
Proximity to natural open space m 295 1044.145 781.310 0.000 3546.934
Average road width m 295 8.120 3.861 0.000 32.601
Areal sky view factor (SVF) - 295 0.598 0.114 0.000 0.991
GFA_res (residential use) m2 295 677677.5 363379.6 0.000 1778002.0
GFA_com (commercial use) m2 295 394365.0 498746.6 0.000 3512130.0
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autocorrelation effect and the heterogeneity in the 
regression model (Anselin and Rey, 2014). However, 
since the indicators of the goodness of fit of the models 
were not sufficiently provided by the GeoDaSpace 
software, we only examined whether the analysis 
results of the spatial regression model without the KP 
HET option were robust.

4. Analysis and Findings
We discuss our analysis of the association between 

urban design factors and air temperature in this 
section. SLM or SEM are useful spatial statistics 
methods that address the spatial autocorrelation 
problem. We identified the final model based on the 
goodness of fit for each spatial regression model. The 
log-likelihood ratio (LR test), Akaike information 
criterion (AIC), and Schwarz criterion (SC) were used 
as the indicators for the goodness of fit. High LR-test 
values and low AIC and SC values indicated a well-
estimated model (Anselin, 2005). In addition, when 
the heteroscedasticity was a significant problem in the 
analysis data, we applied SEM with the KP HET option 
to control the heteroscedasticity (Anselin, 2014).
4.1 Daytime Air Temperature

Tab le 3. shows the ana lys i s r e su l t s o f t he 
association between urban design factors and the 
daytime air temperature. Moran's I value of the OLS 
model indicates that the spatial autocorrelation was 
significant, implying that spatial regression methods 
were more appropriate in estimating the daytime air 
temperature. 

SLM and SEM were both conducted to capture the 
effect of spatial autocorrelation. Based on the model 
decision process described in the prior section, we 
concluded that SEM showed the best estimated results. 
As compared to the OLS model, the LR test value 
increased while the AIC and SC values decreased 
when SEM was used. Furthermore, the BP test results 
of the SEM were not statistically significant, implying 
the absence of heteroscedasticity. Moran's I value of 
the SEM model implies that the spatial autocorrelation 
was fully controlled by applying spatial statistics.

Moving on to the estimation results (mainly focusing 
on the results of SEM), the variables measured from 
the AWS showed a significant relationship with the 
daytime air temperature. Specifically, altitude of the 
AWS, wind velocity, and humidity affected the daytime 
air temperature negatively. This observation is in 
agreement with the previous studies. Meanwhile, solar 
radiation showed a positive relationship with daytime 
air temperature, which is reasonable.

The average road width showed positive associations, 
being statistically significant at the 90% confidence 
level. This result implies that increasing the average road 
width leads to an increase in daytime air temperature. 
The coefficient of SVF was negative and significant at 
the 99% confidence level. Although Giridharan et al. 
(2007) have stated that an increase in SVF should lead 
to an increase of air temperature, the results of our study 
are similar to the conclusion of Chen et al. (2012). They 
argued that SVF can have both positive and negative 
effects on daytime air temperature. On the other hand, 

Table 3. Estimation Results on Day-time Air Temperature

Variables OLS Model Spatial Lag Model Spatial Error Model
Coef. t Coef. z Coef. z

(Constant) 33.300*** 21.77 29.141*** 10.77 32.552*** 21.54

AWS
Altitude of AWS -0.179*** -3.00 -0.202*** -3.48 -0.229*** -3.95
Wind velocity -0.295*** -8.23 -0.288*** -8.22 -0.291*** -8.35
Humidity -0.037*** -6.55 -0.036*** -6.55 -0.033*** -6.06

Built
Environ.
Measures

Building coverage -3.0E-08 -0.04 1.2E-07 0.17 2.8E-07 0.38
Green area ratio 0.002 0.63 0.002 0.63 0.002 0.63
Albedo -0.467 -0.79 -0.408 -0.71 -0.833 -1.41
Surface solar radiation 2.2E-04** 2.09 2.1E-04** 2.01 2.4E-04** 2.27
Proximity to open space 4.2E-05 1.21 3.5E-05 1.05 3.8E-05 0.98
Average road width 0.019* 1.77 0.018* 1.72 0.018* 1.71
Areal sky view factor -1.207*** -2.93 -1.142*** -2.83 -1.235*** -3.04
GFA_res (residential use) 0.071*** 3.62 0.067*** 3.52 0.071*** 3.68
GFA_com (commercial use) 0.054* 1.85 0.049* 1.71 0.049* 1.69

Spatial
Autocorr.

Wy 0.134* 1.75
Lambda (λ) 0.283*** 3.19

Summary
Statistics

Moran's I 0.088*** 0.033 -0.009
Jarque-Bera test 18.438***
Breusch-Pagan test 22.574** 22.323** 16.833
LM-test 3.517* 6.730***
N 284 284 284
R-squared 0.522 0.529 0.541
LR-test 3.129* 7.463***
AIC 305.276 304.147 297.814
SC 352.713 355.233 345.250

*** p<0.01; ** p<0.05; * p<0.10
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the coefficients of the gross floor area of residential 
(GFA_res) and commercial uses (GFA_com) were both 
positive and significant at 1% and 10%, respectively. 
This result indicates that both the gross floor area of 
residential and commercial uses increases daytime air 
temperature. 

Variables including the building coverage, green 
area ratio, albedo, and proximity to open space were 
not statistically significant in our analysis models. 
Coefficients of albedo, proximity to open space, and 
building coverage fall in line with the general theory, 
however they were not significant.
4.2 Nighttime Air Temperature

Table 4. presents the analysis results on the 
relationships between urban design indices and 
the air temperature at night. As shown in Table 4., 
while the LR-test value increased, the AIC and SC 
values decreased dramatically for the SEM model. 
In other words, the SEM model controlled for spatial 
autocorrelation which can be indicated through 
Moran's I value of the SEM model. However, the BP 
test result of the SEM model was significant, implying 
the existence of heteroscedasticity. Therefore, we tested 
the SEM with the KP HET option of GeoDaSpace. 
However, the indicators of the goodness of fit were 
not available for the SEM with the KP HET option. In 
addition, the results did not show great difference from 
the SEM model. Hence, we focused on the analysis 
results of the SLM method that were robust.

Among the variables measured by the AWS, only 
the coefficients of humidity showed a statistical 

significance. Wind velocity and the altitude of AWS 
were not significant for the air temperature at night, 
which is a different result compared to the result of air 
temperature in the daytime. Meanwhile, the coefficient 
of the building coverage was positive and significant 
at the 99% confidence level. This indicates that an 
increase in building coverage leads to an increase in air 
temperature at night. This result also differs from the 
results of daytime air temperature.

Albedo showed a negative coefficient with nighttime 
air temperature, indicating that higher albedo decreases 
nocturnal air temperature. Moreover, the coefficient 
of proximity to open space was positive. This implies 
that the increase in distance to open space results in an 
increase in nighttime air temperature. The coefficients 
of the road width were positively associated with the 
nighttime air temperature, while being significant at 
the 99% confidence level. For the gross floor area of 
land use, the coefficient of the residential uses was 
positive and significant, while commercial uses did 
not show significance. Other independent variables 
including green area ratio, surface solar radiation, and 
SVF were not statistically significant in our models. 
However, the altitude of AWS and the surface solar 
radiation showed a statistical significance in the OLS 
model. This finding indicates that the analysis results 
may vary according to the estimation methods. In other 
words, if we do not consider the spatial autocorrelation 
or the heteroscedasticity, we are more likely to have 
biased results in the statistical analyses. 

Table 4. Estimation Results of Nighttime Air Temperature

 Variables OLS Model Spatial Lag Model Spatial Error Model Spatial Error Model with 
KP HET option

Coef. t Coef.  z Coef.  z Coef. z
(Constant) 22.724 *** 10.29 10.766 *** 5.28 24.696 *** 14.19 24.381 *** 10.95
Altitude of AWS 0.169 ** 2.19 0.106 * 1.69 0.097 1.62 0.115 ** 2.08
Wind velocity -0.024 -0.52 -0.018 -0.50 -0.039 -1.10 -0.038 -1.13
Humidity -0.079 *** -11.15 -0.057 *** -9.54 -0.053 *** -8.55 -0.060 *** -4.92
Building coverage 2.7E-06 *** 2.65 2.6E-06 *** 3.11 2.4E-06 *** 2.79 2.6E-06 *** 3.17
Green area ratio -4.0E-04 -0.11 -1.6E-04 -0.05 -0.001 -0.48 -0.001 -0.31
Albedo -3.534 *** -4.38 -1.667 ** -2.48 -2.253 *** -3.38 -2.564 *** -3.65
Surface solar radiation 3.2E-04 ** 2.18 1.2E-04 1.05 8.8E-05 0.78 1.3E-04 1.22
Proximity to open space 1.2E-04 *** 2.64 6.9E-05 * 1.83 1.2E-04 ** 2.27 1.3E-04 *** 3.18
Average road width 0.035 ** 2.38 0.040 *** 3.34 0.031 *** 2.64 0.034 *** 2.91
Areal sky view factor -0.598 -1.08 -0.550 -1.22 -0.650 -1.41 -0.609 -1.28
GFA_res (residential use) 0.059 ** 2.23 0.068 *** 3.20 0.082 *** 3.83 0.079 *** 4.57
GFA_com (commercial use) 0.042 1.04 -4.6E-04 -0.01 0.006 0.19 0.007 0.21
Wy 0.560 *** 11.90
Lambda (λ) 0.714 *** 14.53 0.689 *** 14.96
Moran's I 0.338 *** 0.046 * -0.016 n/a
Jarque-Bera test 76.342 ***
Breusch-Pagan test 28.921 *** 45.365 *** 36.810 *** n/a
LM-test 86.899 *** 15.517 *** n/a
N 281 281 281 281
R-squared 0.601 0.726 0.742 0.584
LR-test 88.580 *** 90.663 *** n/a
AIC 459.591 373.011 368.928 n/a
SC 506.889 423.948 416.226 n/a

*** p<0.01; ** p<0.05; * p<0.10
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Putting the analysis results discussed in Section 
4.1 and 4.2 together, we can summarize key findings 
as follows. First, it is necessary to apply spatial 
regression methods for an analysis of air temperature 
in daytime or nighttime. Furthermore, appropriate 
models may vary according to the spatial or temporal 
characteristics. Second, variables including humidity, 
average road width, and gross floor area of residential 
uses (GFA_res) have strong effects on air temperature 
during the day and nighttime. Other variables showed 
different results between daytime and nighttime. In 
particular, solar radiation, SVF and gross floor area 
of commercial uses were highly related with daytime 
air temperature, while building coverage was only 
associated with the nighttime air temperature. 
4.3 Differences in Air Temperature between Daytime 
and Nighttime

The difference in air temperature between daytime 
and nighttime may be used to identify UHI effects. 
If high air temperature during the daytime remains 
at night, we can suspect UHI effects. In this section, 
we analyzed the association between urban design 
factors and the air temperature difference between 
day and night. Analysis results are in Table 5. Low air 
temperature differences indicate the high intensity of 
nocturnal UHI because high air temperature differences 
imply the decrease of air temperature at night. As 
described earlier, we went through the decision process 
of the estimation method focusing on the spatial 
autocorrelation and heteroscedasticity effect of our 
data. As shown in Table 5., the analysis results of the 
SEM showed the highest goodness of fit. Furthermore, 

the Moran's I value of the SEM shows that the spatial 
autocorrelation was fully controlled. Meanwhile, since 
the Breusch-Pagan test result for SEM indicated the 
existence of heteroscedasticity, we applied the SEM 
estimation with the KP HET option in GeoDaSpace.

Focusing on the analysis results using SEM, the 
coefficient of the altitude of AWS was negative and 
significant. This finding indicates that an increase 
in the AWS altitude led to a decrease in the air 
temperature difference between day and night. In the 
case of the green area ratio and albedo, the coefficients 
were positive and significant at the 95% confidence 
level. This result implies that the increase in green area 
ratio and albedo led to an increase in air temperature 
difference between day and night. This result further 
implies that green area ratio and albedo has an effect in 
mitigating the nocturnal UHI phenomena. 

5. Conclusion
In this study, we developed multivariate regression 

models that address the relationships between urban 
design factors and the air temperature during the 
day and night. In addition, by setting the dependent 
variable as the air temperature difference between day 
and night, we identified the urban design measures that 
effect nocturnal UHI intensity. Moreover, we applied 
spatial statistics techniques to control for the effects of 
spatial autocorrelation and heteroscedasticity. 

The findings of our study indicate that sky view 
factor (SVF) and the gross floor area have a significant 
influence on the daytime air temperature, while the 
building coverage and albedo showed strong correlations 

Table 5. Estimation Results on Air Temperature Difference between Day and Night

OLS Model Spatial Lag Model Spatial Error Model Spatial Error Model with 
KP HET option

Coef. z Coef.  z Coef.  z Coef. z
(Constant) 20.174 *** 6.77 8.338 *** 4.39 11.150 *** 5.61 11.635 *** 4.89
Altitude of AWS -0.329 *** -3.12 -0.272 *** -4.11 -0.262 *** -4.08 -0.252 *** -3.64
Building coverage -3.2E-06 ** -2.21 -1.7E-06 * -1.85 -1.2E-06 -1.26 -1.3E-06 -1.23
Green area ratio -0.006 -1.03 0.004 1.20 0.007 ** 2.09 0.006 1.22
Albedo 5.586 *** 4.81 2.461 *** 3.36 2.060 *** 2.64 2.359 ** 2.55
Surface solar radiation -4.6E-04 ** -2.15 -2.4E-04 * -1.78 -1.9E-04 -1.41 -2.2E-04 -1.51
Proximity to open space -5.2E-05 -0.75 -2.6E-05 -0.60 -4.2E-05 -0.76 -4.5E-05 -0.88
Average road width -0.012 -0.64 -0.015 -1.29 -0.016 -1.38 -0.017 -1.20
Areal sky view factor 0.102 0.14 0.204 0.44 0.233 0.48 0.251 0.37
GFA_res (residential use) 0.007 0.19 -0.038 -1.62 -0.049 ** -2.08 -0.049 * -1.81
GFA_com (commercial use) -0.109 * -1.95 -0.024 -0.68 -0.020 -0.54 -0.019 -0.42
Wy 0.908 *** 29.92
Lambda (λ) 0.933 *** 35.41 0.919 *** 18.35
Moran's I 0.473 *** -0.015 -0.018 n/a
Jarque-Bera test 416.225 ***
Breusch-Pagan test 64.926 *** 66.494 *** 53.141 *** n/a
LM-test 436.830 *** 412.431 *** n/a
N 292 292 292 292
R-squared 0.188 0.669 0.678 0.133
LR-test 228.598 *** 235.199 *** n/a
AIC 722.042 495.444 486.843 n/a
SC 762.486 539.565 527.287 n/a
*** p<0.01; ** p<0.05; * p<0.10
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to the nocturnal air temperature. Moreover, the average 
road width and the gross floor area of residential uses 
(GFA_res) were significant variables for both day and 
night air temperature. Proximity to open space, albedo, 
and gross floor area of residential uses showed strong 
correlations to the nocturnal air temperature.

Overall, our study indicated that spatial and 
temporal issues are very important in determining 
air temperature due to spatial autocorrelation and 
heterogeneity. Our models confirmed the importance 
of capturing the effects of spatial autocorrelation and 
heteroscedasticity to reach a robust estimation result. 
We further found that the analysis results using the 
air temperature measured by AWSs in Seoul slightly 
differed from the analysis results using the surface 
temperature extracted by satellite images. 

Our results with air temperatures from many AWS 
sites in Seoul provide a valuable example for how 
urban air temperature studies can be conducted. Our 
study also contributes to the literature on estimating the 
UHI intensity by using the measured air temperature 
and advanced statistical techniques. However, our study 
results cannot be generalized because we only focused 
on the city of Seoul. Moreover, our study results 
were not able to deal with various built environment 
measures such as heat sinks or the specific forms of 
buildings. Thus, additional research should address the 
relationships between air temperature and urban design 
factors in large cities using various environmental 
indices. Furthermore, we suggest research examining 
the seasonal effect in the relationship between urban 
indices and air temperature. 
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