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Abstract: Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-
Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the 
entangled photon pair. This phenomenon has been observed in materials with very weak 
dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment 
must be modified to realize dispersion cancellation. All-order dispersion cancellation using 
balanced dispersion was suggested by Steinberg. However, the same phenomenon is 
expected to occur even if a photon pair is not entangled. This behaviour can be explained by 
path indistinguishability with identical dispersion. To achieve an all-order dispersion 
experiment that cannot be explained classically, we modified the experiment and performed 
another all-order dispersion cancellation experiment that cannot be explained by identical 
dispersion. This is the first demonstration of nonclassical all-order dispersion cancellation. 
© 2017 Optical Society of America 
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1. Introduction 
Since Einstein-Podolsky-Rosen [1] demonstrated that entanglement exists in quantum 
mechanics, the nonclassical nature of the entangled photon pair has been observed in various 
experiments. These experiments were realized with the position-momentum entangled 
photons [2–4] and also with the time-frequency entangled photon pair [5–15]. Whether these 
phenomena can be regarded as evidence that an entangled photon pair has properties that 
differ from those of classical light or a separable photon pair has been intensely debated [16–
20]. 

To reveal the nonclassicality of the photon pair, an experiment should reflect a 
characteristic feature of the entangled system. The most characteristic feature of an energy-
time entangled photon pair is that it has both strong temporal correlation and frequency anti-
correlation 

 ( ) ( ) 1.s i s i pt t ω ω ωΔ − Δ + − ≤  (1) 

where ts and ti are the detection times of the signal and idler photons, respectively; and ωs, ωi 
ωp are the angular frequencies of the signal, idler, and pump beam, respectively. This feature 
generates phenomena that are nonclassical and nonintuitive. 

One phenomenon that reveals this nonclassical feature is dispersion cancellation. Two 
types of dispersion cancellation have been studied in quantum optics to date: the nonlocal 
dispersion cancellation of Franson, and the local dispersion cancellation of Steinberg [9–13]. 
Figure 1(a) and 1(b) demonstrate how the two dispersion cancellation types are nonintuitive. 
Figure 1(a) shows the nonlocal dispersion cancellation scheme of Franson. If two single-
photon wave packets with strong temporal correlation pass through dispersive materials, their 
widths become broadened because of dispersion. In this case, the temporal correlation 
between the photons should be weakened. However, the temporal correlation is preserved in 
an experiment with an entangled photon pair. Figure 1(b) shows the local dispersion 
cancellation approach of Steinberg. A dispersive material is placed in one arm of the HOM 
interferometer. If two single-photon wave packets with strong temporal correlation pass 
through the interferometer, one wave packet becomes broadened. Thus, the two wave packets 
are no longer indistinguishable, and the visibility of the HOM interference will likely be 
reduced. However, the HOM interference pattern will not be changed, and only its position 
moves in an experiment with an energy-time entangled photon pair. 

                                                                                                   Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1361 



The frequency anti-correlation of the entangled pair cancels out the dispersion effect 
[8,13]. These dispersion cancellation phenomena can be realized only when the photon pair 
has both strong temporal correlation and strong frequency anti-correlation. Therefore, 
dispersion cancellation is one of the few phenomena that show the nonclassicality of the 
energy-time entangled photon pair. Without such a strong frequency anti-correlation, the 
HOM dip will be distorted [21]. 

However, Erdmann [22] also showed that the HOM dip can be restored in balanced 
dispersion without strong frequency anti-correlation. In such an experiment, photon pairs are 
generated via spontaneous parametric down-conversion (SPDC) using an ultrashort pump 
beam and balanced dispersion is realized with weak dispersion materials. For an ultrashort 
pump beam, the frequency anti-correlation between the signal and idler photons is very 
weak. 

To realize both of the dispersion cancellation schemes of Steinberg and Franson, the 
dispersion of the medium should be so weak that the dispersion relation can be approximated 
to the second-order coefficient. If higher-order coefficients are non-negligible, those 
dispersion cancellation schemes are no longer valid. For example, Okamoto et al. [23] 
showed that the HOM dip is clearly distorted when the dispersion cancellation method of 
Steinberg is attempted with a strongly dispersive medium. 

Steinberg suggested that all-order dispersion cancellation [24], i.e., the compensation of 
both the even-order dispersion and odd-order dispersion of higher-order coefficients, might 
be realized by balanced dispersion. If an identical medium is placed in both arms of the 
HOM interferometer, odd-order dispersion is cancelled by the frequency anti-correlation of 
the entangled photon pair. In contrast, even-order dispersion is cancelled because of the 
original nature of the HOM interference [13,25]. Similar to the experiment of Erdmann [22], 
this all-order dispersion cancellation is expected to occur even without strong frequency 
correlation. As an extreme case, according to our theoretical considerations, the original 
HOM dip can be restored in balanced dispersion with an independent and separable photon 
pair with strong temporal correlation (see Appendix B). 

In this case, the two photons are not entangled, and there is no frequency anti-correlation. 
It is the indistinguishability of the wave packet after identical dispersion that restores the 

original HOM dip. In other words, all-order dispersion cancellation in HOM interference can 
be realized both with and without frequency anti-correlation. This is the reason that the 
nonclassicality of an entangled photon pair cannot be observed in this type of all-order 
dispersion cancellation. 

Therefore, we considered an all-order dispersion cancellation experiment that can be 
realized only with an energy-time entangled photon pair (Fig. 1(d)). If a Mach-Zender 
interferometer is added to the HOM interferometer, then single-photon wave packets with 
classical temporal correlation cannot explain the interference pattern [26]. If balanced 
dispersion materials are placed in this interferometer, the restoration of the HOM interference 
pattern in this system cannot be explained by identical dispersion. Indeed, only two-photon 
temporal coherence and frequency anti-correlation can explain this effect. We will show that 
all-order dispersion cancellation in a modified HOM interferometer is one of few phenomena 
that demonstrate the nonclassicality of the energy-time entangled state. 

In the next section, we will explain in detail the principle of all-order dispersion 
cancellation in a HOM interferometer with an energy-time entangled photon pair. We will 
also explain why all-order dispersion cancellation in a modified HOM interferometer 
requires energy-time entanglement but cannot be realized with a separable photon pair with 
strong temporal correlation. 

In the Experiment section, we will present how all-order dispersion cancellation can be 
realized experimentally. We will also show the distortion and restoration of the HOM 
interference pattern in terms of the change of the dispersion balance of the signal and idler 
photons. 
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2. Balanced dispersion and all-order dispersion cancellation 
If a pump beam with angular frequency ωp generates a photon pair via SPDC and if the 
angular frequency of the signal photon is ωs and the angular frequency of idler photon is ωi, 
the quantum state of the photon pair can be written as [5,6,27] 

 

† †

† 0 † 0

† 0 † 0

ˆ ˆ( , ) ( ) ( ) ( ) 0

ˆ ˆ( , ) ( ) ( ) ( ) 0 .
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with 0 0 0 0, , 2s s s i i i s i pμ ω ω μ ω ω ω ω ω= − = − = =  and 0 0'( , ) ( , )s i s s i if fμ μ ω μ ω μ= + + , 

( ) '( , )s s sF fμ μ μ= − . 

This photon pair passes through a dispersive medium with a dispersion relation of the 
following form: 
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where 
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ω ωα β= = . α is the reciprocal of the group velocity, and β is related to 

the dispersion of the group velocity. 
Steinberg’s dispersion cancellation experiment showed that if a weakly dispersive 

medium is 

 

Fig. 1. Nonclassicality of dispersion cancellation.(a) Nonlocal dispersion cancellation of 
Franson. Signal and idler photons pass through dispersive materials with opposite dispersion 
coefficients. The temporal correlation between the signal and idler photons is preserved. (b) 
Local dispersion cancellation of Steinberg. A dispersive material is placed in the path of a 
signal photon. The shape of the HOM dip is preserved, and only the position of the dip is 
shifted. (c) All-order dispersion cancellation with balanced dispersion. Identical dispersive 
materials are placed in the paths of the signal photon and the idler photon. Even if the material 
has an arbitrary dispersion property, the HOM dip will be preserved. (d) Balanced dispersion 
with a modified HOM interferometer. The Mach-Zender interferometer is placed in one path 
of the interferometer in (c). 
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placed in the path of the signal photon, then the HOM dip is not distorted, and only its 
position is shifted. The term “Weakly dispersive” describes the case in which the dispersion 

relation can be approximated to the second-order coefficient β. The HOM interference 
dip without a dispersive medium is given by 
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 (4) 

when we rewrite all the detuning as μ. ΔL is the path length difference between signal path 
and idler path. The HOM dip with a dispersive medium in Steinberg’s dispersion cancellation 
is modified to 
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where L is the length of the dispersive medium (see Appendix A). The shape of the dip is not 
changed, and only the position of the dip is shifted [13,26]. However, this process is only 
valid when the dispersion relation can be approximated to the second-order coefficient. If 
higher-order terms are non-negligible, the dispersion cancellation effect mentioned above is 
not valid. 

For example, if we consider the dispersion relation up to the third-order term, we have 
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and the HOM dip is modified to 

 

Fig. 2. Experimental setups. (a) Signal and idler photons are generated via SPDC. The two 
photons are energy-time entangled. (b) HOM interference with balanced dispersion. Both 
signal and idler photons pass through respective Rb vapour cells and are then detected by a 
Single-photon Avalanche Detector (SPAD, Perkin Elmer SPCM-AQRH-1X). At the same 
temperature, the dispersion properties of the two cells are identical. (c) Balanced dispersion in 
a modified HOM interferometer. Mach-Zender interferometer is placed in one arm of the 
interferometer. 
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The phase differences from odd-order terms are not cancelled out, and the path difference for 
complete destructive interference depends on the frequency of the signal photon. As a result, 
the HOM dip is distorted. The experiment of Okamoto et.al [23] shows this phenomenon 
very well. A solution for this problem was previously suggested by Steinberg [24]. 

Suppose that the signal and idler photons with detuning ,μ μ−  each pass through a 

dispersive medium, as shown in Fig. 2(b). If we express the dispersion relation to the third-
order dispersion coefficient, we have 
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The phase change of the whole quantum state is the sum of the phase changes for the signal 
and idler photons. If the signal and idler photons travel the same distance in a dispersive 
medium, the phase changes are proportional to ks(μ) + ki(−μ) and are expanded as follows: 

 2 3
0( ) ( ) 2 ( ) ( ) ( ) ... .s i s i s i s ik k kμ μ α α μ β β μ γ γ μ+ − = + − + + + − +     (9) 

If two dispersive media have the same dispersion coefficients, then all the odd-order terms 
are cancelled out: 

 2
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Therefore, the quantum state for the frequency pair becomes 
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,if we approximate even order terms to the second order coefficient. If the photons of the 
photon pair in this quantum state meet at the beam splitter, HOM interference occurs, and 
even-order dispersion cancellation is achieved. The same principle is applied to the higher-
order terms. Based on these processes, all-order dispersion cancellation, in which both the 
odd-order dispersion effect and the even-order dispersion effect are cancelled, is realized. 

However, the recovery of the HOM interference pattern can also be achieved with a 
photon pair without energy-time entanglement. As explained in the Appendix B, the same 
phenomenon is expected to occur when the entangled pair is replaced with separable single 
photons exhibiting strong temporal correlation. If the two wave packets pass through a 
balanced dispersion HOM interferometer, then the original interference pattern can be 
restored. Thus, all-order dispersion cancellation in a HOM interferometer can be realized 
with or without energy-time entanglement. 

To reveal the nonintuitive or nonclassical nature of an entangled photon pair with all-
order dispersion cancellation, we devised another experiment. This type of phenomenon can 
be realized by using HOM interference that cannot be explained with two separable single-
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photon wave packets. This nonclassical behaviour can be achieved using a balanced 
dispersion HOM interferometer with a Mach-Zender interferometer in the path of the idler 
photon, as shown in Fig. 3. In [26], HOM interference that can be explained only by biphoton 
interference was observed. A Mach-Zender interferometer was inserted in one arm of the 
HOM interferometer in the experiment of [26]. Using this approach, an explanation of the 
interference pattern based on the indistinguishability of two identical single photon wave 
packet was excluded. If an identical dispersive medium (atomic cell) is placed in each arm of 
the interferometer, then the experimental setup becomes the same as that of the experiment 
presented in Fig. 3(a). 

In the setup of Fig. 3(a), the signal photon can pass through both the long path and the 
short path. When Lo = (LLong + LShort)/2, if the idler photon travels along the long path, it 
travels a longer distance than the signal photon. The interference of a dispersed biphoton 
wave packet can be analysed using a method similar to that described in [26].;Suppose that a 
photon is detected at D1 at time t1 and that another photon is detected at D2 at time t2. We 
investigate the interference that determines the probability of this event. Following Strekalov 
et al., we introduce the concept of an “effective photon wave function”, which is defined as 

 ( ) ( )
1 2 1 1 2 2

ˆ ˆ( , ) 0 ( ) ( ) ,t t E t E tψ + += Ψ  (12) 

where Ψ is the quantum state of the entangled photon pair [6,24]. If we define the 

 

Fig. 3. Two-photon interference in a modified HOM interferometer with balanced dispersion. 
When photons are detected at D1 and D2, the two photons could have originated from four 
indistinguishable paths. The temporally advanced two-photon detection amplitude can be 
transmitted or reflected at the beam splitter. The temporally delayed amplitude also can be 
transmitted or reflected at the beam splitter. . Since the signal photon path length for the 
amplitude generated earlier is relatively long, the amplitudes can interfere at the detectors. 
The coincidence count when Lo = (LLong + LShort)/2 is determined by this interference. The 
effective photon wave function corresponding to each path is marked. (b) Biphoton wave 
packet after balanced dispersion. Only the width of the wave packet is increased via even-
order dispersion. The effective two-photon wave functions corresponding to the paths in (a) 
are drawn in the temporal domain. Wave packets connected by the arrows are pairs that 
interfere when Lo = (LLong + LShort)/2. If the phase difference between them is π, they interfere 
destructively, resulting in a dip. If the phase difference is 0, they interfere constructively, 
generating a peak. T+ = t1 + t2 and L+ denotes sum of signal path length and idler path length. 
L+ = Ls + Li. 
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effective wave function to detect photons as 12 1 2( , )t tψ , we can obtain the following: 

 0 0 0 0
12 1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ).T LT LR R T ST SR Rt t t t t t t t t tψ ψ ψ ψ ψ= + + +  (13) 

LT indicates that the idler photon passes through the long arm of the MZ interferometer and 
is transmitted at the beam splitter. 0T indicates that the signal photon passes through the L0 
path and is transmitted at the beam splitter. 0R indicates that the signal photon passes the L0 
path and is reflected at the beam splitter. SR indicates that the idler photon passes through the 
short arm of the MZ interferometer and is reflected at the beam splitter [6,26]. 

Interference between those four effective photon wave functions generates a dip or peak 
at the central position. Figure 3(b) shows this interference between effective two-photon 
wave functions in the temporal domain. If the signal photon follows the short path, it travels 
a distance shorter than that travelled by the idler. Both the signal and idler photons pass 
through their respective atomic cells; thus, odd-order dispersion is cancelled, and only even-
order dispersion remains. The distribution of the biphoton wave packet is shown in Fig. 3(c). 
The two dispersed wave packets corresponding to the short and long signal paths are 
overlapped. If Lo = (LLong + LShort)/2, the dispersed wave packet of 0

1 2( , )LT Tt tψ and the wave 

packet of the 0
1 2( , )R SRt tψ  path can be overlapped and interfere (T denotes transmission, and 

R indicates reflection). Because the two wave packets are generated at different times in the 
SPDC crystal, they have different overall phases. This phase difference resulting from the 
generation time difference is determined by the MZ interferometer. The interference terms 
also depend on this phase difference. 

The signal and idler each pass through an identical Rb cell. When the temperatures of 
both cells are the same, then the odd-order dispersion is cancelled out by frequency anti-
correlation. Similar to the case of an unmodified HOM interferometer, even-order dispersion 
does not change the HOM interference pattern. Therefore, the original interference pattern 
without a dispersive medium is restored, and all-order dispersion cancellation is realized. 

This phenomenon cannot be explained as interference between two identical single-
photon wave packets. If two separable wave packets pass through this modified HOM 
interferometer, as shown in Fig. 1(d), then the wave packet of the signal photon is modified. 
After passing through a dispersive medium, the wave packets of both the signal and idler 
photons are dispersed and spread out. These two wave packets cannot be overlapped at the 
beam splitter (BS). In other words, the restoration of the central dip or peak in the modified 
HOM interferometer with balanced dispersion can be achieved only with an entangled 
photon pair. The formation of the central dip or peak is possible because of two-photon 
temporal coherence. The temporal coherence originates from frequency anti-correlation. 
Additionally, odd-order dispersion is cancelled nonlocally because of frequency anti-
correlation. All-order dispersion cancellation in the modified HOM interferometer requires 
both strong temporal correlation and strong frequency anti-correlation. The nonclassical 
nature of the entangled photon pair is revealed by this process. 

3. Experiment 
The goals of the experiments are to realize all-order dispersion cancellation and reveal its 
nonclassical nature. As a preliminary experiment, we achieved all-order dispersion 
cancellation using two identical dispersive media—one in the signal path and the other in the 
idler path of the HOM interferometer—as suggested by Steinberg [24]. This experiment 
shows that the HOM dip is distorted when the dispersion is unbalanced and that, for balanced 
dispersion, the original dip is restored. 

In this experiment, the pulse broadening of a Gaussian wave packet in a dispersive 
medium can be calculated as 
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Figure 4 shows how the calculated envelope of a Gaussian pulse (full width at half maximum 
[FWHM] = 3 nm) is distorted in the Rb vapour cells with temperatures of 60°C and 140°C. 
As Shown by the large asymmetry of wave packet in Fig. 4, the distortion caused by the odd-
order dispersion coefficient is very high in the Rb vapour cell at 140°C. Therefore, unlike 
Steinberg’s experiment [13], dispersion cancellation cannot be realized in experiment 1 if the 
dispersive medium is placed in only one arm of the interferometer. Identical dispersive media 
(Rb cells at the same temperature), one placed in each arm of the interferometer, were used to 
achieve all-order dispersion cancellation. 

Figure 5(a) shows the experimental result. The temperature of the Rb cell in the signal-
photon path is fixed at 140°C. The temperature of the Rb cell in the idler path is varied (142, 
144, 146, 148, and 150°C). The HOM dip for each case is shown in the figure. At 142 and 
144°C, the side peak (dip) resides to the left of the main dip. At 148 and 150°C, a waving 
pattern can be observed to the right of the main dip. At 146°C, the waving pattern disappears 
from both sides and the HOM dip without dispersion is restored 

This result confirmed that dispersion cancellation cannot be realized by placing a Rb hot 
vapour cell in only one arm, as in Steinberg’s dispersion cancellation approach. We also 
verified that all-order dispersion cancellation is achieved when a balanced dispersion 
material is placed in the idler path. The temperatures of two cells are not exactly the same 
when the HOM dip is restored because a constant difference exists between the nominal 
temperatures of the temperature sensor and the actual temperature of the Rb cell. As shown 
in Fig. 5(b), if we increase the temperature of the Rb cell in the idler path, the visibility of the 
HOM dip gradually increases and is almost completely restored at exactly 146°C. If the 
temperature is further increased, however, the visibility decreases again. 

Although this experiment shows that the HOM dip is restored, the nonclassicality of the 
energy-time entangled photon pair is not revealed in the experiment because it can also be 
realized with an identical dispersion of separable pulses (see Appendix B). Thus, another 
experiment must be devised to reveal the nonclassical nature of the entangled photon in all-
order dispersion cancellation. Thus, we realized all-order dispersion cancellation with a 
modified HOM interferometer. As in the experiment by Strekalov et al. [26], a Mach-Zender 
interferometer is placed in the idler path of the HOM interferometer. The Mach-Zender 
interferometer is unbalanced, and the path length difference is 600μm. Identical dispersion 
media are used: one placed in the signal arm and the other in the idler arm. The bandwidth of 

 

Fig. 4. Distortion of a wave packet by dispersion. If a Gaussian pulse passes through a Rb cell, 
its shape becomes distorted because of dispersion. At 60°C, the effect of dispersion is 
negligible, whereas at 140°C, the Gaussian wave packet is clearly distorted. After dispersion, 
the wave packet is highly asymmetric, and the width of the wave packet is increased by more 
than 10 times. 
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the idler photon is 3nm by post selection, and the corresponding coherence length is ~140μm. 
The path length difference is several times longer than the coherence length. Thus, single-
photon interference is avoided. 

In the absence of the dispersion effect, the interference pattern is similar to that shown in 
Fig. 5(c). The HOM dips of the short and long paths reside in the left and right sides of the 
pattern, respectively. In the centre of the pattern, a dip (or peak) generated from the phase 
difference between the short and long paths of the MZ interferometer is observed. 

As explained previously, the peak or dip in the centre cannot be explained by the overlap 
of the wave packets of the signal and idler photons, i.e., if this peak or dip is restored, we can 
explain this phenomenon only by the frequency anti-correlation of an entangled photon pair. 
The original interference pattern (black line) is observed when the temperatures of both cells 
are 20°C. The dispersion effect is negligible at this temperature, as shown in Fig. 4. When 
one of the cells is heated to 140°C, dispersion occurs only in the cell. In this case, the 
dispersion is not balanced, and the interference pattern is distorted (red line) from the original 
interference pattern (black line). When the temperature of another cell is also increased to 
140°C, balanced dispersion is achieved. In this case, the original interference pattern is 
clearly restored (blue line). This phenomenon can be treated more quantitatively. The 
distortion of the two-photon interference pattern reflects the odd-order dispersion of a 
biphoton wave packet. We can determine the degree of odd-order dispersion based on the 
visibility of the interference dip or peak. As shown in Fig. 4, asymmetric distortion occurs 
via odd-order dispersion. Thus, the degree of asymmetry reflects how much odd-order 
dispersion occurred. To measure the degree of asymmetry, we can decompose a biphoton 
wave packet to a symmetric function and an anti-symmetric function. If the probability for 
the symmetric function is PS and the probability for the anti-symmetric function is PA, the 
quantity, . . 1- -S AD A P P= , reflects the degree of asymmetry. For asymmetric wave 

functions, D.A.>0. More asymmetric functions are correlated with higher D.A. values. The 
visibility cannot be V = 1 if the wave function is asymmetric. For a more asymmetric wave 
function, the visibility has a smaller value. D.A. can be calculated as D.A.= 1-V (see 
Appendix C). 

 

Fig. 5. Distortion and restoration of HOM interference pattern. (a) HOM interference patterns 
for different RB cell temperatur-es. The temperature of the Rb cell in the idler path is varied 
(142-150°C), whereas the temperature of the Rb cell in the signal-photon path is fixed at 
140°C. (b) Visibility of the HOM dip. The visibility depends on the temperature of the Rb cell 
in the idler path. (c) Two-photon interference pattern in the modified HOM interferometer. As 
the phase difference changes in the Mach-Zender interferometer, the interference pattern near 
position 0 changes from a dip to a peak. (d) Restoration of the two-photon interference pattern 
in the modified HOM interferometer with balanced dispersion. The phase difference between 
the short and long paths in MZI is 0, and a peak is generated by interference. 

                                                                                                   Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1369 



Figure 5(b) shows the change in the visibility at different Rb cell temperatures. At 142°C, 
the visibility is 0.85, and the D.A. is 0.15. At 146°C, the visibility increases to 0.94, and the 
D.A. decreases to 0.06. At 150°C, the visibility decreases further to 0.77, and the D.A. 
increases to 0.23. These trends reveal the change in the wave function asymmetry caused by 
changing the temperature. 

The modified HOM interference can be analysed similarly (see Appendix D). For the 
curve of Fig. 5(d), V = 0.8150 at low temperature (60°C). The maximum visibility without 
dispersion in Fig. 5. (d) is less than that of the interference pattern without the Rb cell in Fig. 
5(c) because mode matching is imperfect in the experiment shown in Fig. 2(c). The Rb cell 
geometry is not ideal for beam alignment. The two signal beams in the MZ interferometer 
also travel different distances. When these effects are combined, it is difficult to realize 
perfect mode matching. Therefore, V = 0.8150, even when the biphoton wave packet should 
have perfect symmetry. Furthermore, D.A. = 0.1850 if we apply the formula D.A.= 1-V . 
When the idler cell temperature is increased to 140°C, the visibility decreases to V = 0.7150, 
and the D.A. increases to D.A. = 0.2850. When the signal cell temperature is also increased to 
140°C, the visibility increases further to V = 0.8409, and the D.A. decreases to 0.1591. 

4. Methods 
The entangled photon source was prepared by injecting a 396.5-nm pump beam into a type I 
beta barium borate (BBO) crystal. The centre frequencies of the signal and idler photons are 
both 793 nm, and the line width is 3 nm. Each photon passes through a Rb vapour cell with 
strong dispersion (i.e., high-order dispersion coefficients cannot be neglected). The Rb atom 
has a D1 transition line near 795 nm, and the refractive index is given as 

 .

2

2 4j jk

j=1 k=1-
jk j c

N μ g
n(ω)= dωG(ω) 1-

2εh ω -ω +i(γ + γ )

 
 
 
 
 

∞

∞
 (15) 

where j = {1,2}→{Rb85, Rb87}, k = {1,2,3,4}→{if j = 1 F = 2→F’ = 2, F = 2→F’ = 3, F = 
3→F’ = 2, F = 3→F’ = 3}, {j = 2 F = 1→F’ = 1, F = 1→F’ = 2, F = 2→F’ = 1, F = 
2→F’ = 2}, and G(ωi) is the Doppler convolution function. μj is the dipole moment, gjk is the 
relative peak strength, and N is the atomic number density [28]. 

Because the path length difference changes slightly because of mechanical vibration, the 
phase also changes continuously in the modified HOM interferometer. To fix the phase, 
Piezo-electric Transducer (PZT) is attached to the mirror in the long path of the Mach-Zender 
interferometer. The Mach-Zender interference signal of a reference laser (a He-Ne laser) was 
used to detect the error signal. Low-frequency noise is eliminated (≤ 300 Hz) by adding a 
voltage from the He-Ne laser error signal-detection system to the PZT. The PZT is 
proportional-integral (PI) controlled. 

5. Conclusion 
The nonlocal dispersion cancellation method of Franson and the local dispersion cancellation 
method of Steinberg reveal the nonclassical nature of an energy-time entangled state. Those 
nonclassical phenomena can be realized only when a photon pair has both strong temporal 
correlation and strong frequency anti-correlation. Both dispersion cancellation schemes can 
be achieved only when the dispersion coefficients can be approximated to the second order. 
Different methods are required to obtain all-order dispersion cancellation. Therefore, we 
achieved all-order dispersion cancellation using balanced dispersion with HOM. This 
phenomenon, however, is possible even without energy-time entanglement. Thus, the HOM 
dip can be restored without dispersion, even if two photons are independent and separable. 
The indistinguishability from identical dispersion restores the original HOM dip. 
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Thus, we restored the HOM interference pattern using a modified HOM interferometer 
with a Mach-Zender interferometer. This finding can be explained only by considering both 
temporal correlation and frequency anti-correlation. Therefore, the nonclassical nature of an 
energy-time entangled system can be revealed, even if the dispersive material has an arbitrary 
dispersion property. 

Appendix A: Hong-Ou-Mandel (HOM) interference and second order 
dispersion cancellation with an energy-time entangled photon pair 
Dispersion cancellation of Steinberg [13] is schematically shown in Fig. 6(a). The dispersion 
relation can be approximated to the second-order dispersion coefficient for a glass sample. If 
this glass is placed in the idler path of the HOM interferometer, the HOM dip is not distorted, 
and only its position is shifted. If a pump beam with angular frequency ωp generates a photon 
pair via spontaneous parametric down conversion(SPDC) and if the angular frequency of the 
signal photon is ωs and the angular frequency of the idler photon ωi, the quantum state of the 
photon pair can be written as [5,6,27] 
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with 0 0 0 0, , 2s s s i i i s i pμ ω ω μ ω ω ω ω ω= − = − = =  

and 0 0( , ) ( , )s i s s i if fμ μ ω μ ω μ′ = + + , ( ) ( , )s s sF fμ μ μ′= −  

This photon pair passes through a dispersive medium with a dispersion relation of the 
following form: 
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μ = ω−ω0 and 
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ω ωα β= =  where α is the reciprocal of the group velocity, and 

β is related to the dispersion of the group velocity. If this dispersive medium is placed in the 
path of the signal photon, the magnitudes of wave vector of the signal photon with detuning μ 
and detuning −μ become 
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What is the quantum state of a photon pair with detunings μ and −μ changed by dispersion if 
they are detected at D1 and D2? The quantum state before dispersion is [5,6, 27] 

 † 0 † 0ˆ ˆ( ) ( ) ( ) 0 .s s i id F a aμ μ ω μ ω μΨ = + −  (19) 

After passing the BS, the quantum state becomes 
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where † 0 † 0ˆ ˆ( ) 0 , ( ) 0 .s s i is i
a aμ ω μ μ ω μ= + − = −  

How is the quantum state changed if a dispersive medium is placed in the path of the 
signal photon? The difference between the phase change in vacuum and that in the dispersive 
medium is given as (ks(μ)−ωs /c)L and (ks(−μ)−ωs /c)L for the quantum state of different 
detunings when the length of the medium is L. Therefore, the quantum state becomes 
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after passing through the dispersive medium. Because 
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Fig. 6. HOM interference and dispersion cancellation. (a) Dispersion cancellation experiment 
of Steinberg [1]. The signal photon of the entangled photon pair travels in free space, whereas 
the idler photon passes through a dispersive material (glass sample L). The two photons meet 
at the beam splitter(BS), and HOM interference occurs. The shape of the interference pattern 
is not distorted, and only the position of the dip is shifted. μ, −μ are detunings from the half-
centre frequencies of photons detected at detector 1(D1) and detec-tor 2(D2), respectively. (b) 
The dispersion experiment of Stei-nberg performed with two independent single-photon wave 
packets. The wave packet is distorted after it passes through the dispersive material. Different 
from the original experim-ent of Steinberg, dispersive material has strong dispersion property, 
i.e., high order dispersion coefficients are non-negligible, in this figure. Whether dispersion is 
weak or strong, dispersion cancellation does not occur because the two wave packets cannot 
overlap completely at the beam splitter. (c) Two independent and separable wave packets pass 
through a dispersive material. The dispersion of the two wave packets is identical. Therefore, 
the two wave packets are indistinguishable at the BS, and the HOM dip is restored without 
entanglement. 

the quantum state can be rewritten as 
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The coincidence count for this pair is 
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When ΔL = (1−cα)L, P12(μ,−μ) = 0. 
As shown above, the phase changes originated from even-order terms in the dispersion 

relation are identical for both the Reflection-Reflection path and Transmission-Transmission 
paths. Therefore, these phase changes cancel each other out when the total phase change is 
calculated. If the dispersion relation is approximated to the second-order terms, only the 
effect from group velocity remains. The HOM dip resulting from this effect is 
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and if ΔL = (1−cα)L, then P12 = 0. In other words, the shape of the HOM dip does not change, 
and only the position of the lowest point is shifted [1,5]. 

Appendix B: HOM interference and all-order dispersion cancellation with a 
separable photon pair 
The HOM interference of two separable and independent single photons has been reported 
[6]. To apply this experiment, we consider the balanced dispersion of two independent 
single-photon wave packets, as shown in Fig. 6(c). In this setup, the photo detection 
amplitudes for each wave packet are given as 
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and satisfy the following equation: 

 
2 2
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The two photons are generated almost simultaneously; therefore, they have strong temporal 
correlation. If we write 

 1 1 2 21, 1, 2, 2, ,, , ,s i s i
s i s i
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c c c c
− − − −= = = =   

the photo-detection amplitude for the detection of the two photons with D1 and D2 is 
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In HOM interference, the probability of detecting photons is integrated over time. (In the 
experiment, the detector is turned on for a finite time. In most cases, the time interval far 
exceeds the temporal width of the wave packet.) The coincidence count from this integration 
is 
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As in the case of the entangled photon pair, the coincidence count decreases to 0 when Ls−Li 
= ΔL = 0. The distribution of the coincidence count rate is determined by convolution 
between the photo detection amplitude of each wave packets. When ΔL/c exceeds the width 
of the wave packet, the interference effect is not manifested. Therefore, HOM interference 
can be observed with two separable and independent wave packets. 

What happens if we place a dispersion material in one arm of the interferometer, as 
shown in Fig. 6(b)? Suppose that the photo-detection amplitude of a photon changes from 
g(t) to gd(t) after dispersion. Thus, the photo-detection amplitude for two photons becomes 
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Thus, the two photon coincidence count becomes 
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Dispersion cancellation is not observed. 
Consider a balanced dispersion HOM interferometer, as shown in Fig. 6(c), in which each 

of the two independent wave packets passes through a dispersive material. Although the two 
wave packets are distorted by dispersion, they can interfere destructively because they have 
identical temporal amplitude distributions. The effect of dispersion is not manifested in the 
coincidence count. In this case, the two-photon coincidence count becomes the following: 
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The formula can be rewritten as follows: 
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This can be expanded as 
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The result does not depend on ( )k ω ; therefore, the same result is achieved, even in the 

absence of dispersion. 

 

Fig. 7. (a) Biphoton wave packet. If ts−ti has the same value, the photons are detected with the 
same probability, regardl-ess of ts, ti. The amplitudes at different times exhibit only a phase 
difference. The amplitudes at different times exhibit two-photon mutual temporal coherence. 
(b)If the signal and idler photons travel different distances, the temporal distribution of the 
amplitude is shifted. The shift is determined by the length of the path difference. 

 * *

1 1, 1, 1, 1, 1,( ) ( ) ( ) ( ).s i

d s d i s s s

L L
dt g t g t dt g t g t

c

−
= +   (34) 
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The same principle applies to 2,( )d sg t . The HOM interference pattern is restored by this 

process. Therefore, even if two photons are not entangled, the dispersion effect is not 
manifested. 

Appendix C: biphoton wave packet in HOM interference and all-order 
dispersion cancellation 
A biphoton wave packet is the amplitude distribution of an energy-time entangled photon 
pair in the time domain. An energy-time entangled state satisfies the inequality 

( ) ( ) 1s i s i pt t ω ω ωΔ − Δ + − ≤ , where ts and ti are the detection times for the signal and idler 

photons, respectively; and ωs, ωi, ωp are the angular frequencies of the signal, idler, and 
pump beams, respectively. In other words, the photon pair has strong temporal correlation 
and strong frequency anti-correlation. The frequency anti-correlation makes a biphoton wave 
packet differ substantially from the wave packets of a photon pair with classical correlation. 
The temporal distribution of the photo detection amplitude from this quantum state has the 
following form [27]: 

 
( )( ) ( ) 2ˆ ˆ0 ( ) ( ) ( ).

p
s ii t t

s s i i s iE t E t e g t t
ω

++ + Ψ = −  (35) 

 

Fig. 8. (a) Photo-detection amplitude distribution along the t1-t2 axis. The wave packets from 
the RR and TT paths are shifted in the opposite directions and are anti-symmetric around the 
t1-t2 = 0 point. The two wave packets have opposite phase, and the whole wave packet is the 
superposition of the two wave packets. (b) If the path length difference is decreased, the two 
wave packets overlap. The overlapping region causes interference terms, and the coincidence 
count rate is changed. This results in HOM interference. When the path length difference is 0, 
the two wave packets overlap completely and cancel each other out. Thus, the coincidence 
count rate is 0. (c) HOM interference after dispersion. Because the amplitudes of the TT and 
RR paths are asymmetric, they do not interfere completely. Thus, the interference pattern is 
distorted. (d) HOM interference after odd-order dispersion cancellation. Because two wave 
packets with even-order dispersion have symmetric distributions, complete destructive 
interference occurs when the path length difference is 0. 

The character of this temporal distribution clearly differs from that of the temporal 
distribution of classically correlated wave packets. If ts −ti is the same, the probability of 
detecting photons is the same, regardless of ts, ti.. If ts −ti has the same value, the photo-
detection amplitudes at different times have the same magnitude. Only the phase is different, 
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and a perfect temporal coherence exists between the photo-detection amplitudes at different 
times. Fig. 7(a) presents this distribution. 

How does this distribution change after the photon pair passes through the BS of the 
HOM interferometer? The change in the amplitude distribution after the signal and idler 
photons travel finite distances answers this question. When the distance the signal photon 
travels is Ls and that of the idler photon is Li, a difference exists between the photon 
generation time and the detection time. Thus, if a signal photon is detected at t1, it was 
generated at time 1 1 - /st t L c′ = .Therefore, if the signal and idler photons are detected at t1 and 

t2, respectively, then the photo detection amplitude is 
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1 2 1 2

1 2

1 2

1 2
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ω
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+ − −

+
+ −
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Δ
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 (36) 

 
s i

L L LΔ = −   

This distribution is shifted by ΔL/c from the original distribution of the biphoton wave packet 
along the t1−t2 axis. When the two path lengths of the HOM interferometer are different, the 
photo-detection amplitudes at D1 and D2 are also shifted. If the photon pair follows the 
reflection-reflection path at the BS, this behaviour corresponds to the signal-D2, idler-D1 
path. In contrast, if the pair follows the transmission-transmission path, they move along the 
signal- D1 idler- D2 path .Thus, the wave packet from each path is in the opposite direction 
and is anti-symmetric around the t1- t2 = 0 point. 

If a biphoton wave packet from the RR path has a distribution 1 2( / )g t t L c′ − − Δ , the 

biphoton wave packet from the TT path has a distribution 1 2( ( / ))g t t L c′− − − − Δ . The minus 

(–) sign in front of the distribution originates from the phase difference between the RR and 
TT paths. The whole wave packet of the photon pair is a superposition of the two wave 
packets. 

What happens if a dispersion material is placed in one of the paths? When the dispersion 
is very strong, the shape of the biphoton wave packet is asymmetrically distorted because of 
odd-order dispersion (Fig. 9(a)). 

 

Fig. 9. (a) If a Gaussian wave packet passes through a medium with strong dispersion, the 
wave packet becomes distorted. Additionally, because of odd-order dispersion, the shape of 
the wave packet becomes asymmetrical. (b) Nonlocal dispersion cancellation of odd-order 
dispersion. When only one photon passes through a dispersive material, the biphoton wave 
packet is distorted. If another photon also passes through an identical dispersive material, then 
odd-order dispersion is cancelled out because of frequency anti-correlation. Thus, only the 
even-order dispersion effect remains, and the wave packets become symmetric. 

The photo-detection amplitude at D1 and D2 becomes the distribution shown in Fig. 8(c). 
Because the two wave packets are anti-symmetric around the t1- t2 =0 point, they cannot 
overlap completely. Thus, complete destructive interference cannot occur, and the HOM dip 
is distorted. If dispersion is balanced at both paths, then nonlocal dispersion cancellation 
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occurs for odd-order dispersion. If one photon passes through a dispersive material, the 
biphoton wave packet is distorted. If another photon also passes through an identical 
dispersion material, then odd-order dispersion is cancelled out, and only the even-order 
dispersion effect remains (Fig. 9(b)). As demonstrated by Steinberg [13], even-order 
dispersion does not change the shape of the interference pattern for HOM interference. 
Therefore, the interference pattern without dispersion is restored. The wave packet 
distribution for this process is shown in Fig. 8(d). 

How does this apply in the case of a modified HOM interferometer with a Mach-Zender 
interferometer? Because a biphoton wave packet does not have a definite generation time, the 
two-photon amplitudes generated earlier and later have mutual temporal coherence. If the 
advanced amplitude propagates over a longer path, the two amplitudes can meet at the 
detectors and interfere. If the temperature of the cell is so low that the dispersion effect is 
negligible, the distribution of the wave packet is like that shown in Fig. 10(a). When 
L0=(LLong+LShort)/2, the wave packets connected by the arrow overlap and interfere. If the 
temperatures of the two cells are high and different, then unbalanced dispersion occurs. 
Because wave packets from the RR and TT paths are distributed asymmetrically, the total 
distribution is modified. Because the two wave packets connected by arrows have different 
distributions, destructive interference cannot occur completely. If the temperatures of the two 
cells are balanced, then nonlocal odd-order interference pattern without dispersion is 
restored. Throughout this process, energy-time dispersion cancellation occurs. Only the even-
order dispersion effect remains. Thus, the entanglement affect the interference two times. 

 

Fig. 10. (a) Biphoton wave packet distribution after the BS when L0 = (LLong + LShort)/2 in 
modified HOM inteference. The arrow indicates that the amplitude generated earlier and the 
amplitude generated later meet and interfere. The amplitude generated earlier, which travelled 
along the TT path, interferes with the amplitude generated later that travelled along the RR 
path and vice versa. T+ = t1 + t2 and L+ denotes sum of signal path length and idler path 
length. L+ = Ls + Li. (b) Biphoton wave packet after the BS in the presence of a dispersive 
material. The amplitudes that travelled along the TT and RR paths do not overlap completely. 
Constructive or destructive interference cannot occur completely, and the interference pattern 
is distorted. (c) Biphoton wave packet after the BS with balanced dispersion. Because the 
wave packets are symmetric, the amplitudes that travelled along the TT and RR paths overlap 
completely. Thus, constructive or destructive interference can occur completely, and the 
interference pattern is restored. 

Frequency anti-correlation makes the temporal information of the photon pair uncertain. 
Two-photon temporal coherence originates from this property and enables interference 
between the wave packets, as shown in Fig. 10. The nonlocal cancellation of odd-order 
dispersion also originates from frequency anti-correlation. In the absence of any of these 
processes, all-order dispersion cancellation in the modified HOM interferometer cannot 
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occur. None of these processes occur with two single-photon wave packets with classical 
temporal correlation 

Appendix D: measuring the degree of asymmetry with the visibility of HOM 
interference 
Effect of dispersion in HOM interference can be treated more quantitatively. The distortion 
of the two-photon interference pattern reflects the odd-order dispersion of a biphoton wave 
packet. We can determine the degree of odd-order dispersion based on the visibility of the 
interference dip or peak. As shown in Fig. 9, asymmetric distortion occurs via odd-order 
dispersion. We can quantitatively determine the degree of asymmetry of the wave function 
via a simple integration. Suppose that φ(t) is an asymmetric wave function. φ(-t) is a function 
that is mirror symmetric with φ(t) around t=0. To show the asymmetry quantitatively, we can 
decompose φ(t) to a symmetric function and an anti-symmetric function as shown below. The 
two functions are normalised. 
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If φ(t) has perfect symmetry or anti-symmetry, then 2 2
1a b− = .However, this value is far 

smaller than 1 if φ(t) is quite asymmetric. Therefore, 2 2
1- -a b can reflect the degree of 

asymmetry(D.A.). It is not necessary to obtain a and b directly to calculate D.A. Indeed, D.A. 
can be calculated from φ(t) and φ(-t) as follows: 
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(38) 

 
2 2*. . 1 ( ) ( ) 1D A dt t t a bϕ ϕ

∞

−∞
= − − = − −   

For an asymmetric wave function, 

 *( ) ( ) 1.dt t tϕ ϕ
∞

−∞
− <  (39) 

is always true. In other words, D.A.>0. 
More asymmetric functions are correlated with higher D.A. values. However, φ(t) and φ(-

t) can have a relationship in the form of φ(-t)=φ(t+t0), where t0 is a fixed value. In this case, 
the integral described above is less than 1, but it does not accurately reflect the degree of 
distortion. Thus, we consider a function that has the form of a convolution: 
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 *( ) ( ) ( ).v dt t tτ ϕ τ ϕ
∞

−∞
= + −  (40) 

If φ(-t) = φ(t + t0), then ν(τ) = 1 when τ = t0. However, if φ(t) is asymmetric and φ(-t)≠φ(t + 
t0) for any value of τ, then ν(τ) is always ν(τ)<1. The maximum value of ν(τ) must be found 
by varying the value of τ. This property can be applied to both HOM interference and 
modified HOM interference. The effective photon wave function for an energy-time 
entangled pair has the following form: 

 1 2( )

1 2 1 2( , ) ( ).pi t tt t e g t tω +Φ = −  (41) 

The effective wave functions for transmission-transmission path and reflection-reflection 
path are 
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The visibility is determined by the product of two functions. 
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Re ( , ) ( , ) .
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= − Φ Φ   (43) 

Since temporal width of the wave packet is far narrower than T , (16)-(20) can also be 
applied to the visibility. 
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,where t- = t1-t2. 

As (38) shows, * ( ) ( )dt g t g t− − −− is always a real value. Thus, we can rewrite (43) as 

 * ( ) ( ) .V dt g t g t− − −= −  (45) 

The visibility cannot be V = 1 if the wave function is asymmetric. For a more asymmetric 
wave function, the visibility has a smaller value. D.A. can be calculated as 

 . . 1 .D A V= −  (46) 
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