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Given a stabilized Heegaard splitting of a three-manifold, the primitive disk complex

for the splitting is the subcomplex of the disk complex for a handlebody in the splitting

spanned by the vertices of the primitive disks. In this work, we study the structure

of the primitive disk complex for the genus-2 Heegaard splitting of each lens space.

In particular, we show that the complex for the genus-2 splitting for the lens space

L(p,q) with 1 ≤ q ≤ p/2 is connected if and only if p ≡ ±1 (mod q), and describe

the combinatorial structure of each of those complexes. As an application, we obtain a

finite presentation of the genus-2 Goeritz group of each of those lens spaces, the group

of isotopy classes of orientation preserving homeomorphisms of the lens space that

preserve the genus-2 Heegaard splitting of it.

1 Introduction

Every closed orientable three-manifold can be decomposed into two handlebodies of

the same genus, which is called a Heegaard splitting of the manifold. The genus of the

handlebodies is called the genus of the splitting. The three-sphere admits a Heegaard

splitting of each genus g ≥ 0, and lens spaces and S
2 × S

1 admit Heegaard splittings of

each genus g ≥ 1.
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Primitive Disk Complexes and Goeritz Groups 7303

There is a well-known simplicial complex, called the disk complex, for a han-

dlebody and in general for an arbitrary irreducible three-manifold with compressible

boundary. The vertices of a disk complex are the isotopy classes of essential disks in

the manifold. When a given Heegaard splitting is stabilized, we can define the primitive

disk complex for the splitting, which is the full subcomplex of the disk complex for a

handlebody in the splitting spanned by the vertices represented by the primitive disks

in the handlebody. Strictly speaking, for each stabilized Heegaard splitting, there are

exactly two primitive disk complexes depending on the choice of a handlebody of the

splitting. However, for all the Heegaard splittings we will consider in this article, the

two primitive disk complexes are isomorphic. So we simply call it the primitive disk

complex for the splitting.

The first goal of this work is to reveal the combinatorial structure of the prim-

itive disk complex for the genus-2 Heegaard splitting of each lens space L(p,q). For the

three-sphere and S
2 × S

1, the structure of the primitive disk complex for the genus-2

splitting is well understood from the works [4] and [6]. They are both contractible, and

further the complex for the three-sphere is two-dimensional and deformation retracts

to a tree in its barycentric subdivision, whereas the complex for S
2 ×S

1 itself is a tree. In

[5], the structure of the primitive disk complex for the genus-2 splitting of the lens space

L(p, 1) was fully studied. In addition, a generalized version of a primitive disk complex

is also studied in [13] for a genus-2 handlebody embedded in the three-sphere. In this

work, including the case of L(p, 1), we describe the structure of the primitive disk com-

plex for the genus-2 splitting in detail for every lens space. An interesting fact is that

not all lens spaces admit connected primitive disk complexes for their genus-2 splitting.

In Section 4, we find all lens spaces having connected primitive disk complexes for their

genus-2 splittings (Theorem 4.2) and then describe the structure of the complex for each

lens spaces (Theorem 4.5).

The next goal is to show that the genus-2 Goeritz group of the lens space having

connected primitive disk complex is finitely presented by giving an explicit presentation

of each of them. Given a Heegaard splitting of a three-manifold, the Goeritz group of the

splitting is the group of isotopy classes of orientation preserving homeomorphisms of

the manifold that preserve the splitting. When a genus-g Heegaard splitting for a mani-

fold is unique up to isotopy, we call the Goeritz group of the splitting the genus-g Goeritz

group of the manifold without mentioning a specific splitting of the manifold. The pre-

sentations of those groups have been obtained for some manifolds. For example, from

the works [9], [16], [1], and [4], a finite presentation of the genus-2 Goeritz group of the

three-sphere was obtained and from [6], that of S
2×S

1 was obtained. We refer the reader
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7304 S. Cho and Y. Koda

to [11], [12], [17], [7], and [8] for finite presentations or finite generating sets of the Goeritz

groups of several Heegaard splittings. For the genus-2 Goeritz groups of lens spaces, the

finite presentations are obtained only for the lens spaces L(p, 1) in [5]. In this work, we

show that the genus-2 Goeritz group of each lens space having connected primitive disk

complex is finitely presented and obtain a presentation of each of them (Theorem 5.7).

Such a lens space L(p,q) with 1 ≤ q ≤ p/2 is exactly the one satisfying p ≡ ±1 (mod q),

which includes the case of L(p, 1). The basic idea is to investigate the action of theGeoritz

group on the connected primitive disk complex of each of the lens spaces, and then

calculate the isotropy subgroups of its simplices up to the action of the Goeritz group.

We use the standard notation L = L(p,q) for a lens space in standard textbooks.

For example, we refer [15] to the reader. That is, there is a genus-1 Heegaard splitting of

L such that an orientedmeridian circle of a solid torus in the splitting is identifiedwith a

(p,q)-curve on the boundary torus of the other solid torus (fixing oriented longitude and

meridian circles of the torus), where π1(L(p,q)) is isomorphic to the cyclic group of order

|p|. The integer p can be assumed to be positive, and it is well known that two lens spaces

L(p,q) and L(p′,q′) are homeomorphic if and only if p = p′ and q′q±1 ≡ ±1 (mod p). Thus

we will assume 1 ≤ q ≤ p/2 for the lens space L(p,q), or 0 < q < p sometimes. Further,

there is a unique integer q′ satisfying 1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p), and so, for any

other genus-1 Heegaard splitting of L(p,q), we may assume that an oriented meridian

circle of a solid torus of the splitting is identified with a (p, q̄)-curve on the boundary

torus of the other solid torus for some q̄ ∈ {q,q′,p− q′,p− q}.
Throughout the paper, (V ,W ;�) will denote a genus-2 Heegaard splitting of a

lens space L = L(p,q). That is,V andW are genus-2 handlebodies such thatV∪W = L and

V∩W = ∂V = ∂W = � is a genus-2 closed orientable surface, which is called a Heegaard

surface in L. Any disks in a handlebody are always assumed to be properly embedded,

and their intersection is transverse and minimal up to isotopy. In particular, if a disk D

intersects a disk E, then D ∩ E is a collection of pairwise disjoint arcs that are properly

embedded in both D and E. For convenience, we will not distinguish disks (or union of

disks) and homeomorphisms from their isotopy classes in their notation. Finally, Nbd(X)

will denote a regular neighborhood of X and cl(X) the closure of X for a subspace X of

a polyhedral space, where the ambient space will always be clear from the context.

2 Primitive Disk Complexes

Let M be an irreducible three-manifold with compressible boundary. The disk complex

of M is a simplicial complex defined as follows. The vertices are the isotopy classes of
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Primitive Disk Complexes and Goeritz Groups 7305

essential disks in M , and a collection of k + 1 vertices spans a k-simplex if and only if

it admits a collection of representative disks which are pairwise disjoint. In particular,

if M is a handlebody of genus g ≥ 2, then the disk complex is (3g − 4)-dimensional and

is not locally finite.

LetD and E be essential disks inM , and suppose thatD intersects E transversely

and minimally. Let C ⊂ D be a disk cut off from D by an outermost arc α of D ∩ E in D

such that C ∩E = α. We call such a C an outermost subdisk of D cut off by D∩E. The arc
α cuts E into two disks, say G and H . Then, we have two disjoint disks E1 and E2 which

are isotopic to disks G ∪ C and H ∪ C, respectively. We call E1 and E2 the disks from

surgery on E along the outermost subdisk C of D. Since E and D are assumed to intersect

minimally, E1 (and E2) is isotopic to neither E nor D. Also at least one of E1 and E2 is

non-separating if E is non-separating. Observe that each of E1 and E2 has fewer arcs of

intersection with D than E had since at least the arc α no longer counts. For an essential

disk D in M intersecting transversely and minimally the union of two disjoint essential

disks E and F , we define similarly the disks from surgery on E ∪ F along an outermost

subdisk of D cut off by D ∩ (E ∪ F). The following is a key property of a disk complex.

Theorem 2.1. If K is a full subcomplex of the disk complex satisfying the following

condition, then K is contractible.

• Let E and D be disks in M representing vertices of K. If they intersect

each other transversely and minimally, then at least one of the disks from

surgery on E along an outermost subdisk of D cut off by D ∩ E represents a

vertex of K. �

In [4], the above theorem is proved in the case whereM is a handlebody, but the

proof is still valid for an arbitrary irreducible manifold with compressible boundary.

From the theorem, we see that the disk complex itself is contractible, and the non-

separating disk complex is also contractible, which is the full subcomplex spanned

by the vertices of non-separating disks. We denote by D(M) the non-separating disk

complex of M .

Consider the case that M is a genus-2 handlebody V . Then the complex D(V)
is two-dimensional, and every edge of D(V) is contained in infinitely but countably

many two-simplices. For any two non-separating disks in V which intersect each other

transversely and minimally, it is easy to see that “both” of the two disks obtained from

surgery on one along an outermost subdisk of another cut off by their intersection are
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7306 S. Cho and Y. Koda

Fig. 1. A portion of the non-separating disk complex D(V) of a genus-2 handlebody V with its

dual complex, a tree.

non-separating. This implies, from Theorem 2.1, that D(V) and the link of any vertex of

D(V) are all contractible. Thus the complex D(V) deformation retracts to a tree in the

barycentric subdivision of it. Actually, this tree is a dual complex of D(V). A portion of

the non-separating disk complex ofV together with its dual tree is described in Figure 1.

Now we return to the genus-2 Heegaard splitting (V ,W ;�) of a lens space

L = L(p,q). An essential disk E in V is called primitive if there exists an essential

disk E ′ in W such that ∂E intersects ∂E ′ transversely in a single point. Such a disk E ′ is

called a dual disk of E, which is also primitive inW having a dual disk E. Note that both

W∪Nbd(E) andV∪Nbd(E ′) are solid tori. Primitive disks are necessarily non-separating.

The primitive disk complex P(V) for the splitting (V ,W ;�) is defined to be the

full subcomplex of D(V) spanned by the vertices of primitive disks in V . From the struc-

ture ofD(V), we observe that every connected component of any full subcomplex ofD(V)
is contractible. Thus, P(V) is contractible if it is connected or each of its connected com-

ponents is contractible otherwise. In Section 4, we describe the complete combinatorial

structure of the primitive disk complex P(V) for the genus-2 Heegaard splitting of each

lens space. In particular, we find all lens spaces whose primitive disk complexes for the

genus-2 splittings are connected, and so contractible. We first develop several proper-

ties of the primitive disks in the following section, which will play a key role throughout

the article.

3 Primitive Disks

3.1 Primitive elements of the free group of rank two

The fundamental group of the genus-2 handlebody is the free group Z ∗ Z of rank 2. We

call an element of Z∗Z primitive if it is a member of a generating pair of Z∗Z. Primitive
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Primitive Disk Complexes and Goeritz Groups 7307

elements of Z ∗ Z have been well understood. For example, given a generating pair {y, z}
of Z∗Z, a cyclically reduced form of any primitive elementw can be written as a product

of terms each of the form yεzn or yεzn+1, or else a product of terms each of the form zεyn

or zεyn+1, for some ε ∈ {1,−1} and some n ∈ Z. Consequently, no cyclically reduced

form of w in terms of y and z can contain y and y−1 (and z and z−1) simultaneously.

Furthermore, we have an explicit characterization of primitive elements containing only

positive powers of y and z as follows, which is given in Osborne–Zieschang [14].

Lemma 3.1. Suppose thatw consists of exactlym z’s and n y’s where 1 ≤ m ≤ n. Then

w is primitive if and only if (m,n) = 1 andw has the following cyclically reduced form

w = w(m,n) = g(1)g(1 +m)g(1 + 2m) · · ·g(1 + (m+ n− 1)m)

where the function g : Z → {z,y} is defined by

g(i) = gm,n(i) =
⎧⎨
⎩
z if i ≡ 1, 2, . . . ,m (mod (m+ n))

y otherwise. �

For example, w(3, 5) = zy2zy2zy and w(3, 10) = zy4zy3zy3.

Let {z,y} be a generating pair of the free group of rank 2. Given relatively

prime integers p and q with 0 < q < p, we define a sequence of (p + 1) elements

w0,w1, . . . ,wp−1,wp in term of z and y as follows.

Define firstw0 to be yp. For each j ∈ {1, 2, . . . ,p}, let fj : Z → {z,y} be the function
given by

fj(i) =
⎧⎨
⎩
z if i ≡ 1, 1 + q, 1 + 2q, . . . , 1 + (j − 1)q (mod p)

y otherwise,

and then define wj = fj(1)fj(2) · · · fj(p). Each of wj has length p and consists of j z’s and

(p− j) y’s. In particular,w1 = zyp−1,wp−1 = zp−qyzq−1, andwp = zp. We call the sequence

w0,w1, . . . ,wp the (p,q)-sequence of the pair (z,y). For example, the (8, 3)-sequence is

given by

w0 = yyyyyyyy w1 = zyyyyyyy w2 = zyyzyyyy

w3 = zyyzyyzy w4 = zzyzyyzy w5 = zzyzzyzy

w6 = zzyzzyzz w7 = zzzzzyzz w8 = zzzzzzzz.
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7308 S. Cho and Y. Koda

Observe that wp−j is a cyclic permutation of ψ(wj) for each j, where ψ is the auto-

morphism exchanging z and y, and w is the reverse of w. Thus, wj is primitive if

and only if wp−j is primitive. We can find all primitive elements in the sequence as

follows.

Lemma 3.2. Let w0,w1, . . . ,wp be the (p,q)-sequence of the generating pair {z,y} with

0 < q < p. Let q′ be the unique integer satisfying 1 ≤ q′ ≤ p/2 with qq′ ≡ ±1 (mod p).

Then wj is primitive if and only if j ∈ {1,q′,p− q′,p− 1}. �

Proof. It is clear that w1 and wp−1 are primitive while w0 and wp are not.

Claim 1. wq′ is primitive.

Proof of Claim 1.We writewq′ = fq′(1)fq′(2) · · · fq′(p), andw(q′,p−q′) = g(1)g(1+q′)g(1+
2q′) · · ·g(1+(p−1)q′)where g = gq′,p−q′ in the notation in Lemma 3.1. Since f (i) = z if and

only if i ≡ 1 + nq (mod p) for some n ∈ {0, 1, . . . ,q′ − 1}, it can be directly verified that

fq′(i) =
⎧⎨
⎩
g(1 + (i− 1)q′) if qq′ ≡ 1 (mod p)

g(1 + (i+ q)q′) if qq′ ≡ −1 (mod p).

Thus,wq′ isw(q′,p−q′) itself if qq′ ≡ 1 (mod p) or is a cyclic permutation of it if qq′ ≡ −1

(mod p). In either cases, wq′ is primitive.

Claim 2. If 1 < j ≤ p/2 and j �= q′, then wj is not primitive.

Proof of Claim 2. From the assumption, there is a unique integer r satisfying 2 ≤ r ≤ p−2

and qj ≡ r (mod p). Suppose, for contradiction, that wj is primitive. Then, by Lemma

3.1, (p, j) = 1 andwj is a cyclic permutation ofw(j,p− j). We writewj = fj(1)fj(2) · · · fj(p)
and w(j,p− j) = g(1)g(1+ j)g(1+ 2j) · · ·g(1+ (p− 1)j) where g = gj,p−j as in Lemma 3.1.

Then, there is a constant k such that fj(i) = g(1+ (i− 1+ k)j) for all i ∈ Z. In particular,

fj(1 + nq) = z = g(1 + (nq+ k)j) for each n ∈ {0, 1, . . . , j − 1}.
From the definition of g = gj,p−j and the choice of the integer r, we have 1 +

(nq + k)j ≡ 1 + nr + kj ≡ 1, 2, . . . , j (mod p). Let an be the unique integer satisfying

1 + nr + kj ≡ an with an ∈ {1, 2, . . . , j} for each n ∈ {0, 1, . . . , j − 1}. Observe that an +
r ≡ an+1 for each n ∈ {0, 1, . . . , j − 2}, and in particular, a0 + r ≡ a1. Since 1 ≤ a0 ≤
j < p and 2 ≤ r ≤ p − 2 < p, we have only two possibilities: either a0 + r = a1 or

a0 + r = a1 + p.

First consider the case a0 + r = a1. Then r ≤ j − 1 and an < an+1, consequently

a0 = 1,a1 = 2, . . . ,aj−1 = j, which implies r = 1, a contradiction. Next, if a0 + r = a1 + p,
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Primitive Disk Complexes and Goeritz Groups 7309

then p + 1 − j ≤ r and an > an+1, thus we have a0 = j,a1 = j − 1, . . . ,aj−1 = 1, and

consequently r = p− 1, a contradiction again.

By the claims, if 1 ≤ j ≤ p/2, then wj is primitive only when j = 1 or j = q′. If

p/2 ≤ j ≤ p, due to the fact thatwp−j is a cyclic permutation of ψ(wj), the only primitive

elements are wp−q′ and wp−1, which completes the proof. �

A simple closed curve in the boundary of a genus-2 handlebody W represents

elements of π1(W) = Z ∗ Z. We call a pair of essential disks in W a complete meridian

system forW if the union of the two disks cuts offW into a three-ball. Given a complete

meridian system {D,E}, assign symbols x and y to the circles ∂D and ∂E, respectively.

Suppose that an oriented simple closed curve l on ∂W that meets ∂D ∪ ∂E transversely

and minimally. Then l determines a word in terms of x and y which can be read off from

the the intersections of l with ∂D and ∂E (after a choice of orientations of ∂D and ∂E),

and hence l represents an element of the free group π1(W) = 〈x,y〉.
In this set up, the following is a simple criterion for the primitiveness of the

elements represented by such simple closed curves.

Lemma 3.3. With a suitable choice of orientations of ∂D and ∂E, if a word correspond-

ing to a simple closed curve l contains one of the pairs of terms: (1) both of xy and xy−1

or (2) both of xynx and yn+2 for n ≥ 0, then the element of π1(W) represented by l cannot

be (a positive power of ) a primitive element. �

Proof. Let �′ be the four-holed sphere cut off from ∂W along ∂D∪∂E. Denote by d+ and

d− (by e+ and e−, respectively) the boundary circles of �′ that came from ∂D (from ∂E,

respectively).

Suppose first that l represents an element of a form containing both xy and xy−1.

Then we may assume that there are two subarcs l+ and l− of l ∩�′ such that l+ connects

d+ and e+, and l− connects d+ and e− as in Figure 2. Since | l ∩ d+| = | l ∩ d−| and
| l∩e+| = | l∩e−|, we must have two other arcsm+ andm− of l∩�′ such thatm+ connects

d− and e+, and m− connects d− and e− (Figure 2).

Consequently, there exists no arc component of l ∩�′ that meets only one of d+,

d−, e+, and e−. That is, any word corresponding to l contains neither x±1x∓1 nor y±1y∓1,

and hence it is cyclically reduced. Considering all possible directions of the arcs l+, l−,

m+ andm−, each word represented by l must contain both x and x−1 (or both y and y−1),

which means that l cannot represent (a positive power of) a primitive element of π1(W).
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7310 S. Cho and Y. Koda

Fig. 2. The four-holed sphere �′.

Next, suppose that a word corresponding to l contains x2 and y2, which is the

case of n = 0 in the second condition. Then there are two arcs l+ and l− of l∩�′ such that

l+ connects d+ and d−, and l− connects e+ and e−. By a similar argument to the above,

we see again that any word corresponding to l is cyclically reduced, but contains both

of x2 and y2. Thus l cannot represent (a positive power of) a primitive element.

Suppose that a word corresponding to l contains xynx and yn+2 for n ≥ 1. Then

there are two subarcs α and β of l which correspond to xynx and yn+2, respectively. In

particular, we may assume that α starts at d+, intersects ∂E in n points, and ends in d−,

while β starts at e+, intersects ∂E in its interior in n points, and ends in e−.

Let m be the subarc of α corresponding to xy. Then m connects two circles d+
and one of e±, say e+. Choose a disk E∗ properly embedded in the three-ball W cut off

by D ∪ E such that the boundary circle ∂E∗ is the frontier of a regular neighborhood of

d+ ∪m∪ e+ in �′. Then, E∗ is a non-separating disk inW and forms a complete meridian

system with D. Assigning the same symbol y to ∂E∗, the arc α determines xyn−1x while

β determines yn+1. Thus the conclusion follows by induction. �

3.2 Primitive disks in a genus-2 handlebody

We recall that (V ,W ;�) denotes a genus-2 Heegaard splitting of a lens space L = L(p,q).

The primitive disks in V or in W are introduced in Section 2. We call a pair of disjoint,

non-isotopic primitive disks in V a primitive pair in V . Similarly, a triple of pairwise

disjoint, non-isotopic primitive disks is a primitive triple. A non-separating disk E0

properly embedded in V is called semiprimitive if there is a primitive disk E ′ in W

disjoint from E0.

Any simple closed curve on the boundary of the genus-2 handlebody W repre-

sents an element of π1(W)which is the free group of rank 2. We interpret primitive disks

algebraically as follows, which is a direct consequence of Gordon [9].
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Primitive Disk Complexes and Goeritz Groups 7311

Lemma 3.4. Let D be a non-separating disk in V . Then D is primitive if and only if ∂D

represents a primitive element of π1(W). �

Note that no disk can be both primitive and semiprimitive since the boundary

circle of a semiprimitive disk in V represents the pth power of a primitive element

of π1(W).

Lemma 3.5. Let {D,E} be a primitive pair of V . Then D and E have a common dual disk

if and only if there is a semiprimitive disk E0 in V disjoint from D and E. �

Proof. The necessity is clear. For sufficiency, let E ′ be a primitive disk in W disjoint

from the semiprimitive disk E0 in V . It is enough to show that E ′ is a dual disk of every

primitive disk in V disjoint from E0, since then E ′ would be a common dual disk of

D and E.

Claim: If E is a primitive disk in V dual to E ′, then E is disjoint from E0.

Proof of claim. Denote by E+
0 and E−

0 the two disks on the boundary of the solid torus

V cut off by E0 that came from E0. Suppose that E intersects E0. We may assume that

C is incident to E+
0 . Considering |E ∩ E+

0 | = |E ∩ E−
0 |, there is a subarc of ∂E whose two

endpoints lie in ∂E−
0 , which also intersects ∂E ′, and hence ∂E intersects ∂E ′ at least in

two points, a contradiction.

Let D be a primitive disk in V disjoint from E0. Among all the primitive disks in

V dual to E ′, choose one, denoted by E again, such that |D∩ E| is minimal. By the claim,

E is disjoint from E0. Let E ′
0 be the unique semiprimitive disk in W disjoint from E ∪ E ′.

Since {E ′,E ′
0} forms a complete meridian system of W , by assigning symbols x and y to

oriented ∂E ′ and ∂E ′
0, respectively, any oriented simple closed curve on ∂W represents

an element of the free group π1(W) = 〈x,y〉 as in the previous section. In particular, we

may assume that ∂E and ∂E0 represents elements of the form x and yp, respectively.

Denote by �0 the four-holed sphere ∂V cut off by ∂E ∪ ∂E0. Consider �0 as a

two-holed annulus with two boundary circles ∂E±
0 came from ∂E0 and with two holes

∂E± came from ∂E. Then ∂E ′
0 consists of p spanning arcs in �0 which divide �0 into p

rectangles, and the two holes ∂E± are contained in a single rectangle. Notice that ∂E ′ is

an arc in the rectangle connecting the two holes (Figure 3.1).

Suppose that D is disjoint from E. Then D is a non-separating disk in V disjoint

from E ∪ E0, and hence the boundary circle ∂D can be considered as the frontier of

a regular neighborhood in �0 of the union of one of the two boundary circles, one of

the two holes of �0, and an arc α connecting them. The arc α cannot intersect ∂E ′
0 in
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7312 S. Cho and Y. Koda

(3.1) (3.2)

Fig. 3. The two-holed annulus �0 when p = 5, for example.

�0, otherwise an element represented by ∂D must contain both of xy and xy−1 (after

changing orientations if necessary), which contradicts that D is primitive by Lemma 3.3

(see Figure 3.2). Thus α is disjoint from ∂E ′
0, and consequently D intersects ∂E ′ in a single

point. That is, E ′ is a dual disk of D (see Figure 3.1).

Suppose next that D intersects E. Let C be an outermost subdisk of D cut off by

D∩E. Then one of the resulting disks from surgery on E along C is E0 and the other, say

E ′, is isotopic to none of E and E0. The arc ∂C ∩�0 can be considered as the frontier of a

regular neighborhood of the union of a boundary circle of �0 came from ∂E0 and an arc,

denoted by α0, connecting this circle and a hole came from ∂E. By a similar argument to

the above, one can show that α0 is disjoint from ∂E ′
0, otherwise Dwould not be primitive.

Consequently, the boundary circle of the resulting disk E1 from the surgery intersects

∂E ′ in a single point, which means E1 is primitive with the dual disk E ′. But we have

|D ∩ E1| < |D ∩ E| from the surgery construction, which contradicts the minimality of

|D ∩ E|. �

In the proof of Lemma 3.5, if we assume that the primitive disk D also intersects

E0, then the subdisk C of D cut off by D ∩ (E ∪ E0) would be incident to one of E and E0.

The argument to show that the resulting disk E1 from the surgery is primitive with the

dual disk E ′ still holds when C is incident to E0 and even when D is semiprimitive. This

observation suggests the following lemma.

Lemma 3.6. Let E0 be a semiprimitive disk in V and let E be a primitive disk in V

disjoint from E0. If a primitive or semiprimitive disk D in V intersects E ∪E0, then one of

the disks from surgery on E ∪ E0 along an outermost subdisk of D cut off by D∩ (E ∪ E0)
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Primitive Disk Complexes and Goeritz Groups 7313

is either E or E0, and the other, say E1, is a primitive disk, which has a common dual

disk with E. �

3.3 The link of the vertex of a primitive disk

Again, we have a genus-2 Heegaard splitting (V ,W ;�) of a lens space L = L(p,q) and

we assume 1 ≤ q ≤ p/2. In this section, we introduce a special subcomplex of the non-

separating disk complex D(V), which we will call a shell of the vertex of a primitive disk,

and then develop its several properties we need.

Let E be a primitive disk in V . Choose a dual disk E ′ of E, then we have unique

semiprimitive disks E0 and E ′
0 in V and W , respectively, which are disjoint from E ∪ E ′.

The circle ∂E ′
0 is a (p, q̄)-curve on the boundary of the solid torus cl(V −Nbd(E)), where

q̄ ∈ {q,p − q,q′,p − q′} and q′ is the unique integer satisfying 1 ≤ q′ ≤ p/2 and qq′ ≡
±1 (mod p). We first assume that ∂E ′

0 is a (p,q)-curve. Assigning symbols x and y to

oriented ∂E ′ and ∂E ′
0, respectively, as in the previous sections, any oriented simple closed

curve on ∂W represents an element of the free group π1(W) = 〈x,y〉. We simply denote

the circles ∂E ′ and ∂E ′
0 by x and y, respectively. The circle y is disjoint from ∂E and

intersects ∂E0 in p points, and x is disjoint from ∂E0 and intersects ∂E in a single point.

Thus, we may assume that ∂E0 and ∂E determine the elements of the form yp and x,

respectively.

Let�0 be the four-holed sphere ∂V cut off by ∂E∪∂E0. Denote by e± the boundary

circles of�0 came from ∂E and similarly e±
0 came from ∂E0. The four-holed sphere�0 can

be regarded as a two-holed annulus where the two boundary circles are e±
0 and the two

holes e±. Then the circle y in �0 is the union of p spanning arcs which cuts the annulus

into p rectangles, and x is a single arc connecting two holes e±, where x∪e± is contained

in a single rectangle (see the surface �0 in Figure 4).

Any non-separating disk in V disjoint from E ∪ E0 and not isotopic to either

of E and E0 is determined by an arc properly embedded in �0 connecting one of e±

and one of e±
0 . That is, the boundary circle of such a disk is the frontier of a regular

neighborhood of the union of the arc and the two circles connected by the arc in �0.

Choose such an arc α0 so that α0 is disjoint from y, and denote by E1 the non-separating

disk determined by α0. Observe that there are infinitely many choices of such arcs α0 up

to isotopy, and so are the disks E1. But the element represented by ∂E1 has one of the

forms x±1y±p, so we may assume that ∂E1 represents xyp by changing the orientations if

necessary.
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7314 S. Cho and Y. Koda

Fig. 4. The disks in a (5, 2)-shell in D(V) for L(5, 2).

Next, let �1 be the four-holed sphere ∂V cut off by ∂E ∪ ∂E1. As in the case of �0,

consider �1 as a two-holed annulus with boundaries e±
1 and with two holes e± where e±

1

came from ∂E1. Then the circle y cuts off �1 into p rectangles as in the case of �0, but

two holes e+ and e− are now contained in different rectangles. In particular, we can give

labels 0, 1, . . . ,p − 1 to the rectangles consecutively so that e+ lies in the 0th rectangle

while e− in the qth rectangle. The circle x in �1 is the union of two arcs connecting e±
1

and e± contained in the 0th and pth rectangles, respectively.

Now consider a properly embedded arc in �1 connecting one of e± and one of e±
1 .

Choose such an arc α1 so that α1 is disjoint from y and parallel to none of the two arcs

of x ∩ �1. Then α1 determines a non-separating disk, denoted by E2, whose boundary

circle is the frontier of a regular neighborhood of the union of α1 and the two circles

connected by α1. (If α1 is isotopic to one of the two arcs x ∩�1, then the resulting disk is

E0.) Observe that ∂E2 represents an element of the form xyqxyp−q (see the surface �1 in

Figure 4).

We continue this process in the same way. Then �2 is the four-holed sphere ∂V

cut off by ∂E ∪ ∂E2, and we choose an arc α2 in �2 disjoint from y and parallel to none

of the arcs x ∩�2, which determines the disk E3. The boundary circle ∂E3 represents an
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Primitive Disk Complexes and Goeritz Groups 7315

Fig. 5. A (5, 2)-shell.

element of the form xyqxyqxyp−2q. In general, we have a non-separating disk Ej whose

boundary circle lies in the four-holed sphere �j−1. We finish the process in the pth step

to have the disk Ep whose boundary circle lies in �p−1. The disks Ep−1 and Ep repre-

sent elements of the form (xy)p−qy(xy)q−1 and (xy)p, respectively. Observe that there are

infinitely many choices of the arc α0, and so choices of the disk E1 as we have seen, but

once E1 have been chosen, the next disks Ej for each j ∈ {1, 2, . . . ,p − 1} are uniquely

determined.

We call the full subcomplex of D(V) spanned by the vertices E0,E1, . . . ,Ep and E

a shell centered at the primitive disk E and denote it simply by SE = {E0,E1, . . . ,Ep}. In
particular, since the circle ∂E ′

0 is assumed to be a (p,q)-curve in the beginning of the

construction, the shell SE is called a (p,q)-shell. In general, given a genus-2 splitting

of the lens space L(p,q), we might have (p, q̄)-shell by the same construction, where

q̄ ∈ {q,p − q,q′,p − q′} and q′ is the unique integer satisfying 1 ≤ q′ ≤ p/2 and qq′ ≡ ±1

(mod p). We observe that there exist infinitely many shells centered at any primitive

disk E by the choice of a dual disk E ′. Further there exist infinitely many shells cen-

tered at E containing the vertex of a semiprimitive disk E0 disjoint from E. That is,

there are infinitely many choices of the primitive disks E1 disjoint from E ∪ E0. On the

contrary, once the disk E1 is chosen, the shell centered at E and containing E0 and

E1 is uniquely determined. Figure 5 illustrates a (5, 2)-shell in D(V) in the splitting

of L(5, 2).

Remark 3.7. For any consecutive vertices Ej, Ej+1, and Ej+2 in a shell SE = {E0, E1, . . . ,Ep},
the disk Ej is disjoint from Ej+1, and intersects Ej+2 in a single arc for each j ∈ {0, 1, . . . ,p−
2}. For example, see ∂E0, ∂E2, and ∂E1 (= e±

1 ) in �1 in Figure 4. In general, we have

|Ei ∩ Ej| = j − i − 1 for 0 ≤ i < j ≤ p. This is obvious from the construction. Figure 6

illustrates intersections of Ej with Ej+2, Ej+3 and Ej+4 in the three-balls V cut off by

E ∪ Ej+1, E ∪ Ej+2 and E ∪ Ej+3, respectively. �
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7316 S. Cho and Y. Koda

Fig. 6. Intersections of Ej with Ej+2, Ej+3, and Ej+4.

Lemma 3.8. Let SE = {E0,E1, . . . ,Ep−1,Ep} be a (p,q)-shell centered at a primitive disk

E in V . Then we have

(1) E0 and Ep are semiprimitive.

(2) Ej is primitive if and only if j ∈ {1,q′,p − q′,p − 1} where q′ is the unique

integer satisfying qq′ ≡ ±1 (mod p) and 1 ≤ q′ ≤ p/2. �

Proof. (1) E0 is a semiprimitive disk disjoint from E ′ from the construction. For the disk

Ep, it is easy to find a circle e′′ in � such that e′′ ∩ �p is an arc which connects the two

holes e+ and e− and is disjoint from x ∪ y ∪ e+
p ∪ e−

p (see the arc e′′ in the surface �5 in

Figure 4). Cutting W along E ′ ∪ E ′
0, we have a three-ball B, and the circle e′′ lies in ∂B.

Thus, e′′ bounds a disk E ′′ inW which is primitive since e′′ intersects ∂E in a single point.

The disk Ep is disjoint from E ′′ and so is semiprimitive.

(2) From the construction, each circle ∂Ej represents the elementwj in the (p,q)-

sequence in Section 3.1, by the substitution of z for xy. Thus, the conclusion follows by

Lemma 3.2 with Lemma 3.4. �

Remark 3.9. We have constructed a (p,q)-shell SE by assuming ∂E ′
0 is a (p,q)-curve

in the beginning of the construction. If SE is a (p,p − q)-shell, then we have the same

conclusion of Lemma 3.8. If SE is a (p,q′)-shell or a (p,p − q′)-shell, the Lemma 3.8

still holds by exchanging q and q′ in the conclusion. Also, we observe that a (p,q)-shell

SE = {E0,E1, . . . ,Ep−1,Ep} is identified with the (p,p − q)-shell S ′
E = {Ep,Ep−1, . . . ,E1,E0}

centered at the same E if we choose the dual disk E ′′ of E and then choose the primitive

disk Ep−1 disjoint from E ∪ Ep. �

The following is a generalization of Lemma 3.6.

Lemma 3.10. Let SE = {E0,E1, . . . ,Ep−1,Ep} be a shell centered at a primitive disk E in

V , and let D be a primitive or semiprimitive disk in V . For j ∈ {1, 2, . . . ,p− 1},
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Primitive Disk Complexes and Goeritz Groups 7317

(1) if D is disjoint from E ∪ Ej and is isotopic to none of E and Ej, then D is

isotopic to either Ej−1 or Ej+1, and

(2) if D intersects E ∪ Ej, then one of the disks from surgery on E ∪ Ej along an

outermost subdisk C of D cut off by D ∩ (E ∪ Ej) is either E or Ej, and the

other is either Ej−1 or Ej+1. �

Proof. Suppose that D is disjoint from E ∪ Ej. The boundary circle ∂D lies in the two-

holed annulus �j. Thus ∂D can be considered as the frontier of the union of one hole and

one boundary circle of �j, and an arc αj connecting them. By the same argument for the

proof of Lemmas 3.5 and 3.6, the arc αj cannot intersect the arcs of ∂E ′
0 ∩ �j otherwise

D would not be (semi)primitive. Thus, the disk D must be either Ej−1 or Ej+1. (Note that

if both of Ej−1 and Ej+1 are not primitive, then we can say that such a primitive disk D

does not exist.) The second statement can be proved in the same manner by considering

the arc ∂C ∩�j for the outermost subdisk C of D. �

3.4 Primitive disks intersecting each other

The following is the main theorem of this section.

Theorem 3.11. Given a lens space L(p,q), 1 ≤ q ≤ p/2, with a genus-2 Heegaard split-

ting (V ,W ;�), suppose that p ≡ ±1 (mod q). Let D and E be primitive disks in V which

intersect each other transversely andminimally. Then, at least one of the two disks from

surgery on E along an outermost subdisk of D cut off by D ∩ E is primitive. �

Proof. Let C be an outermost subdisk of D cut off by D ∩ E. The choice of a dual disk

E ′ of E determines a unique semiprimitive disk E0 in V which is disjoint from E ∪ E ′.

Among all the dual disks of E, choose one, denoted by E ′ again, so that the resulting

semiprimitive disk E0 intersects C minimally. If C is disjoint from E0, then, by Lemma

3.6, the disk from surgery on E along C other than E0 is primitive, having the common

dual disk E ′ with E, and so we are done.

From now on, we assume that C intersects E0. Then one of the disks from surgery

on E0 along an outermost subdisk C0 of C cut off by C ∩ E0 is E, and the other, say E1, is

primitive having the common dual disk E ′ with E, by Lemma 3.6 again. Then, we have

the shell SE = {E0,E1,E2, . . . ,Ep} centered at E. Let E ′
0 be the unique semiprimitive disk

in W disjoint from E ∪ E ′. The circle ∂E ′
0 would be a (p, q̄)-curve on the boundary of

the solid torus cl(V − Nbd(E ∪ E ′)) for some q̄ ∈ {q,q′,p − q′,p − q}, where q′ satisfies

1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p). We will consider only the case of q̄ = q. That
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7318 S. Cho and Y. Koda

is, ∂E ′
0 is a (p,q)-curve and so SE is a (p,q)-shell. The proof is easily adapted for the

other cases.

If C intersects E1, then one of the disks from surgery on E1 along an outermost

subdisk C1 of C cut off by C ∩ E1 is E, and the other is either E0 or E2 by Lemma 3.10,

but it is actually E2 since we have |C ∩ E1| < |C ∩ E0| from the surgery construction. In

general, if C intersects each of E1,E2, . . . ,Ej, for j ∈ {1, 2, . . . ,p−1}, the disk from surgery

on Ej by an outermost subdisk Cj of C cut off by C ∩Ej, other than E, is Ej+1, and we have

|C ∩ Ej+1| < |C ∩ Ej|. Consequently, we see that |C ∩ Ep| < |C ∩ E0|, but it contradicts the

minimality of |C ∩ E0| since Ep is also a semiprimitive disk disjoint from E. Thus, there

is a disk Ej for some j ∈ {1, 2, . . . ,p− 1} which is disjoint from C.

Now, denote by Ej again the first disk in the sequence that is disjoint from C.

Then the two disks from surgery on E along C are Ej and Ej+1, hence C is also disjoint

from Ej+1. Actually they are the only disks in the sequence disjoint from C. For other

disks in the sequence, it is easy to see that |C ∩ Ej−k| = k = |C ∩ Ej+1+k| (by a similar

observation to the fact that |Ei ∩Ej| = j− i−1 for 0 ≤ i < j ≤ p in Remark 3.7). If j ≥ p/2,

thenwe have |C∩E0| = j > p−j−1 = |C∩Ep|, a contradiction for theminimality condition

again. Thus, Ej is one of the disks in the first half of the sequence, that is, 1 ≤ j < p/2.

Claim. The disk Ej is one of E1, Eq′−1 or Eq′ , where q′ is the unique integer satisfying

1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p).

Proof of Claim. We have assumed that p ≡ ±1 (mod q) with 1 ≤ q ≤ p/2, and so q′ = 1

if q = 1, and p = qq′ + 1 if q = 2, and p = qq′ ± 1 if q ≥ 3. Assigning symbols x and y to

oriented ∂E ′ and ∂E ′
0, respectively, ∂Eq′ may represent the primitive element of the form

xyqxyq · · ·xyqxyq±1 if q ≥ 2 or xyp if q = 1. In general, ∂Ek represents an element of the

form xyn1xyn2 · · ·xynk for some positive integers n1, . . . ,nk with n1 +· · ·+nk = p for each

k ∈ {1, 2, . . . ,p}. Furthermore, since C is disjoint from Ej and Ej+1, the word determined

by the arc ∂C ∩�j is of the form ym1xym2 · · ·xymj+1 (or its reverse) when ∂Ej+1 represents

an element of the form xym1xym2 · · ·xymj+1 .

If 2 ≤ j ≤ q′ − 2, then an element represented by ∂Ej+1 has the form

xyqxyq · · ·xyqxyp−jq, and so an element represented by ∂D contains xyqx and yp−jq, which

lies in the part ∂C ∩ �j of ∂D. We have q′ ≥ 4 in this case, and so q ≥ 2. Thus,

p−jq = qq′±1−jq ≥ q+2. By Lemma 3.3, the diskD cannot be primitive, a contradiction.

Suppose that q′ < j < p/2. First, observe that ∂Eq′+1 represents an element of

the form xyq · · ·xyqxy if p = qq′ + 1 or xyxyq−1xyq · · ·xyqxyq−1 if p = qq′ − 1. Also a

word represented by ∂Ej+1 is obtained by changing one xyq of a word represented by ∂Ej

into xyq−1xy or xyxyq−1. Thus, when we write xyn1xyn2 · · ·xynj+1 a word represented by
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Primitive Disk Complexes and Goeritz Groups 7319

∂Ej+1, at least one of n2,n3, . . . ,nj must be 1, and one of n1,n2, . . . ,nj+1 is greater than

2. Since C is disjoint from Ej and Ej+1, the word corresponding to ∂C ∩ �j is of the form

yn1xyn2 · · ·xynj+1 , which contains both of xyx and yn for some n > 2. Consequently, by

Lemma 3.3, the disk D cannot be primitive, a contradiction again.

From the claim, at least one of the disks from surgery on E along C is either E1

or Eq′ . The disk E1 is primitive, and since we assumed that the circle ∂E ′
0 is a (p,q)-curve

on the boundary of the solid torus cl(V − Nbd(E ∪ E ′)), the disk Eq′ is also primitive by

Lemma 3.8, which completes the proof. �

In the proof of the above theorem, we assumed q̄ = q, which implied that a

resulting disk from surgery is E1 or Eq′ . The same result holds when q̄ = p − q. But if

we assume q̄ ∈ {q′,p − q′}, then the resulting disk will be E1 or Eq which are primitive.

Together with this observation, assuming that D is disjoint from E, and so taking the

disk D instead of an outermost subdisk C in the proof of Therorem 3.11, we have the

following result.

Lemma 3.12. Given a lens space L(p,q), 0 < q < p, with a genus-2 Heegaard splitting

(V ,W ;�), let {E,D} be a primitive pair of V . Then, there exists a unique shell SE =
{E0,E1, . . . ,Ep} centered at E containing D. That is, D is one of E0,E1, . . . ,Ep. Furthermore,

if SE is a (p,q)-shell, then the vertexD is one of E1, Eq′ , Ep−q′ or Ep−1, where q′ is the unique

integer satisfying 1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p). �

Let D be an essential disk in V . We denote by VD the solid torus cl(V − Nbd(D)).

We remark that VD and its exterior form a genus-1 Heegaard splitting of L(p,q) if and

only if D is a primitive disk in V . We refine the above lemma as follows.

Lemma 3.13. Given a lens space L(p,q), 0 < q < p, with a genus-2 Heegaard

splitting (V ,W ;�), let {E,D} be a primitive pair of V . Let SE = {E0,E1, . . . ,Ep} and

SD = {D0,D1, . . . ,Dp} be the unique shells centered at E and at D containing D and E,

respectively. Assume further that SE is a (p,q)-shell.

(1) If {E,D} has a common dual disk, then SD is a (p,q)-shell. Further, E is D1 or

Dp−1 and D is E1 or Ep−1.

(2) If {E,D} has no common dual disk, then SD is a (p,q′)-shell, where q′ is the

unique integer with 1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p). Further, D is Eq′ or

Ep−q′ and E is Dq or Dp−q. �
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(7.1) (7.2)

Fig. 7. The loop lD in the case of L(5, 2).

Proof. Let E ′ (D′, respectively) be the unique dual disks of E (D, respectively) disjoint

from E0 (D0, respectively), and let E ′
0 (D

′
0, respectively) be the unique semi-primitive disk

in W disjoint from E (D, respectively).

(1) Suppose {E,D} has a common dual disk. Then, VD is isotopic to VE in L(p,q).

This implies that ∂D′
0 is also a (p,q)-curve on ∂VD. Hence, SD is a (p,q)-shell

as well. It is clear that E is D1 or Dp−1 and D is E1 or Ep−1 by Lemma 3.5.

(2) Suppose {E,D} has no common dual disk. We note that 1 < q < p− 1 in this

case, and so 1 < q′ ≤ p/2. By Lemma 3.5 and Lemma 3.12, D is one of Eq′ and

Ep−q′ , and E is one of Dq, Dq′ , Dp−q and Dp−q′ .

The solid torus VD and its exterior form a genus-1 Heegaard splitting of L(p,q).

We will show that VE is not isotopic to the solid torus VD. Let E ′ be a dual disk of E that

has minimal intersection with D. Let lD and lE be the core loops of the solid tori VD and

VE , respectively. We may assume that lD and lE intersect E and D, respectively, once and

transversely (see Figure 7.1).

We may move lD by isotopy in V ∪ Nbd(E ′) so that lD lies in ∂VE (see Figure 7.2).

Now the two core circles lE and lD lie in the solid torus VE of which D is a meridian

disk. We observe that the circle lD intersects D in q′ points transversely and minimally

after an isotopy, while the circle lE intersects D in a single point. That is, we see that

[lD] = q′[lE ] in H1(L(p,q)) after giving a suitable orientation on each of lD and lE . Since

1 < q′ ≤ p/2, this implies that VD and VE are not isotopic in L(p,q). By the uniqueness of

a genus-1 Heegaard surface of L(p,q), VE is actually isotopic to the solid torus which is

the exterior of VD. This implies that ∂D′
0 is a (p,q

′)-curve on ∂VD. Thus SD is a (p,q′)-shell,

and hence E is Dq or Dp−q. �
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Remark 3.14. If we assume that SE is a (p,q′)-shell instead of a (p,q)-shell in

Lemmas 3.12 and 3.13, the conclusion is obtained by replacing q′ by q and vice

versa. �

4 The Structure of Primitive Disk Complexes

4.1 Contractibility theorem

The goal of this section is to find all lens spaces whose primitive disk complexes for the

genus-2 splittings are connected and so contractible, Theorem 4.2. As in the previous

sections, let E be a primitive disk in V with a dual disk E ′. The disk E ′ forms a complete

meridian system ofW together with the semiprimitive disk E ′
0 inW disjoint from E ∪E ′.

Assigning the symbols x and y to the oriented circles ∂E ′ and ∂E ′
0, respectively, any

oriented simple closed curve, especially the boundary circle of any essential disk in V ,

represents an element of the free group π1(W) = 〈x,y〉 in terms of x and y. Let D be a

non-separating disk in V . A simple closed curve l on ∂V intersecting ∂D transversely in

a single point is called a dual circle of D. We say that l is a common dual circle of two

disks if it is a dual circle of each of the disks. We start with the following lemma.

Lemma 4.1. Let {D1,D2} be a complete meridian system of V . Suppose that the non-

separating disks D1 and D2 satisfy the following conditions:

(1) for each i ∈ {1, 2}, all intersections of ∂Di and ∂E ′ have the same sign;

(2) for each i ∈ {1, 2}, the circle ∂Di represents an element wi of the form

(xyq)mixyni , where 0 ≤ mi, m1 �= m2 and n1 �= n2;

(3) any subarc of ∂E ′ with both endpoints on ∂D1 intersects ∂D2; and

(4) there exists a common dual circle l of D1 and D2 on ∂V disjoint from ∂E ′.

Then, there exists a non-separating disk D∗ in V disjoint from D1 ∪ D2 satisfying the

following:

(1) all intersections of ∂D∗ and ∂E ′ have the same sign;

(2) ∂D∗ represents an element of the form (xyq)m1+m2+1xyn1+n2−q;

(3) for each i ∈ {1, 2}, any subarc of ∂E ′ with both endpoints on ∂Di intersects

∂D∗; and

(4) for each i ∈ {1, 2}, there exists a common dual circle of Di and D∗ on ∂V

disjoint from ∂E ′. �
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(8.1) (8.2)

Fig. 8. The four-holed sphere �∗. There are two patterns of ∂E ′ ∩�∗.

Proof. We only prove the case m1 < m2. For i ∈ {1, 2}, let νi be a connected subarc of

∂Di that determines the subword yni of wi. Cutting off ∂V by ∂D1 ∪ ∂D2, we obtain the

four-holed sphere �∗. We denote by d±
i the boundary circles of �∗ coming from ∂Di, and

by ν±
i the subarc of d±

i coming from νi. By the assumption (2), we may assume without

loss of generality that each oriented arc component ∂E ′ ∩ �∗ directs from d+
i1
to d−

i2
for

certain i1, i2 ∈ {1, 2}. By the assumptions (3) and (4), the four-holed sphere �∗ and the

arcs �∗ ∩ ∂E ′ and �∗ ∩ l = l′ � l′′ on �∗ can be drawn as in one of Figures 8.1 and 8.2. In

the figure, the arcs ν±
i in d±

i are drawn in bold.

Let D∗ be the horizontal disk shown in each of Figures 8.1 and 8.2. It is clear

that D∗ satisfies conditions (1) and (3). For each i ∈ {1, 2} the simple closed curve on

∂V obtained from the arc l∗i depicted in the figure by gluing back along d±
1 and d±

2 is a

common dual circle ofDi andD∗ disjoint from E ′, hence the condition (4) holds.Moreover,

it is easily seen that all but one component ν∗ of ∂D∗ cut off by ∂E ′, shown in Figure 8,

determine a word of the form yq. Hence, it suffices to show that the arc ν∗ determines a

word of the form yn1+n2−q. From the arcs ν+
1 ∪ ν+

2 , algebraically n1 + n2 arcs of ∂E ′
0 ∩ �∗

come down and all of them pass trough ν∗ ∪ ν ′
∗ from above, where the arc ν ′

∗ is shown in

Figure 8. Since the arc ν ′
∗ determines a word of the form yq, the arc ν∗ determines a word

of the form yn1+n2−q. �

Let (D1,D2) be an ordered pair of disjoint non-separating disks in V such that

the (unordered) pair {D1,D2} satisfies the conditions of Lemma 4.1. Then, there exists

a disk D∗ as in the lemma and we again obtain new ordered pairs (D1,D∗) and (D∗,D2)
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such that both {D1,D∗} and {D∗,D2} satisfy the conditions of the lemma. We call these

new pairs (D1,D∗) and (D∗,D2) the pairs obtained by R-replacement and L-replacement,

respectively, of (D1,D2).

Theorem 4.2. For a lens space L(p,q) with 1 ≤ q ≤ p/2, the primitive disk complex

P(V) for a genus-2 Heegaard splitting (V ,W ;�) of L(p,q) is contractible if and only if

p ≡ ±1 (mod q). �

Proof. The “if" part follows directly from Theorem 3.11 and Theorem 2.1. For the “only

if" part, we will show that P(V) is not connected when p �≡ ±1 (mod q). Suppose that

p �≡ ±1 (mod q). Let m and r be integers such that p = qm + r with 2 ≤ r ≤ q − 2.

Then, there exist a natural number s and a non-negative integer t with sr − (t+ 1)q = 1.

Consider the unique continued fraction expansion

s/(t + 1) = p0 + 1

p1 + 1
p2+ 1

...+ 1
pk

=: [p0;p1,p2, . . . ,pk],

where pi ≥ 1 for i ∈ {0, 1, . . . ,k − 1} and pk ≥ 2.

The circle ∂E ′
0 is a (p, q̄)-curve on the boundary of the solid torus VE for some

q̄ ∈ {q,q′,p − q′,p − q}, where q′ satisfies 1 ≤ q′ ≤ p/2 and qq′ ≡ ±1 (mod p). We will

consider only the case of q̄ = q, that is, ∂E ′
0 is a (p,q)-curve on the boundary of VE . The

following argument can be easily adapted for the other cases.

Consider any (p,q)-shell SE = {E0,E1, . . . ,Ep} in D(V) centered at E. Note that

the disks Em and Em+1 in the sequence are not primitive since ∂Em and ∂Em+1 represent

elements of the form (xyq)m−1xyq+r and (xyq)mxyr , respectively. SetD0 = Em andD−1 = E.

Since D0 and D−1 satisfy the conditions of Lemma 4.1, we obtain a new ordered pair

(D0,D1)byanR-replacement of (D0,D−1). ThediskD1 is not primitive since ∂D1 represents

an element of the form (xyq)mxyr . (Actually, D1 can be chosen to be the disk Em+1 in the

sequence.) Applying R-replacements (p0 − 1) times more, starting at (D0,D1), as

(D0,D1) → (D0,D2) → · · · → (D0,Dp0),

we obtain the pair (D0,Dp0). Next, we apply L-replacements p1 times starting at

(D0,Dp0) as

(D0,Dp0) → (Dp0+1,Dp0) → (Dp0+2,Dp0) → · · · → (Dp0+p1 ,Dp0)
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7324 S. Cho and Y. Koda

Fig. 9. The portion of D(V) obtained by L- and R-replacements from (D0,D−1) following the pro-

cess that corresponds to the continued fraction [p0;p1,p2, . . . ,pk]. The vertices D−1 and Dp0+···+pk
are primitive, whereas D0 and D1 are not primitive.

to obtain the pair (Dp0+p1 ,Dp0). Continuing this process, we finally obtain either the pair

(Dp0+···+pk ,Dp0+···+pk−1
) if k is odd, or (Dp0+···+pk−1

,Dp0+···+pk ) if k is even, of pairwise disjoint

non-separating disks (see Figure 9).

We assign D0 and D−1 the rational numbers 1/0 and 0/1, respectively. We induc-

tively assign rational numbers to the disks appearing in the above process as follows.

Let (D∗,D∗∗) be an ordered pair of non-separating disks appearing in the process. Assume

that we have already assignedD∗ andD∗∗ rational numbers a1/b1 and a2/b2, respectively.

Then, we assign the next disk obtained by L or R-replacement of (D∗,D∗∗) the rational

number (a1 + a2)/(b1 + b2).

Claim. If a disk Dj, for −1 ≤ j ≤ p0 + · · · +pk, appearing in the above process is assigned

a rational number a/b, then ∂Dj represents an element of the form (xyq)dxyar−(b−1)q for

some non-negative integer d.

Proof of Claim. If j = −1, then a/b = 0/1 and ∂D−1 = ∂E represents x and we have

ar − (b − 1)q = 0. If j = 0, then a/b = 1/0 and ∂D0 = ∂Em represents an element of the

form (xyq)m−1xyq+r and we have ar − (b− 1)q = q+ r.

Assume that the claim is true for any Di with i less than j and that Dj is obtained

from (D∗,D∗∗). If D∗ and D∗∗ are assigned rational numbers a1/b1 and a2/b2, respectively,

then Dj is assigned (a1 + a2)/(b1 + b2) by definition. By the assumption, ∂D∗ and ∂D∗∗
determine elements of the forms (xyq)d1xya1r−(b1−1)q and (xyq)d2xya2r−(b2−1)q, respectively,

for some non-negative integers d1 and d2. By Lemma 4.1, the circle ∂Dj determines an

element of the form (xyq)d1+d2+1xy(a1+a2)r−(b1+b2−1)q, and hence the induction completes

the proof.

Due to well-known properties of the Farey graph, see, for example, Hatcher–

Thurston [10],Dp0+···+pk is assigned s/(t+1). Therefore, by the claim, ∂Dp0+···+pk determines

an element of the form (xyq)dxysr−tq, hence (xyq)dxyq+1. This implies that Dp0+···+pk is

primitive.
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Primitive Disk Complexes and Goeritz Groups 7325

Now, we focus on the four disksD−1,D0,D1, andDp0+···+pk . Since the dual complex

of the disk complexD(V) is a tree, and the disksD0 andD1 are not primitive, the primitive

disks D−1 and Dp0+···+pk belong to different components of P(V). This implies that P(V)
is not connected. �

4.2 The structures of primitive disk complexes

In this section, we describe the combinatorial structure of the primitive disk complex

for the genus-2 Heegaard splitting of each lens space. We say simply that a primitive

pair has a common dual disk if the two disks of the pair have a common dual disk.

Theorem 4.3. Given a lens space L(p,q), 1 ≤ q ≤ p/2, with a genus-2 Heegaard splitting

(V ,W ;�), each primitive pair in V has a common dual disk if and only if q = 1. In this

case, if p ≥ 3, the pair has a unique common dual disk, and if p = 2, the pair has exactly

two disjoint common dual disks, which form a primitive pair in W . �

Proof. Suppose that q = 1, and let {D,E} be any primitive pair of V . By Lemma 3.12,

there is a shell SE = {E0,E1, . . . ,Ep} centered at E, in which D is E1 (here, we have q′ =
q = 1). By Lemma 3.5, D and E have a common dual disk.

Now, let E ′ be a common dual disk of D and E. Let E ′
0 be the unique semiprim-

itive disk in W disjoint from E ∪ E ′. We recall that E ′
0 is the meridian disk of the solid

torus cl(W − Nbd(E ′)). Then, ∂E ′
0 intersects ∂D in p points. Cut the surface ∂W along

the boundary circles ∂E ′ and ∂E ′
0 to obtain the four-holed sphere �′. In �′, the boundary

circle ∂E is a single arc connecting two boundary circles of �′ that came from ∂E ′. But

the boundary circle ∂D in�′ consists of (p−1) arcs connecting two boundary circles that

came from ∂E ′
0 together with two arcs connecting ∂E ′ and ∂E ′

0 as in Figure 10.1. Observe

(10.1) (10.2)

Fig. 10. (10.1) ∂E and ∂D lying in the four-holed sphere �′ (when p = 5 for example). (10.2) Two

common dual disks E ′ and E ′′ of D and E for L(2, 1).
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7326 S. Cho and Y. Koda

that if there is a common dual disk of D and E other than E ′, then it cannot intersect

E ′ ∪ E ′
0 otherwise it intersects ∂D or ∂E in more than one points. Thus the boundary of

any common dual disk E ′′ of D and E other than E ′ is a circle inside �′, and hence, from

the figure, it is obvious that one more common dual disk E ′′ other than E ′ exists if and

only if p = 2, and such an E ′′ is unique in this case (Figure 10.2).

Conversely, suppose that every primitive pair has a common dual disk. Choose

any shell SE = {E0,E1, . . . ,Ep} in D(V) centered at a primitive disk E. Then one of the

disks Eq′ and Eq is primitive, where q′ satisfies 1 ≤ q′ ≤ p/2 and qq′ = ±1 (mod p), which

forms a primitive pair with E. If {E,Eq′ } is a primitive pair, then it has a common dual

disk, and so, by Lemma 3.5, there is a semiprimitive disk in V disjoint from E and Eq′ .

The only possible semiprimitive disk disjoint from E and Eq′ is Eq′−1 or Eq′+1 by Lemma

3.10, that is, Eq′−1 = E0 or Eq′+1 = Ep. In any cases, we have q = 1 (the latter case implies

(p,q) = (2, 1) since we assumed 1 ≤ q′ ≤ p/2). The same conclusion holds in the case

where {E,Eq} is a primitive pair. �

It is clear that any primitive disk is a member of infinitely many primitive pairs.

But a primitive pair can be contained at most two primitive triples, which is shown as

follows.

Theorem 4.4. Given a lens space L(p,q), for 1 ≤ q ≤ p/2, with a genus-2 Heegaard

splitting (V ,W ;�) of L(p,q), there is a primitive triple in V if and only if q = 2 or

p = 2q+ 1. In this case, we have the following refinements.

(1) If p = 3, then each primitive pair is contained in a unique primitive triple.

(2) If p = 5, then each primitive pair having a common dual disk is contained in

a unique primitive triple, and each having no commondual disk is contained

in exactly two primitive triples.

(3) If p ≥ 7, then each primitive pair having a common dual disk is contained

either in a unique or in no primitive triple, and each having no common

dual disk is contained in a unique primitive triple.

(4) Further, if p = 3, then each of the three primitive pairs in any primitive

triple in V has a unique common dual disk, which form a primitive triple

inW . If p ≥ 5, then exactly one of the three primitive pairs in any primitive

triple has a common dual disk, which is unique. �

Proof. Note that L(2q+1,q) is homeomorphic to L(2q+1, 2). We prove first the “if” part

together with the refinements. Suppose that q = 2 or p = 2q + 1, and let {D,E} be any
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Primitive Disk Complexes and Goeritz Groups 7327

primitive pair of V . By Lemma 3.12, there is a unique shell SE = {E0,E1, . . . ,Ep} centered
at E containing D. We may assume that D is one of E1, E2 or Eq.

(1) If p = 3, the disk D is E1, and so E2 is the unique primitive disk disjoint from E ∪ E1

by Lemma 3.10. Thus {D,E} is contained in the unique primitive triple {D,E,E2}.
(2) If p = 5, then the disk D is either E1 or E2. If {D,E} has a common dual disk, then

D is E1, and they are contained in the unique primitive triple {D,E,E2}. If {D,E} has no

common dual disk, then D is E2, and they are contained in exactly two primitive triples

{D,E,E1} and {D,E,E3}.
(3) If p ≥ 7, then D is either E1, E2 or Eq. Observe that if one of E2 and Eq is primitive, then

the other is not, while E1 is always primitive. If {D,E} has no common dual disk, then D

is E2 or Eq. In this case, {D,E} is contained in the unique primitive triple {D,E,E1} if D is

E2, or in the unique triple {D,E,Eq+1} if D is Eq. Suppose next that {D,E} has a common

dual disk. Then D is E1, and hence {D,E} is either contained in a unique primitive triple

or contained in no primitive triple, according as E2 is primitive or not.

(4) Let {D,E,F} be any primitive triple inV , and let SE = {E0,E1, . . . ,Ep} be the unique shell
centered at E containing D. Again, we may assume that D is one of E1, E2 or Eq. Suppose

that p = 3. Then, we haveD = E1 and F = E2 in the shell SE = {E0,E1,E2,E3}. The primitive

pairs {E,D} = {E,E1} and {E,F} = {E,E2} in the triple have unique commondual disks, say

E ′ andE ′′, respectively, by Lemma3.5 andTheorem4.3. Further, {E ′,E ′′} is a primitive pair

in W (in fact, ∂E ′′ is the circle e′′ in the proof of Lemma 3.8). Furthermore, exchanging

the roles of D and E, there exists the unique shell SD = {D0,D1,D2,D3} centered at D

containing E. Here, we have D = E1, D0 = E0, D1 = E, and D2 = E2 = F . The primitive

pair {D,D2} = {D,F} has a unique common dual disk, say E ′′′, forms a primitive pair

{E ′,E ′′′} with the common dual disk E ′ of {D,E} = {D,D1}. Finally, considering the unique

shell centered at F containing E, we see that {E ′′,E ′′′} is also a primitive pair inW . Thus,

{E ′,E ′′,E ′′′} is a primitive triple in W .

Next, suppose that p ≥ 5, and let {D,E,F} be any primitive triple of V . Suppose,

for contradiction, that at least two of the primitive pairs, say {D,E} and {E,F}, in the

triple have common dual disks. Then, in the unique shell SE = {E0,E1, . . . ,Ep} centered
at E containing D, the disk D must be E1 by Lemma 3.5. Moreover, the disk F is E2 by

Lemma 3.10, and the disk E3 is semiprimitive, that is, Ep by Lemma 3.5 again. Thus, we

must have p = 3, a contradiction.

Conversely, suppose that there is a primitive triple {D,E,F} in V . Again, we con-

sider the unique shell SE = {E0,E1, . . . ,Ep} centered at E containing D. Then SE is a

(p, q̄)-shell for some q̄ ∈ {q,q′,p − q′,p − q}, where q′ is the unique integer satisfying
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7328 S. Cho and Y. Koda

qq′ ≡ ±1 (mod p) and 1 ≤ q′ ≤ p/2. We first consider the case q̄ = q. Then, we may

assume that D is E1 or Eq′ by Lemma 3.12. If D is E1, then F is E2 by Lemma 3.10, and so

q′ = 2 by Lemma 3.8. Thus p = 2q + 1. If D is Eq′ , then F is Eq′−1 or Eq′+1 by Lemma 3.10

again. That is, q′ − 1 = 1 or q′ + 1 = p− q′ by Lemma 3.8 again. Thus p = 2q+ 1 or q = 2.

We have the same argument for the other cases, q̄ ∈ {q′,p− q′,p− q}. �

Now, we are ready to give a precise description of the primitive disk complex

P(V) for the genus-2 Heegaard splitting of each lens space. For convenience, we classify

all the edges and two-simplices of P(V) as follows.

(1) An edge of P(V) is called an edge of type-0 (type-1, type-2, respectively) if

a primitive pair representing the end vertices of the edge has no common

dual disk (has a unique common dual disk, has exactly two common dual

disks which form a primitive pair in W , respectively).

(2) A two-simplex of P(V) is called a two-simplex of type-1 (of type-3, respec-

tively) if exactly one of the three primitive pairs in the primitive triple

representing the three edges of the two-simplex has a unique common dual

disk (if all the three pairs have unique common dual disks which form a

primitive triple in W , respectively).

By Theorems 4.3 and 4.4, we see that each of the edges and two-simplices of

P(V) is one of those types in the above. In the following theorem, we describe the com-

binatorial structure of P(V) for each of the lens spaces, which is a direct consequence

of Theorems 4.2, 4.3, and 4.4.

Theorem 4.5. Given any lens space L(p,q), 1 ≤ q ≤ p/2, with a genus-2 Heegaard split-

ting (V ,W ;�), if p ≡ ±1 (mod q), then the primitive disk complex P(V) is contractible

and we have one of the following cases.

(1) If q �= 2 and p �= 2q + 1, then P(V) is a tree, and every vertex has infinite

valency. In this case,

i. if p = 2 and q = 1, then every edge is of type-2.

ii. if p ≥ 4 and q = 1, then every edge is of type-1.

iii. if q �= 1, then every edge is of either type-0 or type-1, and infinitely

many edges of type-0 and of type-1 meet in each vertex.

(2) If q = 2 or p = 2q+1, then P(V) is two-dimensional, and every vertex meets

infinitely many two-simplices. In this case,
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Primitive Disk Complexes and Goeritz Groups 7329

(11.1a) (11.1b)

(11.1c) (11.2a)

(11.2b) (11.2c)

Fig. 11. A portion of each primitive disk complex P(V) together with the associated shells in

D(V). Each number designates the type of the edge.
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7330 S. Cho and Y. Koda

i. ifp = 3, then every edge is of type-1, every two-simplex is of type-3,

and every edge is contained in a unique two-simplex.

ii. ifp = 5, then every edge is of either type-0 or type-1, and every two-

simplex is of type-1. Every edge of type-0 is contained in exactly

two two-simplices, while every edge of type-1 in a unique two-

simplex.

iii. if p ≥ 7, then every edge is of either type-0 or type-1, and every

two-simplex is of type-1. Every edge of type-0 is contained in a

unique two-simplex. Every edge of type-1 is contained in a unique

two-simplex or in no two-simplex.

If p �≡ ±1 (mod q), then P(V) is not connected, and it consists of infinitely many tree

components. All the tree components are isomorphic to each other. Any vertex of P(V)
has infinite valency, and further, infinitely many edges of type-0 and of type-1 meet in

each vertex. �

Figure 11 illustrates a portion of each of the contractible primitive disk com-

plexesP(V) classified in the above, togetherwith its surroundings inD(V).We label sim-

ply E or Ej for the vertices represented by disks E or Ej. In the case of (2)-ii of the theorem

(Figure 11.2b), the complex P(V) for L(5, 2), every edge is contained a unique “band.” The

edges in the boundary of a band are of type-1, while the edges inside a band are of type-0.

Thewhole figure ofP(V) for L(5, 2) can be imagined as the union of infinitelymany bands

such that any of two bands are disjoint from each other or intersects in a single vertex.

In the case of (2)-iii of the theorem, there are two kind of shells SE = {E0,E1, . . . ,Ep} in
P(V) centered at a primitive disk E. The first one has primitive disks E1,Eq,Ep−q and Ep−1,

while the second one has E1,E2,Ep−2 and Ep−1. Figure 11.2c illustrates an example of the

first one.

5 The Genus-2 Goeritz Groups of Lens Spaces

5.1 The primitive disks under the action of the Goeritz group

By Bonahon–Otal [3] each lens space admits a unique Heegaard surface of each

genus g � 1 up to isotopy. Further, they showed that the two handlebodies of each

genus-g Heegaard splitting are isotopic to each other when g ≥ 2. However, the

genus-1 Heegaard splitting of a lens space is somewhat more rigid in the following

sense.
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Lemma 5.1 (Bonahon [2]). There exists an orientation-preserving homeomorphism of

L(p,q) that exchanges the two solid tori of the genus-1 Heegaard splitting if and only if

q2 ≡ 1 (mod p). �

Given a genus-g Heegaard splitting of a three-manifold, the Goeritz group of the

splitting is the group of isotopy classes of orientation-preserving homeomorphisms of

the manifold that preserve each of the handlebodies of the splitting setwise. By Lemma

5.1, the Goeritz group of a splitting for each lens space depends only on the genus of the

splitting, and hencewe say the genus-g Goeritz group of a lens spacewithoutmentioning

a specific genus-g splitting of it. We denote by G = GL(p,q) the genus-2 Goeritz group of

L(p,q). We recall that (V ,W ;�) is a genus-2 Heegaard splitting of a lens space L(p,q)

with 1 ≤ q ≤ p/2. We denote by VD the solid torus cl(V−Nbd(D))where D is an essential

non-separating disk in V .

Throughout the section, we will assume that p ≡ ±1 (mod q), that is, the

primitive disk complex P(V) is connected. Further we fix the following:

• A primitive disk E in V .

• A (p,q)-shell SE = {E0,E1, . . . ,Ep} centered at E.

• The unique (p,q′)-shell SD = {D0,D1, . . . ,Dp} centered at D = Eq′ such that

E = Dq, where q′ is the unique integer satisfying qq′ ≡ ±1 (mod p) and 1 ≤
q′ ≤ p/2.

We use the above four primitive disks E, D, E1, D1 to describe the orbits of the action of

the genus-2 Goeritz group to the set of primitive pairs. Note that if q = 1, then D = E1

and E = D1.

Lemma 5.2. If q2 ≡ 1 (mod p), the action of the Goeritz group G on the set of vertices

of the primitive disk complex P(V) is transitive. If q2 �≡ 1 (mod p), the action of G on

the set of vertices of P(V) has exactly two orbits G · {E} and G · {D}. �

Proof. Suppose first that q2 ≡ 1 (mod p). By Lemma 5.1, there exists an orientation-

preserving homeomorphism ι of L(p,q) that exchanges the solid tori of a genus-1

Heegaard splitting. By the uniqueness of the genus-2 Heegaard splitting for L(p,q) up to

isotopy, we can assume that ι preserves V , that is, ι ∈ G. Let F be an arbitrary primitive

disk in V . Then, the solid torus VF (and Vι(F)) is isotopic to VE . Thus by the uniqueness of

stabilization, there exists an element f ∈ G such that f (E) = F or ι(F). This implies that

{F} ∈ G · {E}.
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Next, suppose that q2 �≡ 1 (mod p). As in the proof of Lemma 3.13, VD is isotopic

to the exterior of VE in L(p,q). If there exists an element f ∈ G such that f (D) = E, then

f maps VD to VE , which contradicts Lemma 5.1. �

Lemma 5.3.

(1) If q = 1, the action of the Goeritz group G on the set of edges of the primitive

disk complex P(V) is transitive. The two end points of the edge {E,D} can
be exchanged by the action of G.

(2) If q �= 1 and q2 ≡ 1 (mod p), the action of G on the set of edges of P(V) has
exactly two orbits G · {E,D} and G · {E,E1}. The two end points of each of the

edges {E,D} and {E,E1} can be exchanged by the action of G.
(3) Otherwise, the action of G on the set of edges ofP(V) has exactly three orbits

G · {E,D}, G · {E,E1}, and G · {D,D1}. The two end points of each of the edges

{E,E1} and {D,D1} can be exchanged by the action of G, whereas those of

{E,D} cannot. �

Proof. (1) Let {A,B} be a primitive pair. Then by Lemma 3.12, there exists a unique shell

SB = {B0,B1,B2, . . . ,Bp} centered at B containing A. Without loss of generality, we may

assume that A = B1. By the definition of shells, we have {A,B} ∈ G · {E,E1}. Since in this

case we have q = q′ = 1, it follows from Lemma 3.13 that the two end points of the edge

{E,E1} can be exchanged by the action of G.
(2) In this case, we have q = q′ �= 1. Let {A,B} be a primitive pair. Then by Lemma 3.12,

there exists a unique shell SB = {B0,B1,B2, . . . ,Bp} centered at B containing A. Without

loss of generality,wemay assume thatA = B1 orBq. It follows directly from the definition

of shells that in the former case we have {A,B} ∈ G · {E,E1}, and in the latter case we have

{A,B} ∈ G · {E,D}. Since the primitive pair {E,E1} admits a common dual disk whereas

the pair {E,D} does not, we see that G · {E,D} ∩ G · {E,E1} = ∅. By Lemma 3.13, the two

end points of each of the edges {E,D} and {E,E1} can be exchanged by the action of G.
(3) In this case, we have q �= q′, q > 1 and q′ > 1. Let {A,B} be a primitive pair. Then by

Lemma 3.12, there exists a unique shell SB = {B0,B1,B2, . . . ,Bp} centered at B containing

A. Without loss of generality, we may assume that A = Bi, where 1 ≤ i ≤ p/2. Again by

the definition of shells we have:

Case 1 If SB is a (p,q)-shell and A = B1, then {A,B} ∈ G · {E,E1}.
Case 2 If SB is a (p,q′)-shell and A = B1, then {A,B} ∈ G · {D,D1}.
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Case 3 If SB is a (p,q)-shell and A = Bq′ , or if SB is a (p,q′)-shell and A = Bq, then

{A,B} ∈ G · {E,D}.

By Lemma 3.13, the two end points of each of the edges {E,E1} and {D,D1} can be

exchanged by an involution of G. Since G · {E} ∩ G · {D} = ∅ by Lemma 5.2, the two

end points of {E,D} cannot be exchanged. �

5.2 Presentations of the Goertiz groups

The following is a specialized version of Bass–Serre Structure theorem, which is the key

to obtain a presentation of the Goeritz group G.

Theorem 5.4 (Serre [18]). Suppose that a group G acts on a tree T without inversion on

the edges. If there exists a subtreeL of T such that every vertex (every edge, respectively)

of T is equivalent modulo G to a unique vertex (a unique edge, respectively) of L. Then
G is the free product of the isotropy groups Gv of the vertices v of L, amalgamated along

the isotropy groups Ge of the edges e of L. �

In the following,wewill denote by G{A1,A2,...,Ak} the subgroup of the genus-2Goeritz

group G consisting of elements that preserve each of A1, A2, . . . ,Ak setwise, where each

Ai will be a disk or the union of disks in V or W .

Lemma 5.5. Let A be a primitive disk in V . Then we have G{A} = 〈α | α2〉 ⊕ 〈β, γ | γ 2〉,
where α is the hyperelliptic involution of both V and W , β is the half-twist along

a reducing sphere, and γ exchanges two disjoint dual disks of A as described in

Figure 12. �

(12.1) (12.2) (12.3)

Fig. 12. Generators of G{A}.
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Proof. Since the argument is almost the same as Lemma 5.1 of [5], we explain the

outline. Let PA be the full-subcomplex of D(W) spanned by all the dual disks of A. Then

we can show that any dual disk of A in W is disjoint from the unique semiprimitive

disk A′
0 disjoint from ∂A, which implies that PA is one-dimensional. Further, PA is a

subcomplex of the disk complex forW satisfying the condition in Theorem2.1, and hence

PA is a tree. Let P ′
A be a first barycentric subdivision of PA. Let A′ and B′ be disjoint dual

disks ofA. The quotient of P ′
A by the action of G is a single edge. It follows from Theorem

5.4 that G{A} = G{A,A′} ∗G{A,A′,B′} G{A,A′∪B′}. An easy computation shows the following:

• G{A,A′} = 〈α | α2〉 ⊕ 〈β | −〉, where α is the hyperelliptic involution of both V

and W , and β is the half-twist along the reducing sphere ∂(Nbd(A ∪A′)); see

Figures 12.1 and 12.2,

• G{A,A′∪B′} = 〈α′ | α′2〉 ⊕ 〈γ | γ 2〉, where α′ is the hyperelliptic involution of both

V and W , and γ exchanges A′ and B′; see Figures 12.1 and 12.3,

• G{A,A′,B′} = 〈α | α2〉, where α is the hyperelliptic involution of both V and W ;

see Figure 12.1.

Since the unique non-trivial element α of G{A,A′,B′} provides a relation α = α′ in the free

product G{A,A′} ∗ G{A,A′∪B′}, we obtain the required presentation of G{A}. �

Lemma 5.6. Suppose that p ≥ 3. Let {A,B} be an edge of the primitive disk complex

P(V). Then, we have G{A,B} = 〈α | α2〉. If the two end points of the edge {A,B} can be

exchanged by the action of G, then we have G{A∪B} = 〈α | α2〉 ⊕ 〈σ | σ 2〉, where σ is an

element of G exchanging A and B. Otherwise, we have G{A∪B} = 〈α | α2〉. �

Proof. Let {A,B} be an edge of P(V). Then by Lemma 3.12, there exists a unique shell

SB = {B0,B1, . . . ,Bp} centered at B containingA such thatA is one of B0,B1, . . . ,Bp. Without

loss of generality, we may assume that A = Bi, where 1 ≤ i < p/2. (We assumed p ≥ 3.)

Let f be an element of G{A,B}. By the uniqueness of the shell, we have f (Bj) = Bj for

0 ≤ j ≤ p. Let B′ be the unique dual disk of B disjoint from B0, and let B′
0 be the unique

semi-primitive disk disjoint from B as in the proof of Lemma 3.12. Then again by the

uniqueness of the shell, we have f (B′) = B′ and f (B′
0) = B′

0. If f preserves an orientation

of B, then f preserves orientations of all of Bj, B′ and B′
0 since {B,Bj−1,Bj} is a triple of

pairwise disjoint disks cutting V into two 3-balls. Then by Alexander’s trick, f is the

trivial element of G. If f reverses an orientation of B, then f reverses orientations of all

of Bj, B′ and B′
0. Then again by Alexander’s trick, f is the hyperelliptic involution α.
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If the two end points of the edge {A,B} cannot be exchanged by the action of G,
it is clear that G{A∪B} = G{A,B} = 〈α | α2〉.

Suppose that there exists an element σ ∈ G that exchanges the two end points

of the edge {A,B}. In this case, by Lemma 3.12 there exists a unique shell SA =
{A0,A1, . . . ,Ap} centered at A containing B such that B = Ai. Using the triple {B,Bi−1,Bi},
we may put compatible orientations on B, Bj−1 and Bj = A in a sense that the orienta-

tions are coming from an orientation of V cut off by B ∪ Bi−1 ∪ Bi. We may also put an

orientation on Ai−1 so that the triple {A,Ai−1,Ai} with the pre-fixed orientations on A and

Aj = B are compatible. Since σ maps the shell SB = {B0,B1, . . . ,Bp} to the shell SA, we see

that σ |B: B → A is orientation-preserving if and only if so is σ |A: A → B. This implies

that σ 2 = 1 ∈ G. Let σ1 and σ2 be elements of G that interchanges D and E. Then, σ1σ2 = 1

or α. This implies σ1 = σ2 or ασ1 = σ2. Therefore, we have G{A∪B} = 〈α | α2〉 ⊕ 〈σ | σ 2〉. �

We remark that, in the case of p = 2 or q = 1, the presentations of G{A,B} and G{A∪B}
have been obtained in Lemmas 5.2 and 5.3 in [5]. Using the presentations of the isotropy

groups, we have the following main theorem:

Theorem 5.7. The genus-2 Goeritz group G of a lens space L(p,q), 1 ≤ q ≤ p/2, with

p ≡ ±1 (mod q) has the following presentations:

(1) If q = 1, then we have:

(a) 〈β, ρ, γ | ρ4, γ 2, (γρ)2, ρ2βρ2β−1〉 if p = 2;

(b) 〈α | α2〉 ⊕ 〈β, δ, γ | δ3, γ 2, (γ δ)2〉 if p = 3;

(c) 〈α | α2〉 ⊕ 〈β, γ , σ | γ 2, σ 2〉 if p ≥ 4;

(2) If q > 1, then we have:

(a) 〈α | α2〉 ⊕ 〈β1,β2, γ1, γ2 | γ12, γ22〉 if p = 5;

(b) 〈α | α2〉 ⊕ 〈β1,β2, γ1, γ2, σ | γ12, γ22, σ 2〉 if p = 2q + 1 and q � 3, or

p > 5 and q = 2;

(c) 〈α | α2〉 ⊕ 〈β, γ , σ1, σ2 | γ 2, σ12, σ22〉 if q2 ≡ 1 (mod p);

(d) 〈α | α2〉 ⊕ 〈β1,β2, γ1, γ2, σ1, σ2 | γ12, γ22, σ12, σ22〉 otherwise. �

Proof. We use the four primitive disks E, D, E1 and D1 defined in Section 5.1, but we

use the same symbols α, β, γ and σ in Lemmas 5.5 and 5.6 for the isotropy subgroups of

the disks and their unions in the above.

(1) Since this case of q = 1 is already described in [5], we briefly sketch the proof.

(1)a By Theorem 4.5 the primitive disk complex P(V) for the genus-2 Heegaard splitting

of L(2, 1) is a tree, which is described in Figure 11.1a. Let T be the first barycentric
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(13.1) (13.2)

Fig. 13. (13.1) The primitive disk complex P(V). (13.2) The tree T .

subdivision of P(V). By Lemma 5.3 the quotient of T by the action of G is a single edge

with distinct ends. By Theorem 5.4, we have:

G = G{E∪D} ∗G{E,D} G{E}.

The presentation in (1)a is obtained by computing each of those isotropy groups.

(1)b By Theorem 4.5 the primitive disk complex P(V) for the genus-2 Heegaard splitting

of L(3, 1) is a two-dimensional complex, which is described in Figure 11.2a. In this case,

there is a deformation retraction of P(V) that shrinks each two-simplex into the cone

over its three vertices as shown in Figure 13. Let T be the resulting complex, which is

a tree. By Lemma 5.3 the quotient of T by the action of G is a single edge with distinct

ends. By Theorem 5.4, we have:

G = G{E∪E1∪E2} ∗G{E,E1∪E2} G{E}.

The presentation in (1)b is obtained by computing each of those isotropy groups.

(1)c By Theorem 4.5 the primitive disk complex P(V) for the genus-2 Heegaard splitting

of L(p, 1), p > 3, is a tree, which is described in Figure 11.1b. Let T be the first barycentric

subdivision of P(V). By Lemma 5.3 the quotient of T by the action of G is a single edge

with distinct ends. By Theorem 5.4, we have:

G = G{E∪D} ∗G{E,D} G{E}.

The presentation in (1)c is obtained by computing each of those isotropy groups.

(2) Suppose that q > 1.

(2)a By Theorem 4.5, the primitive disk complex P(V) for the genus-2 Heegaard splitting

of L(5, 2) is a two-dimensional contractible complex, which is described in Figure 11.2b.
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(14.1) (14.2) (14.3)

Fig. 14. (14.1) The primitive disk complex P(V). (14.2) The tree T . (14.3) The quotient T /G.

(15.1) (15.2) (15.3)

Fig. 15. (15.1) The primitive disk complex P(V). (15.2) The tree T ′. (15.3) The quotient T ′/G.

A portion of P(V) containing the vertices E, D, E1 and D1 is illustrated in Figure 14.1. We

recall that each two-simplex of P(V) contains exactly two edges of type-0 (both of which

are elements of G · {E,E1}) and one edge of type-1 (which is an element of G · {E,D}). We

observe that the subcomplex of P(V) which consists only of the type-0 edges with the

vertices is a tree, whichwe denote by T (see Figure 14.2). By Lemma 5.3 the Goeritz group

G acts without inversion on the edges of T and the two endpoints of each edge belong to

different orbits of vertices under the action of G. Moreover, the action is transitive on

the set of the edges of T . Hence the quotient of T by the action of G is a single edge, see

Figure 14.3. By Theorem 5.4, we have:

G = G{E} ∗G{E,D} G{D}.

By Lemmas 5.5 and 5.6, we get the presentation in (2)a.

(2)b Let L(p,q) be a lens space such that p = 2q + 1 and q � 3, or p > 5 and q = 2. By

Theorem 4.5 the primitive disk complexP(V) is a two-dimensional contractible complex,

which is described in Figure 11.2c. A portion ofP(V) containing the vertices E,D, E1, and

D1 is illustrated inFigure15.1. In this case, each two-simplexofP(V) contains exactly one
edgeof type-1 (which is an element ofG · {D,D1}) and twoedgesof type-0 (bothofwhichare

elementsofG · {E,D}). Substitutingeach two-simplexofP(V)by theunionof the twoedges
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of type-0 with their vertices in the two-simplex, we have a subcomplex of P(V), which is

a tree. We denote it by T . Let T ′ be the tree obtained from T ′ by adding the barycenter of

each of the remaining edges of type-1 (see Figure 15.2). By Lemma 5.3 the Goeritz group

G acts without inversion on the edges of T ′ and the two endpoints of each edge belong to

different orbits of vertices under the action of G. Moreover, the complex T ′ modulo the

action of G consists of exactly three vertices and two edges. Hence the quotient of T ′ by

the action of G is the path graph on three vertices, that is, the tree with three vertices

containing only vertices of degree 1 or 2 (see Figure 15.3). By Theorem 5.4, we have

G = G{D} ∗G{E,D} G{E} ∗G{E,E1} G{E∪E1}.

By Lemmas 5.5 and 5.6, we obtain the presentation in (2)b.

(2)c Let L(p,q) be a lens space such that q2 ≡ 1 (mod p) and q � 3. By Theorem 4.5 the

primitive disk complex P(V) is a tree, which is described in Figure 11.1c. A portion of

P(V) containing the vertices E,D, E1, andD1 is illustrated in Figure 16.1. Let T be the first

barycentric subdivision of P(V) (see Figure 16.1). By Lemma 5.3 the Goeritz group G acts

without inversion on the edges of T and the two endpoints of each edge belong to differ-

ent orbits of vertices under the action of G. Moreover, the complex T modulo the action

of G consists of exactly three vertices and two edges. Hence, the quotient of T by the

action of G is the path graph on three vertices (see Figure 16.3). By Theorem 5.4, we have:

G = G{E∪D} ∗G{E,D} G{E} ∗G{E,E1} G{E∪E1}.

By Lemmas 5.5 and 5.6, we obtain the presentation in (2)c.

(2)d Let L(p,q) be a lens space such that q > 1, p ≡ ±1 (mod q), and homeomorphic to

none of the above. We assume that p ≡ 1 (mod q). The argument for the case where

(16.1) (16.2) (16.3)

Fig. 16. (16.1) The primitive disk complex P(V). (16.2) The tree T . (16.3) The quotient T /G.
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(17.1) (17.2) (17.3)

Fig. 17. (17.1) The primitive disk complex P(V). (17.2) The tree T . (17.3) The quotient T /G.

p ≡ −1 (mod q) is the same. By Theorem 4.5 the primitive disk complex P(V) is a tree,

which is described in Figure 11.1c again. A portion of P(V) containing the vertices E, D,

E1, and D1 is illustrated in Figure 17.1. Let T be the tree obtained from P(V) by adding

the barycenter of each edge of type-1 (which is an element of G · {E,E1} or G · {D,D1}) (see
Figure 17.2). By Lemma 5.3 the Goeritz group G acts without inversion on the edges of

T and the two endpoints of each edge belong to different orbits of vertices under the

action of G. Moreover, the complex T modulo the action of G consists of exactly four

vertices and three edges. Hence, the quotient of T by the action of G is the path graph

on four vertices (see Figure 17.3). By Theorem 5.4, we have:

G = G{D∪D1} ∗G{D,D1} G{D} ∗G{E,D} G{E} ∗G{E,E1} G{E∪E1}.

By Lemmas 5.5 and 5.6, we obtain the presentation in (2)d. �
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