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a b s t r a c t

Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display
panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based
burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus
of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major
purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hier-
archical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in
population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in
approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning
the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is
conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP
degradation data is used to illustrate the proposed methodology. The proposed method is compared to
other approaches such as the maximum likelihood method or the change-point regression.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Burn-in is an important screening method to weed out weak or
defective products before shipping to customers [1]. It is generally
conducted by running products for a pre-determined amount of
time under designed or accelerated stress conditions [2,3]. Con-
ventional burn-in tests identify defective or weak products by
inducing their failures over the testing periods (referred to as
failure-based burn-in tests hereafter). Various aspects of failure-
based burn-in tests, including test durations, stress types and le-
vels, and residual-life distributions after burn-in, have been in-
vestigated by numerous researchers over the past four decades
(e.g., [4–8]). Most research centers on how long and under what
conditions the burn-in process should be conducted to maximize
cost efficiency and field reliability. Comprehensive reviews of
failure-based burn-in test design have been conducted by Kuo
et al. [1] and Liu and Mazzuchi [9].

For highly reliable products, traditional failure-based burn-in
tests may be ineffective because long burn-in duration may be
required to observe failures [10]. Now, along with degradation
data for performance measures related to product failures,
hanyang.ac.kr (S.J. Bae),
degradation-based burn-in tests are being considered as a pro-
mising alternative to failure-based burn-in tests [11]. Previous
studies on degradation have focused on developing degradation
models to estimate failure-time distributions [12–19], predicting
remaining useful life distribution for a unit being monitored [20–
23], and exploring preventive maintenance policies for continuous
monitoring of degrading products [24–26]. Some recent studies
considered degradation-based burn-in models and methods.
Tseng and Tang [27] proposed a cost-optimal burn-in policy via a
Wiener process degradation model. Under the assumption that
there exists some proportion of weak products in the population,
they proposed a total cost function consisting of burn-in operation
cost, measurement cost, and misclassification cost. The burn-in
decision variables they used were burn-in duration and the cutoff
point. At the end of burn-in, if a unit's degradation level exceeded
the cutoff point, it was classified as a weak unit. Tseng and Peng
[28], Tseng et al. [11], and Tsai et al. [29] later explored this de-
gradation-based burn-in approach to create several burn-in test-
ing protocol. Tseng and Peng [28] introduced an integrated Wiener
process to describe cumulative degradation, then derived an op-
timal burn-in policy based on the cumulative degradation model.
Tseng et al. [11] proposed a burn-in procedure with multiple cutoff
points. Tsai et al. [29] assumed that the underlying degradation
pattern followed a gamma process instead of the Wiener process.
Xiang et al. [30], Ye et al. [31], Peng et al. [32], and Feng et al. [33]
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considered simultaneous optimization of burn-in and preventive
maintenance with the decision variables corresponding to burn-in
duration, cutoff point, and replacement interval. Ye et al. [10]
planned burn-in tests considering two competing failure modes:
soft (degradation-threshold) failure and catastrophic failure. Zhai
et al. [34] considered measurement errors in degradation based
burn-in. They used Wiener process to model the underlying de-
gradation and considered Gaussian measurement errors in the
observations.

All of the aforementioned studies on the degradation-based
burn-in tests assumed that the burn-in population consists of
weak and normal units, and that the main purpose of burn-in is to
identify the weak ones based on the degradation data collected in
the burn-in tests. The heterogeneity of the burn-in population is
usually modeled by a mixture degradation model (e.g., the mixed
Wiener process, the mixed gamma process) [11,27–31] or a ran-
dom-effect degradation model [10,32,33]. However, motivated by
the two-phase degradation phenomenon observed in light dis-
plays, this study considers a different type of burn-in planning
problem for products exhibiting two-phase degradation patterns.

An industrial collaborator conducted a degradation test on six
plasma display panels (PDPs) to assess their reliability at a con-
stant stress level. The six individual PDP degradation paths, which
were analyzed by Bae et al. [16], consist of relative luminosity
measurements inspected regularly. As shown in Fig. 1, after a rapid
decrease in brightness at the initial stage of the degradation
testing, the decrease in paths slowed. Bae et al. [16] explained the
degradation physics concerning this two-phase degradation phe-
nomenon for PDPs. During the PDP manufacturing process, im-
purities remain inside the PDPs, and due to a temporary “poison-
ing effect” of the impurities, the light display will initially experi-
ence a rapid decrease in light intensity until the impurities are
completely burned out, at which time the light degradation will
continue at a slower, more stable rate [16]. PDP manufacturers
execute a burn-in procedure (called “aging” in the industry) to
burn off the impurities. The major purpose of this burn-in proce-
dure is to eliminate the initial rapid degradation phase before
shipping to customers. Infant mortality (i.e., early failures of weak
products) is not a major concern in terms of luminosity degrada-
tion. Many other products such as organic light-emitting diodes
(OLEDs) [35], lithium-ion batteries [36], and direct methanol fuel
cells [37] have similar two-phase degradation patterns. Therefore,
the proposed burn-in methods described in this study have
Fig. 1. Observed degradation paths of six PDPs: relative luminosity vs. measure-
ment time.
potential application for those products as well.
This study used the Bayesian approach to plan degradation-

based burn-in tests. Traditional maximum likelihood based burn-
in planning methods usually assume that the model parameters
are known before planning and conducting the burn-in test.
However, in actual situations, uncertainties in the model para-
meters dominate the burn-in test environments [9]. In such cases,
Bayesian methods are more appropriate and have been proven to
be effective in planning failure-based burn-in tests [7,8]. This
study adopts the Bayesian framework in degradation-based burn-
in test planning methodology.

The remainder of this paper is organized as follows. The pro-
posed methodology is presented in Section 2. Both reliability and
cost criteria are considered, and the associated Bayesian compu-
tational methods are developed. The PDP example used by Bae
et al. [16] is revisited to illustrate the proposed methodology in
Section 3. Finally, this study is concluded and future research di-
rections are outlined in Section 4.
2. Methodology

This section presents the proposed burn-in methodology using
PDPs as an illustrative example. The actual degradation path of a
unit is a monotonic decreasing function of the deterioration of a
quality or performance characteristic over time. In degradation
analysis, a “soft” failure is usually defined in terms of the amount of
degradation to a critical threshold level. In display industry, when
manufacturers ship the display products like PDPs and OLEDs to
customers, they set initial display brightness to the level which is
requested by the customers, and a display unit is considered to
have failed when its luminosity falls below 50% of its initial value
[16]. Therefore, the relative luminosity, instead of the luminosity,
is selected as the performance characteristic.

2.1. Degradation modeling

A degradation model adequately describing the two-phase
degradation path is essential for planning burn-in tests. Two dif-
ferent modeling approaches have been proposed in the literature.
Bae and Kvam [38] developed a change-point regression model to
describe the two-phase degradation patterns of PDPs. Bae et al.
[16] employed a bi-exponential model for the PDP degradation
paths. The bi-exponential model was also applied to describe the
two-phase degradation of direct methanol fuel cells [37]. This
study adopts the bi-exponential degradation model because it
provides a better fit for the PDP degradation data than the change-
point regression model [39].

The expected degradation path of a unit randomly selected
from the burn-in population is described by the following non-
linear function [16]

η γ γ φ φ γ φ γ( ) = ( − ) + ( − ) ( − ) ( )t t t; , , exp 1 exp , 11 2 1 2

where η (·) represents the expected degradation path of the re-
lative luminosity, φ ∈ ( )0, 1 denotes the initial proportion of im-
purities, and γ > 01 and γ > 02 represent the impurities' degrada-
tion rate and the inherent degradation rate of plasma phosphors,
respectively. Because the impurities' degradation rate, γ1, is ex-
pected to be greater than the inherent degradation rate, γ2, we re-
parameterize the bi-exponential model (1) as

η θ φ γ γ φ γ( ) = ( − ( + Δ ) ) + ( − ) ( − ) ( )t t t; exp 1 exp , 2

where γ > 0 represents the inherent degradation rate of plasma
phosphors, and γ γ( + Δ ) denotes the impurities’ degradation rate.
Letting γΔ > 0 can yield the desired two-phase degradation
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patterns. Herein θ φ γ γ= ( Δ ), , . To account for unit-to-unit varia-
bility in the population, the degradation-path parameters θ are
assumed to be randomwith a multivariate distribution θ ϕ( | )Θf and
a parameter vector ϕ, i.e., θ θ ϕ θ Θ∼ ( | ) ∀ ∈Θf , . Herein, Θ represents
the parameter space for θ. Finally, prior knowledge concerning
uncertainty in the parameter vector ϕ is expressed by a prior
distribution denoted by ϕ ϕ Φ( ) ∈Φf , , where Φ is the parameter
space for ϕ. In summary, the degradation path Eq. (2), θ θ ϕ∼ ( | )Θf ,
and ϕ ϕ∼ ( )Φf form a three-stage hierarchical Bayesian model to
describe the expected degradation of a random unit from the
burn-in population.

In degradation analysis, a “soft” failure is usually defined in
terms of the amount of degradation to a critical threshold level.
For instance, in display industries, a critical quality measure is
luminosity, and a display unit is considered to have failed when its
luminosity falls below 50% of its initial value [16].

The mission reliability, ( )R tm , is the probability that a random
unit released to operation can survive for a pre-specified mission
time tm. Conditioning on a given ϕ, the mission reliability without
burn-in is defined as

∫ η ηϕ ϕ θ θ ϕ θ( | ) = ( > | ) = ( ( ) > ) ( | ) ( )Θ
Θ

⁎R t T t t f dPr Pr ; , 3m m m

where T denotes the time-to-soft-failure, and η⁎ denotes the de-
gradation threshold for the soft failure. For example, η =⁎ 50% for
each PDP. In the Bayesian framework, all model parameters, e.g., ϕ,
are random variables, and, hence, any functions of the model
parameters, e.g., ( )R tm , are also random variables. The prior dis-
tribution for the mission reliability ( )R tm , denoted by ( )f rRm

can,
therefore, be derived from the prior distribution of ϕ, ϕ( )Φf , via
transformation of random variables according to Eq. (3). The prior
mean mission reliability [ ( )]E R tm is, then, defined as

∫ ∫ ∫ η ηθ θ ϕ θ ϕ ϕ[ ( )] = ( ) = ( ( ) > ) ( | ) ( )
Φ Θ Θ Φ

⁎
⎛
⎝⎜

⎞
⎠⎟E R t rf r dr t f d f dPr ; ,m Rm m

0

1

where ( )f rRm
and ( )E Rm have no closed-form expressions, and

Monte Carlo simulation methods can be used to estimate them.
This study only considers the degradation-based soft failure mode
and the catastrophic failure mode (or called the hard failure mode)
is not included. If one needs to consider both failure modes, a
competing-risk reliability model can be employed.

2.2. Reliability criterion

As shown in a previous study on PDP degradation [38], the
initial rapid degradation phase caused by impurities significantly
reduces the field reliability perceived by customers. Removing the
rapid degradation phase through burn-in is essential to the im-
provement of field reliability and customer satisfaction. This sec-
tion presents a reliability criterion based on the mission reliability
used to plan the burn-in test.

Assume all units are subject to a degradation-based burn-in
test at the designed operation conditions, and the burn-in dura-
tion is denoted by tb. Upon completion of the burn-in degradation
test, a unit is released to customers if its end-of-burn-in de-
gradation level does not fall below a cutoff value denoted by ηb.
We consider two scenarios of ηb. In the first scenario, ηb is fixed at
0%, which means that there is no end-of-burn-in inspection and all
units are released to customers after burn-in. This scenario elim-
inates the rapid initial degradation phase. The burn-in duration tb
is the only decision variable in the burn-in planning problem. In
the second scenario, the burn-in duration tb and the cutoff point ηb
are both decision variables. In this scenario, the purposes of the
burn-in degradation test are to eliminate the rapid degradation
phase and reject weak units.

Conditioning on a given ϕ, the mission reliability of a unit that
passed the degradation burn-in test is defined as

∫
η

η
η η η η

ϕ ϕ

θ
θ

θ θ ϕ θ

( | ) = ( > + | > )

=
( + )

( )
> | ( ) > ( | )

Θ Θ
⁎

⎛
⎝⎜

⎞
⎠⎟

R t t T t t T t

t t
t

t f d

, , Pr ,

Pr
;

;
; ,

m b b m b b

m b

b
b b

where >T tb indicates that a unit is released to customers after
burn-in because its end-of-burn-in degradation level does not fall
below the cutoff value ηb, i.e., η ηθ( ) >t ;b b. The time-to-failure for
a random unit released to field operation after burn-in is defined
as the relative luminosity η ηθ θ( + ) ( )t t t; / ;b b less than η⁎ because
the initial luminosity perceived by the customers is the luminosity
at the end of the burn-in test. The prior mean mission reliability
after burn-in is, then, defined by

∫ ∫
( )

η η
η

η η ηθ
θ

θ θ ϕ θ ϕ ϕ[ ( | ) ] =
( + )

( )
> ( ) > ( | ) ( )

Φ Θ Θ Φ
⁎

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ 4

E R t t
t t

t
t f d f d, Pr

;
;

; .m b b
m b

b
b b

The reliability criterion η[ ( | )]E R t t ,m b b defined in Eq. (4) does not
have a closed-form expression, but can be evaluated using the
following Monte Carlo simulation algorithm:

(i) Simulate many ϕvectors from ϕ( )Φf , ϕ Φ∈ ;
(ii) For each ϕvector obtained in Step (i), simulate a θvector from

θ ϕ θ Θ( | ) ∈Θf , ;
iii) For all θ vectors obtained in Step (ii), compute the ratio be-

tween the number of θ vectors satisfying both
η η ηθ θ( + ) ( ) > ⁎t t t; / ;m b b and η ηθ( ) >t ;b b and the number of θ
vectors satisfying only η ηθ( ) >t ;b b. This ratio provides an
estimate of the η[ ( | )]E R t t ,m b b criterion.

If the search space contains a finite number of candidate plans,
it may be possible to enumerate all candidate plans, compute their

η[ ( | )]E R t t ,m b b values, and choose the desired plan. If it is infeasible
to enumerate all candidate plans, the surface smoothing technique
proposed by Muller and Parmigiani [40] could be used. In brief,
this technique chooses a set of candidate plans spread over the
search space, computes the planning criterion values for these
selected plans, fits a smooth surface using the method of kernels,
and finally searches for the desired plan on that smoothed surface.

2.3. Cost criterion

In this section, a cost criterion for planning the degradation-
based burn-in tests is presented. We adopt and extend the general
cost model discussed by Yuan and Kuo [8] and Perlstein et al. [7]
for planning failure-based burn-in tests. Three types of costs are
considered: the costs of the burn-in procedures, the costs asso-
ciated with rejection of weak units after burn-in, and the costs of
failures in field operation during the warranty period, tw. Let Cbs,
Cbv, Cbf, and Cwf denote the fixed burn-in cost per unit, the variable
burn-in cost per unit per unit time, the burn-in rejection cost per
unit, and the failure cost per unit during field operation. The ex-
pected cost per burn-in unit conditioning on a given ϕcan be ex-
pressed by

η η
η η

η
η

ϕ ϕ

ϕ ϕ

ϕ

ϕ

( | ) = + + ( < | ) + ( >

| ) ( < + | > )

= + + ( < | )

+ ( < < + | ) ( )

E C t C C t C T t t C T t

t T t t T t t

C C t C T t t

C t T t t t

, , Pr , , Pr

, , Pr , , ,

Pr , ,

Pr , , , 5

b b bs bv b bf b b b wf b

b b b w b b b

bs bv b bf b b b

wf b b w b b

where <T tb denotes the event in which a unit is rejected
at the end of burn-in because η ηθ( ) <t ;b b, η ϕ( < | ) =T t tPr , ,b b b

η η∫ θ θ ϕ θ( ( ) < ) ( | )
Θ Θt f dPr ;b b , and η ϕ( < < + | ) =t T t t tPr , ,b b w b b

η η η η η∫ θ θ θ θ ϕ θ( ( ) > ∩ ( + ) ( ) < ) ( | )
Θ Θ

⁎t t t t f dPr ; ; / ;b b b w b . Note that

the term η ϕ( < | )C T t tPr , ,bf b b b in Eq. (5) is called the burn-in
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rejection cost instead of the burn-in failure cost as in traditional
failure-based burn-in tests. The degradation-based burn-in test
rejects a unit if its end-of-burn-in degradation level is below the
cutoff value ηb, which does not mean that the unit has failed
during the burn-in test because ηb is expected to be higher than
the failure threshold η⁎ due to the short burn-in duration. On the
other hand, it is possible that a unit's degradation level at the end
of the burn-in test is below the failure threshold η⁎, and that unit
will be rejected. Therefore, the cost of failed products during the
burn-in test is included in the burn-in rejection cost.

Taking into account the prior uncertainty in ϕ, measured by the
prior distribution ϕ( )Φf , the prior expected cost is given by

∫η η

η η

ϕ ϕ ϕ( | ) = ( | ) ( ) = + + ( <

| ) + ( < < + | )
Φ ΦE C t E C t f d C C t C T t

t C t T t t t

, , , Pr

, Pr , ,

b b b b bs bv b bf b

b b wf b b w b b

where η η∫ ϕ ϕ ϕ( < | ) = ( < | ) ( )
Φ ΦT t t T t t f dPr , Pr , ,b b b b b b , and ( < < +t T tPr b b

η η∫ ϕ ϕ ϕ| ) = ( < < + | ) ( )
Φ Φt t t T t t t f d, Pr , ,w b b b b w b b .

η( < | )T t tPr ,b b b and η( < < + | )t T t t tPr ,b b w b b need to be com-
puted in order to evaluate the cost criterion η( | )E C t ,b b for a can-
didate plan η( )t ,b b . The Monte Carlo simulation algorithm pre-
sented in Section 2.2 can be modified for this evaluation. In Step
(iii), η( < | )T t tPr ,b b b is estimated by the fraction of simulated θ
vectors that satisfy η ηθ( ) <t ;b b, and η( < < + | )t T t t tPr ,b b w b b is
evaluated by the fraction of simulated θvectors satisfying both
η ηθ( ) >t ;b b and η η ηθ θ( + ) ( ) < ⁎t t t; / ;b w b .
2.4. Incorporation of pre-burn-in data

A distinctive advantage of the Bayesian approach is that it
updates prior knowledge with the addition of new data from pre-
burn-in test data or from previous burn-in data.

Let ≡ {( ) = … = … }y t i n j md , : 1, 2, , ; 1, 2, ,ij ij i denote the pre-
burn-in data of n units. Herein, yij is the jth response on the ith
unit measured at time tij, mi is the number of measurements on
the ith unit. A three-stage hierarchical Bayesian degradation model
is formulated as follows.

The first-stage model describes the observed degradation data
by

η θ φ γ φ γ= ( ) + ϵ = ( − ) + ( − ) ( − )

+ ϵ = … = … ( )

y t t t

i n j m

; exp 1 exp

, 1, 2, , ; 1, 2, , , 6

ij ij i ij i i ij i i ij

ij i

1 2

where θ φ γ γ≡ ( ), ,i i i i1 2 , for = …i n1, 2, , , and ϵij, which denotes the
random measurement error of the ith unit at time tij, is assumed to
be iid normal with mean zero and variance s2 and independent of
θi's. The second-stage model accounts for the unit-to-unit varia-
bility by assuming that all θi's come from a common multivariate
distribution, i.e., θ θ ϕ∼ ( | ) = …Θf i n, 1, 2, ,i i . Finally, the third-stage
model completes the model specification by assigning in-
dependent prior distributions ϕ( )Φf and σ( )Σf

2 , where Σ is the
parameter space for s2.

According to the Bayes' theorem, the joint posterior distribu-
tion of all model parameters is derived by

∏ ∏ ∏η
θ θ θ ϕ

θ
θ ϕ

ϕ

σ

σ
σ

σ

( … | )

∝ ( ) −
[ − ( )]

× ( | )

× ( ) × ( )Σ

Θ

Φ

= =

−

=
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

f

y t
f

f f

d, , , , ,

exp
;

2

.

n

i

n

j

m
ij ij i

i

n

i

1 2
2

1 1

2 1/2
2

2
1

2

i

Then the marginal posterior distribution of ϕ can be obtained by
integrating out other model parameters, i.e.,
∫ ∫ ∫ ∫ϕ θ θ θ ϕ

θ θ θ

σ

σ

( | ) = ⋯ ( … | )

… ( )
Σ

Φ Θ Θ Θ
f f

d d d d

d d, , , , ,

, , , . 7

n

n

1 2
2

2
1 2

It is analytically intractable to compute the marginal posterior
distribution ϕ( | )Φf d given by Eq. (7) because of the involvement of
high-dimensional integration. Markov chain Monte Carlo (MCMC)
simulation based algorithms, e.g., Gibbs sampling, can be em-
ployed instead to obtain a random sample from the marginal
posterior distribution ϕ( | )Φf d .

Each iteration of Gibbs sampling cycles through the unknown
parameters, drawing a sample of one parameter conditional on the
latest values of all the others. It is convenient to derive the con-
ditional posterior distributions required by the Gibbs sampling,
i.e., ϕ θ θ σ( | … )f d, , , ,n1 2 , θ θ ϕσ( | … )f d, , , ,n

2 1 , and θ θ θ θ θ ϕσ( | … … | )− +f d, , , , , , ,i i i n1 1 1
2 ,

for = …i n1, 2, , , and sample from these conditional posterior
distributions using modern sampling techniques. When the
number of iterations is large enough, the samples drawn on one
parameter can be regarded as simulated observations from its
marginal distribution. For example, the ϕ vectors drawn from the
conditional posterior distribution ϕ θ θ σ( | … )f d, , , ,n1

2 can be re-
garded as a random sample from the marginal posterior dis-
tribution of ϕ, i.e., ϕ( | )Φf d defined by Eq. (7).

Replacing the prior distribution ϕ( )Φf in the reliability criterion
(4) and the cost criterion (6) with the posterior distribution

ϕ( | )Φf d yields the posterior mean mission reliability defined by

∫ ∫
η

η
η

η η η
( )

θ
θ

θ θ ϕ θ ϕ ϕ

[ ( | )]

=
( + )

( )
> | ( ) > ( | ) ( | )

Φ Θ Θ Φ
⁎

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ 8

E R t t

t t
t

t f d f d

d

d

, ,

Pr
;

;
; ,

m b b

m b

b
b b

and the posterior expected cost

η η
η

( | ) = + + ( < | )

+ ( ( < < + | )) ( )

E C t C C t C T t t

C t T t t t

d d

d

, , Pr , ,

Pr , , , 9

b b bs bv b bf b b b

wf b b w b b

where η η η∫ ∫ θ θ ϕ θ ϕ ϕ( < | ) = ( ( ) < ) ( | ) ( | )
Φ Θ Θ Φ

⎡⎣ ⎤⎦T t t t f d f dd dPr , , Pr ;b b b b b ,

and η η η η∫ ∫ θ( < < + | ) = ( ( ) > ∩ ( +
Φ Θ

⎡⎣t T t t t t tdPr , , Pr ;b b w b b b b b

η ηθ θ θ ϕ θ ϕ ϕ) ( ) < ) ( | ) ( | )Θ Φ
⁎ ⎤⎦t t f d f dd; / ;w b .

Step (i) in the simulation algorithm presented in Section 2.2
needs to be modified by generating ϕ vectors from the posterior
distribution ϕ( | )Φf d , which are obtained using Gibbs sampling.
3. PDP example

In this section, the PDP example shown in Fig. 1 is used to il-
lustrate the proposed burn-in methodology. Incorporating the
available pre-burn-in test data of the six PDPs, we apply the two
posterior criteria, η[ ( | )]E R t t d, ,m b b and η( | )E C t d, ,b b , defined in Eqs.
(8) and (9), respectively, to plan the burn-in test.

In the second stage of the hierarchical Bayesian degradation
model, the multivariate distribution θ ϕ( | )Θf is assumed to be a
truncated trivariate normal distribution

μθ φ γ γ Σ≡ ( Δ ) ∼ ( ) φ γ γ{ < < > Δ > }, , , ,3 0 1, 0, 0

where μ and Σ are the mean vector and the covariance matrix,
respectively, and {·} is an indicator function.

The third stage of the model specifies prior distributions for
μϕ Σ≡ ( ), and s2. Prior distributions play a critical role in the

Bayesian models. Conjugate priors, when available, simplify the
posterior computation. If prior information is not available, non-
informative priors are desired. In this example, we intend to use
non-informative priors because of our lack of prior knowledge. The
conjugate prior for s2 is the inverse-gamma ( ( )σ σa b, )



Table 1
Posterior inference of the first-stage parameters, θi, in the hierarchical Bayesian bi-
exponential model applied to the PDP example.

PDP, i ϕi γi γΔ i
median median median
(95% interval) (95% interval) (95% interval)

#1 0.1812 0.05378 2.682
(0.1700, 0.1945) (0.04836, 0.05853) (2.268, 3.100)

#2 0.2370 0.05441 3.032
(0.2249, 0.2488) (0.04919, 0.06014) (2.660, 3.523)

#3 0.2308 0.05416 2.689
(0.2191, 0.2439) (0.04884, 0.05944) (2.340, 3.040)

#4 0.2175 0.05446 2.770
(0.2060, 0.2293) (0.04963, 0.05991) (2.432, 3.152)

#5 0.1176 0.05317 2.500
(0.1045, 0.1405) (0.04503, 0.05823) (1.810, 3.066)

#6 0.1453 0.05427 2.609
(0.1319, 0.1617) (0.04876, 0.06001) (2.087, 3.113)

Fig. 2. Posterior mean degradation paths for PDP #1 predicted by the bi-ex-
ponential model, change-point degradation model, and log-linear model.
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distribution, where as and bs are the shape and scale parameters,
respectively. We assign s2 the ( )1, 0.0001 prior distribution,
which is a popular non-informative prior used in the Bayesian
literature [41]. The conditional conjugate prior for the mean vector
and the covariance matrix of a non-truncated multivariate normal
distribution is the independent normal-Wishart prior, i.e., a mul-
tivariate normal prior for the mean vector, and an inverse-Wishart
( ρ( )S, ) prior for the covariance matrix. Herein, ρ is the degrees
of freedom, and S is a ×3 3 symmetric positive-definite scale
matrix. Therefore, we assign the mean vector μ a trivariate normal
prior ( )0 I, 103 3

6
3 , where 03 and I3 denote a zero vector of length

three and a ×3 3 identity matrix, respectively. Note that the large
variance makes this distribution a non-informative prior for μ.
Although using the inverse-Wishart prior distribution for the
covariance matrix is computationally convenient, it is difficult to
choose parameters for the inverse-Wishart distribution if a non-
informative prior is needed for the covariance matrix. Thus, we
adopt the scaled inverse-Wishart prior discussed by Barnard et al.
[42]. The covariance matrix Σ is decomposed into variance and
correlation components as ΔΣ = ΔQ , where the diagonal matrix
Δ δ δ δ= ( )diag , ,1 2 3 with δ > 0i for =i 1, 2, 3, and Q is a ×3 3
symmetric positive-definite matrix. Then we assume a non-in-
formative ( )I4, 3 prior for the Q matrix (i.e., the correlation
components of the Σ matrix), and gamma ( )δ δa b, priors for
δ =k, 1, 2, 3k . The scale parameter aδ and the shape parameter bδ
are set to 1 and 0.0001, respectively, resulting in non-informative
priors for δk's (i.e., the standard deviation components of the Σ
matrix).

The posterior simulation is implemented using WinBUGS, a
free software package for the Bayesian analysis of complex sta-
tistical models using MCMC methods [43]. Convergence of the
simulation is monitored and verified. A random sample of 50,000
ϕ vectors is drawn from the marginal posterior distribution

ϕ( | )Φf d defined in Eq. (7).
Table 1 summarizes the posterior estimates of the first-stage

parameters, ϕθ γ γ≡ ( Δ ), ,i i i i , in the hierarchical Bayesian bi-ex-
ponential degradation model applied to the PDP example. The
posterior medians for μ and Σ in the second stage of the model are

× × ×
× × ×
× × ×

− − −

− − −

− − −

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
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0.1888
0.05402
2.718

and
3.719 10 4.278 10 4.231 10
4.278 10 3.749 10 4.220 10
4.231 10 4.220 10 9.269 10

3 6 3

6 6 5

3 5 2

respectively. Bae et al. [39] compared the performance from the
bi-exponential degradation model to those from the change-point
degradation model and a simple log-linear model applied to the
PDP example, and observed that the bi-exponential model pro-
vided a better fit than the other models. The change-point de-
gradation model will be discussed in Section 3.3. As an example,
Fig. 2 shows the posterior mean degradation paths predicted by
the three models for PDP #1. As shown in this figure, one short-
coming with the change-point degradation model is that it pro-
duces an abrupt change in the mean degradation path at the
change point.

3.1. Planning burn-in without inspection

First, we assume that the cutoff value ηb is fixed at zero. This
means that there is no end-of-burn-in inspection, and all units are
released to customers after burn-in. The burn-in duration, tb, is the
only decision variable. We assume the search space for tb is 0 to
1000 h with an increment of one hour, and enumerate all candi-
date tb values in the search space. Fig. 3 plots the posterior mean
mission reliability η[ ( | )]E R t t d, ,m b b against the burn-in duration tb,
assuming the mission duration =t 10, 000m h. Without burn-in,
the posterior mean mission reliability is only 25.2%.

η[ ( | )]E R t t d, ,m b b initially increases rapidly when tb increases, and
tends to saturate when tb is above 600 h. Bae et al. [39] performed
a Bayesian change-point regression analysis on the PDP data and
found a posterior median of about 600 h for the transition time
(i.e., the change point) between the initial rapid degradation phase
and the later slower degradation phase. Therefore, when the burn-
in time is around 600 h, we expect the initial rapid degradation
phase to be completely eliminated. When a requirement for mean
mission reliability is specified, we are able to find the minimum
burn-in duration to achieve that requirement. For example, when
a mean mission reliability of 90% is required, the minimum burn-
in duration is 370 h.

Next, we plan the burn-in test according to the posterior ex-
pected cost criterion η( | )E C t d, ,b b defined in Eq. (9). For illustration
purpose, we assume Cbs¼10, two different values for Cbv (i.e.,
0.1 and 0.18), two different values for Cwf (i.e., 200 and 300), and tw
¼tm¼10,000 h. Only one value is assumed for Cbs because it does
not affect the optimal burn-in duration. Since burn-in failures are
not considered, =C 0bf . Fig. 4 shows the posterior expected cost as
a function of the burn-in duration for the four combinations of Cbv
and Cwf values, and Table 2 summarizes the optimal burn-in
durations. This cost-optimal burn-in plan represents a trade-off
between the burn-in cost and the warranty cost, and is affected by
the cost coefficients. As shown in Table 2, the cost-optimal burn-in
duration, ⁎tb , depends on the relative relationship between Cbv and



Fig. 3. The posterior mean mission reliability η[ ( | )]E R t t d, ,m b b vs. the burn-in
duration tb when the cutoff value η = 0b .

Table 2
Cost-optimal burn-in duration ⁎tb for different cost coefficients, when η = 0b .

Cbv Cwf C C/bv wf
⁎tb (h) η( < < + | )⁎ ⁎ ⁎t T t t t dPr , ,b b w b b

0.10 300 0.0003 460 0.053
0.10 200 0.0005 410 0.074
0.18 300 0.0006 390 0.085
0.18 200 0.0009 343 0.121

Fig. 5. The posterior mean mission reliability η[ ( | )]E R t t d, ,m b b vs. the burn-in
duration tb for different ηb values.
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Cwf. As the ratio C C/bv wf increases, the burn-in costs increase, which
leads to a reduction in the optimal burn-in duration. In addition, as
the burn-in duration increases, the field failure probability after
burn-in, η( < < + | )⁎ ⁎ ⁎t T t t t dPr , ,b b w b b decreases, which is consistent
with the results presented in Fig. 3.

3.2. Planning burn-in with inspection

Now we consider the case with end-of-burn-in inspection. A
unit is rejected if its end-of-burn-in degradation level falls below
the cutoff value ηb. Fig. 5 shows the posterior mean mission re-
liability vs. the burn-in duration for different ηb values. It can be
seen from this figure that for the same burn-in duration, increas-
ing the cutoff value ηb improves the mission reliability after burn-
in. When a mean mission reliability of 90% is desired, the mini-
mum burn-in durations are listed in Table 3 for some different ηb
values. As ηb increases, the minimum burn-in duration to achieve
the desired mission reliability reduces. However, this reduction of
burn-in duration is achieved by rejecting more units after burn-in,
as shown in the η( < | )T t t dPr , ,b b b column of Table 3. For example,
when η = 0.95b , after the 120-h burn-in duration, 66% of the burn-
Fig. 4. The posterior expected cost η( | )E C t d, ,b b vs. the burn-in duration tb when
the cutoff value η = 0b for different cost coefficients.
in units would be rejected because their end-of-burn-in de-
gradation levels are less than ηb. This may incur unnecessarily high
burn-in rejection cost.

Next, the cost-optimal burn-in duration and cutoff value are
obtained by minimizing the posterior expected cost criterion

η( | )E C t d, ,b b defined in Eq. (9). We assume that the candidate va-
lues for ηb are from 50% to 99% with an increment of 1%. Two
different values, i.e., 100 and 150, are assumed for the burn-in
failure cost Cbf. As an example, Fig. 6 shows the contour plot of the
posterior expected cost when =C 10bs , =C 0.1bv , =C 100bf , and

=C 200wf . Table 4 summarizes the cost-optimal burn-in plans
η( )⁎ ⁎t ,b b for the eight combinations of Cbv, Cbf, and Cwf values. We

have the following observations. First, ⁎tb and η⁎
b are negatively

correlated, that is, a longer burn-in duration tends to be accom-
panied with a lower cutoff value. This is due to the fact that the
expected degradation path is assumed to be a monotonic de-
creasing function. Second, η( < | )⁎ ⁎ ⁎T t t dPr , ,b b b , which is the prob-
ability that a unit is rejected after burn-in, and

η( < < + | )⁎ ⁎ ⁎ ⁎t T t t t dPr , ,b b w b b , which is the probability that a unit
released to customers after burn-in fails within the warranty
period, are negatively correlated. These two probabilities directly
impact the burn-in rejection cost and the field failure cost, re-
spectively, and the optimal burn-in plans need to compromise
Table 3
Minimum burn-in duration to achieve the desired mission reliability for different
cutoff values.

ηb Minimum burn-in duration, tb, (h) η( < | )T t t dPr , ,b b b

0.00 370 –

0.75 350 0.024
0.85 280 0.187
0.95 120 0.660



Fig. 6. Contour plot for the posterior expected cost η( | )E C t d, ,b b vs. the burn-in
duration tb and the cutoff value ηb, when =C 10bs , =C 0.1bv , =C 100bf , and

=C 200wf .

Table 4
Cost-optimal burn-in plans η( )⁎ ⁎t ,b b for different cost coefficients.

Cbf Cbv Cwf
⁎tb (h) η⁎

b η( < | )⁎ ⁎ ⁎T t t dPr , ,b b b η( < < + | )⁎ ⁎ ⁎ ⁎t T t t t dPr , ,b b w b b

100 0.10 200 396 0.75 0.036 0.057
100 0.18 200 319 0.81 0.085 0.085
100 0.10 300 425 0.75 0.045 0.042
100 0.18 300 330 0.82 0.127 0.059
150 0.10 200 411 0.68 0.009 0.066
150 0.18 200 334 0.76 0.026 0.107
150 0.10 300 452 0.70 0.018 0.044
150 0.18 300 369 0.77 0.047 0.067
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these cost terms. Third, for a given Cbf value, the optimal burn-in
duration ⁎tb again depends on the relative relationship between Cbv
and Cwf. Finally, for the same set of Cbv and Cwf values, a higher Cbf
value causes the optimal burn-in plan to lower the burn-in re-
jection probability η( < | )⁎ ⁎ ⁎T t t dPr , ,b b b . To lower this burn-in rejec-
tion probability, the optimal cutoff value is reduced, and the op-
timal burn-in duration is increased because the burn-in duration
and the cutoff value are negatively correlated.
3.3. Comparison between the bi-exponential degradation model and
change-point degradation model

For the purpose of comparison, the burn-in test is planned
based on the change-point degradation model developed in [39].
The test procedure is summarized by the following three-stage
hierarchical Bayesian model:

(i)
α β
α β
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Herein and hereafter, the superscript “c” is added to the para-
meters in the change-point degradation model in order to dis-
tinguish them from the parameters used in the bi-exponential
degradation model. In the change-point degradation model, the
performance measure is the logarithm of the relative luminosity,

yln . The actual degradation path of yln is modeled by two linear
lines connected at the change point λ. α is the slope of the line
after the change point, and α β( − ) is the slope of the line before
the change point. See [39] for details on the posterior computation
and results of the change-point degradation model applied to the
PDP example.

To apply the change-point degradation model to plan the burn-
in tests, the posterior mean mission reliability given by Eq. (8) is
modified as

∫ ∫
η

η ηθ θ θ

θ ϕ θ ϕ ϕ

[ ( | )] =

( + ) − ( ) > ( ) >

( | ) ( | )
( )

Φ Θ

Θ Φ

⁎⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

E R t t

g t t g t g t

f d f d

d

d

, ,

Pr ; ; ln ; ln

,
10

m b b

m b
c

b
c

b
c

b

c c c c c

c c

c c

and the posterior expected cost remains the form of (9). However,
η( < | )T t t dPr , ,b b b and η( < < + | )t T t t t dPr , ,b b w b b are evaluated by
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respectively, for the change-point degradation model.
Tables 5, 6, and 7 compare, respectively, the minimum burn-in

durations to achieve a 90% mission reliability, the cost-optimal
burn-in durations ⁎tb when η = 0b , and the cost-optimal burn-in
plans η( )⁎ ⁎t ,b b between the hierarchical Bayesian bi-exponential and
change-point degradation models. It can be observed from these
results that the burn-in test plans are sensitive to the degradation
models used. The change-point degradation model tends to
choose longer burn-in durations than the bi-exponential de-
gradation model, because it tends to predict a longer duration of
the rapid degradation phase due to the sharp transition between
the two phases at the change point (see Fig. 2).
3.4. Comparison between the Bayesian method and the maximum
likelihood method

This section compares the burn-in test plans produced by the
Bayesian method to the maximum likelihood method using the bi-
exponential degradation model. The observed degradation data
are modeled by the bi-exponential degradation model given by Eq.
(6), and the random degradation-path coefficient vectors, θi, are
assumed to form a random sample from the multivariate normal
distribution with a mean vector μ and a covariance matrix Σ. The
maximum likelihood estimates of the model parameters μ, Σ, and
s2 can be obtained by maximizing the following likelihood func-
tion



Table 5
Comparison of the minimum burn-in durations to achieve the 90% mission relia-
bility among three approaches.

ηb Minimum burn-in duration, tb, (h)

Bi-exponential model Change-point model Bi-exponential model
Bayesian Bayesian Maximum likelihood

0.00 370 445 302
0.75 350 428 301
0.85 280 370 258
0.95 120 197 104

Table 6
Comparison of the cost-optimal burn-in durations ⁎tb when η = 0b among three

approaches.

Cbv Cwf
⁎tb (h)

Bi-exponential model Change-point
model

Bi-exponential model

Bayesian Bayesian Maximum likelihood

0.10 300 460 520 408
0.10 200 410 519 379
0.18 300 390 495 364
0.18 200 343 469 336

Table 7
Comparison of the cost-optimal burn-in plans ( η )⁎ ⁎t ,b b among three approaches.

Cbf Cbv Cwf Bi-exponential Change-point Bi-exponential
Bayesian Bayesian Maximum likelihood

⁎tb (h) η⁎
b

⁎tb (h) η⁎
b

⁎tb (h) η⁎
b

100 0.10 200 396 0.75 504 0.50 368 0.78
100 0.18 200 319 0.81 470 0.56 289 0.84
100 0.10 300 425 0.75 531 0.50 379 0.79
100 0.18 300 330 0.82 504 0.52 301 0.84
150 0.10 200 411 0.68 504 0.34 385 0.75
150 0.18 200 334 0.76 470 0.56 320 0.80
150 0.10 300 452 0.70 535 0.38 407 0.75
150 0.18 300 369 0.77 504 0.50 357 0.79
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The two-stage algorithm developed by Lu and Meeker [44] is

adopted to obtain the maximum likelihood estimates μ , Σ, and σ2.
The mission reliability criterion is defined by
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where μθ Σ( | )Θf , denotes the probability density function of the
multivariate normal distribution with a mean vector μ and a

covariance matrix Σ. Monte Carlo simulation can be used to
evaluate μη Σ( | )R t t , ; ,m b b by simulating many θ vectors from

μθ Σ( | )Θf , and computing the ratio between the fraction of θ
vectors satisfying both η η ηθ θ( + ) ( ) > ⁎t t t; / ;m b b and η ηθ( ) >t ;b b

and the fraction of θvectors satisfying only η ηθ( ) >t ;b b.
The expected cost per burn-in unit is
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⁎t f d; ,b . Again, Monte Carlo simulation can be

adopted to evaluate these two probabilities.
Tables 5–7 also compare the burn-in plans between the Baye-

sian and maximum likelihood approaches using the bi-ex-
ponential degradation model. Although the two approaches pro-
duce comparable and consistent results, the discrepancy in results
from these two methods is mainly due to their different assump-
tions on μ and Σ. The maximum likelihood method assumes that
μ and Σ are fixed quantities, and uses the point estimates μ and Σ
obtained from the pre-burn-in data to plan the burn-in tests. The
maximum likelihood method, therefore, does not incorporate the
uncertainty in μ and Σ when planning the tests. On the other
hand, the Bayesian method assumes that μ and Σ are random
variables, quantifying the uncertainty in μ and Σ by their joint
posterior distribution, ϕ( | )Φf d , where μϕ Σ= ( ), .
4. Conclusion

Some products, e.g., PDPs, OLEDs, lithium-ion batteries, and
direct methanol fuel cells, were found to exhibit two-phase de-
gradation patterns, i.e., an initial rapid degradation phase followed
by a slower and more stable degradation phase. To ensure high
field reliability, it is essential that the manufacturers execute an
adequate degradation-based burn-in procedure before shipping.
This study proposed a methodology for planning such burn-in
tests. Both reliability and cost criteria were developed, and the
associated Bayesian computational methods were designed.
Available pre-burn-in degradation data can be incorporated in the
burn-in decision-making process via the Bayesian prior-to-pos-
terior updating mechanism. A practical exam based on the PDP
degradation was used to illustrate the application of the proposed
methodology.

This study assumes that the burn-in test is conducted at the
designed stress conditions. In order to reduce the burn-in dura-
tion, the burn-in test can be performed at accelerated stress con-
ditions. Planning burn-in tests based on accelerated degradation
models and test data will be studied in the future. This study is
based on the bi-exponential degradation-path model, and burn-in
planning using other degradation-path or stochastic process
models will be explored. Moreover, burn-in optimization con-
sidering both degradation-based soft failure mode and cata-
strophic hard failure mode deserves further studies.
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