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S U M M A R Y
Typically, seismic data are sparsely and irregularly sampled due to limitations in the survey
environment and these cause problems for key seismic processing steps such as surface-related
multiple elimination or wave-equation-based migration. Various interpolation techniques have
been developed to alleviate the problems caused by sparse and irregular sampling. Among
many interpolation techniques, matching pursuit interpolation is a robust tool to interpolate
the regularly sampled data with large receiver separation such as crossline data in marine
seismic acquisition when both pressure and particle velocity data are used. Multicomponent
matching pursuit methods generally used the sinusoidal basis function, which have shown to
be effective for interpolating multicomponent marine seismic data in the crossline direction. In
this paper, we report the use of wavelet basis functions which further enhances the performance
of matching pursuit methods for de-aliasing than sinusoidal basis functions. We also found that
the range of the peak wavenumber of the wavelet is critical to the stability of the interpolation
results and the de-aliasing performance and that the range should be determined based on
Nyquist criteria. In addition, we reduced the computational cost by adopting the inner product
of the wavelet and the input data to find the parameters of the wavelet basis function instead of
using L-2 norm minimization. Using synthetic data, we illustrate that for aliased data, wavelet-
based matching pursuit interpolation yields more stable results than sinusoidal function-based
one when we use not only pressure data only but also both pressure and particle velocity
together.
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1 I N T RO D U C T I O N

Typically, seismic data are sparsely and irregularly sampled because
of the high cost and field conditions in the exploration environ-
ment, such as large sail line and streamer intervals and feathering
or existing production facilities. Spatial aliasing and irregularity
in the data complicate seismic processing. Therefore, many inter-
polation techniques have been developed to prevent these prob-
lems. Among the interpolation techniques, POCS (Projection Onto
Convex Sets) method (Abma & Kabir 2006; Kim et al. 2015),
MWNI (Minimum Weighted Norm Interpolation) method (Liu &
Sacchi 2004; Naghizadeh & Sacchi 2010) and ALFT (Anti-Leakage
Fourier Transform) method (Schonewille et al. 2009; Xu et al. 2010)
are robust tools for the irregularly sampled data. In the irregularly
sampled data, the energy of the spectral components of the signal
can leak at different wavenumber and the aliased replicas do not
focus in the spectrum. Thus, the interpolation can be performed
by reducing the leakage. However, these methods are difficult to
directly apply to relatively regular data which are severely aliased

such as crossline direction of marine seismic data. To interpolate the
spatially aliased data, the assumption that seismic trace can be ex-
pressed by linear events has been conventionally used (Spitz 1991).
This method is performed using the prediction filter obtained from
the traces. In addition, most previous methods are for interpolating
the data of a single physical quantity—pressure in marine seismic
data. Recently, multicomponent matching pursuit methods which
use pressure and its gradient data simultaneously have been devel-
oped to overcome the aliasing problem (e.g. Vassallo et al. 2010).
In these methods, since the pressure and its gradient data together
provide more information than either pressure or gradient alone, the
linearity assumption does not need anymore.

The concept of matching pursuit was introduced by Mallat &
Zhang (1993) in the signal-processing field. This method is con-
sidered as the CLEAN method in the astronomy field (Thiebaut &
Roques 2005; Lachowicz & Done 2010). Matching pursuit is an it-
erative method that decomposes the original data into a set of basis
functions. There are many different types of basis functions, includ-
ing sinusoidal function, wavelet and curvelet. After performing the
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Figure 1. Simple data to test the aliasing effect of the sinusoidal basis. Views (a–c) are expressed in the space domain and (d–f) are expressed in the wavenumber
domain: (a) and (d) are non-aliased data which consist of the 1st derivative Gaussian wavelet; (b) and (e) are aliased data decimated from (a) and the 1st
found sinusoidal wavelet from aliased data; (c) and (f) are interpolation results using the sinusoidal function. The green dotted line in (e) indicates the Nyquist
wavenumber of aliased data. The aliasing effect is represented by the summation of below and above the Nyquist energy in the Fourier domain. Since the
sinusoidal functions form the basis of the Fourier series, it is transformed to impulse function in the Fourier domain. Therefore, it cannot distinguish the
non-aliased energy and the aliased energy and interpolation result using sinusoidal basis cannot reconstruct the high-wavenumber energy over the Nyquist
wavenumber.

matching pursuit process, discrete original data can be represented
by continuous functions consisting of optimized basis functions.
Then it is possible to interpolate the data at any locations from
the optimized basis functions. Özbek et al. (2009) first applied this

concept to seismic interpolation using sinusoidal basis functions
for single component data. However, the matching pursuit method
applied to the single component data is still susceptible to spatially
aliased data. To alleviate the spatial aliasing problem, Vassallo et al.
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Wavelet-based multicomponent matching pursuit interpolation 1833

Figure 2. Test of the de-aliasing performance of the wavelet basis using data in Fig. 1. Views (a,b) are expressed in the space domain and (c,d) are expressed
in the wavenumber domain: (a) and (c) are aliased data decimated from Fig. 1(a) and 1st found Ricker wavelet from aliased data; (b) and (d) are interpolation
results using the wavelet. The green dotted line in (c) indicates the Nyquist wavenumber of aliased data. Since the wavelet has wavenumber bandwidth, aliased
form of wavelet which is discretized for matching with aliased input data has the below and the above the Nyquist energy as shown in blue line of (c). However,
through the non-aliased form (red line in c) made by the equation of wavelet, it can reconstruct high-wavenumber energy over the Nyquist wavenumber.

Figure 3. Inner product of the seismic data f (�x) and the discretized basis
function vectors �x j (j = 1, 2, . . . , m). The basis function closer to the
seismic data has a higher inner product value. In addition, inner product
values become the coefficient of the basis function.

(2010) simultaneously used pressure and its crossline gradient data,
obtained from a marine seismic survey, as input data. Kamil et al.
(2014) applied a moveout operator to reduce aliasing from higher-
order aliased shallow events. These two methods provided improved

interpolation result for spatially aliased data by using multicompo-
nent data including pressure and particle velocity. In the matching
pursuit method, it is desirable to use a basis function that can be
best optimized for the input data. Thus far, matching pursuit meth-
ods have been developed using only sinusoidal basis functions for
seismic trace interpolation. However, since wavelets have a range of
wavenumbers and at the same time a limited spatial extent, they can
better represent seismic data, which typically consist of localized
events with a finite spatial bandwidth.

In this paper, we present a wavelet-based matching pursuit
method for interpolating spatially aliased data without a large gap.
In Sections 2 and 3, we describe the wavelet-based matching pur-
suit method for the single component data and a strategy for re-
ducing the computational cost. Then, we extend our wavelet-based
method to multicomponent data to further improve de-aliasing per-
formance in Section 4. Next, we present how to find the optimal pa-
rameter range for successful interpolation using the wavelet-based
method.

2 WAV E L E T - B A S E D M AT C H I N G
P U R S U I T M E T H O D F O R T R A C E
I N T E R P O L AT I O N

In the matching pursuit interpolation method, the signal f(x) is ex-
pressed by the summation of basis functions, g(x; θ i):

f (x) =
∞∑

i=1

ai g(x ; θi ), (1)
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Figure 4. The comparison of interpolation results using the pressure data: (a) spatially aliased seismic data (trace interval = 15 m); (b,c) interpolation results
(trace interval = 5 m) by the sinusoidal-based matching pursuit method and the wavelet-based matching pursuit method, respectively. In the case of the
sinusoidal-based method, the artificial noise caused by aliasing is shown by the white arrows. In contrast, the wavelet-based method reconstructed the data with
far less artefacts.

Figure 5. Ricker wavelet with a peak wavenumber of 0.002 m−1: (a) in space domain; (b) its amplitude spectrum in the wavenumber domain.

where θ i is the parameter set and ai is the coefficient of each basis
function that will be determined to match the signal at the points
where the signal was measured. Once we determined the parameter
set and the coefficients of the basis functions, we can compute the
value of f(x) at any arbitrary point.

First, the parameter set of the basis function closest to the input
signal is calculated. Then, the basis function with the calculated
parameter set is added to the output signal, initially set to zero,
and the residual signal is obtained by subtracting the basis function
from the input signal. Next, the residual signal is used as the new
input signal and the same process is iteratively performed until the
residual signal becomes less than a certain criterion. In the nth
iteration, the above process can be expressed as

Rn f (x) = Rn−1 f (x) − an g(x ; θn),

fn(x) = fn−1(x) + an g(x ; θn), (2)

where Rnf(x) indicates the residual data after the nth iteration; this
is used as the input data for the (n + 1)th iteration, and fn(x) is the
output data after the nth iteration.

In previous matching pursuit interpolation, sinusoidal functions
are used as basis functions. However, sinusoidal basis functions
are susceptible to aliasing when only use the single component.

Since the aliased energy overlaps the non-aliased energy in the
Fourier domain, the sinusoidal basis function cannot separate these
two energies (Fig. 1e). Fig. 1 shows the aliasing effect of the si-
nusoidal basis. In the Fig. 1, we use the 1st derivative Gaussian
wavelet to make the input data. Figs 1(b) and (e) show the aliased
data and the first found sinusoidal basis. As shown in these fig-
ures, since the sinusoidal functions form the basis of the Fourier
series, found basis function is represented to impulse function in
the wavenumber domain. Therefore, sinusoidal basis cannot recon-
struct the high-wavenumber energy over the Nyquist wavenumber.
This aspect is also shown in the interpolation result (Figs 1c and
f). On the other hand, if we use a basis function which has band-
width over the Nyquist wavenumber and non-zero values in its
wavenumber range, the reconstruction of aliased energy is possi-
ble (Vaidyanathan 2001). Thus, wavelet can be solution to alle-
viate the aliasing problem because it has those properties. Fig. 2
shows the de-aliasing performance of the wavelet basis. In this fig-
ure, we use the Ricker wavelet as the basis function of matching pur-
suit method. In the matching pursuit process, in order to match the
wavelet to aliased data, the wavelet is converted to aliased discrete
form. Since the wavelet has wavenumber bandwidth, its aliased form
includes not only below but also above the Nyquist energy like blue
line of Figs 2(a) and (c). However, we already know its non-aliased
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Figure 6. Comparison of the wavelet-based multicomponent matching pursuit interpolation results depending on parameter, ngrid,multi: (a) spatially aliased
input data; (b) interpolated data using ngrid,multi = 1. The red box shows an enlarged image of the artificial noise; (c) interpolated data using ngrid,multi = 2;
(d) interpolated data using ngrid,multi = 6.

continuous form through its equation, we can separate aliased and
non-aliased energies when its aliased form has the uniqueness as
shown in red line of Fig. 2(c). Therefore, the interpolation result of
the wavelet shown in the Figs 2(b) and (d) are almost identical to
the reference data. Wavelet basis functions have another advantage
over sinusoidal basis functions in that the wavelet has a limited
spatial extent. In case of the sinusoidal function, since the improp-
erly found basis function creates artificial noise widely, the time-
space windowing strategy has to be carefully applied (Naghizadeh &

Innanen 2011). However, careful windowing is not required when
we use wavelet basis function.

There are various wavelet functions that can be used as basis
functions such as the Ricker, Morlet and Ormsby wavelets. In this
study, we used the Ricker wavelet which has a simple equation to
apply. Its equation consists of a peak wavenumber, which is related
to duration, and a spatial shift. Since Morlet or Ormsby wavelets
which have more parameters than the Ricker wavelet, the process of
finding the basis function matching the input signal becomes more
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Figure 7. Comparison of the f–k spectrums of the input data and interpolation results, depending on parameter ngrid,multi shown in Fig. 6: (a) spatial aliased
input data; (b) interpolated data using ngrid,multi = 1; (c) interpolated data using p ngrid,multi = 2; (d) interpolated data using ngrid,multi = 6. In this case,
high-wavenumber energy that cannot be reconstructed is shown in the red circle.

time consuming. The equation of Ricker wavelet is expressed as
follows:

g(x ; θi ) = (1 − 2π 2kmaj,i
2(x − τxi )

2) exp(−π 2kmaj,i
2(x − τxi )

2),

(3)

where kmaj,i is the peak wavenumber of the ith Ricker wavelet and
τ xi is its spatial shift in the x-direction.

3 S T R AT E G Y F O R R E D U C I N G T H E
C O M P U TAT I O NA L C O S T

To find the coefficient of the sinusoidal basis function, L-2 norm
minimization is typically used in matching pursuit interpolation
methods (Özbek et al. 2009; Vassallo et al. 2010). In these meth-
ods, the number of parameters that has to be determined is three
(two amplitudes and a wavenumber). Among these parameters, am-
plitudes are simply calculated from the determined wavenumber.
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Wavelet-based multicomponent matching pursuit interpolation 1837

Figure 8. A 2-D vertical section at 20 km in the y-direction, extracted from SEAM (SEG Advanced Modeling Program) Phase 1 velocity model.

Likewise, the number of parameters of a wavelet basis function is
three (amplitude, peak wavenumber and spatial shift) but the am-
plitude has to be calculated by other two parameters. Thus, since
the number of parameters that has to be previously determined
in the wavelet is greater than that of the sinusoidal function, we
utilize a different method from L-2 norm minimization. We use
the inner product of the wavelet and the input data obtained along
the spatial direction, to find the parameters, following Mallat &
Zhang (1993). First, we make wavelet basis functions correspond-
ing to the peak wavenumber, kmaj,i, and spatial shift τ xi. Second,
the wavelet basis functions are discretized at the same locations
where the input seismic traces are located, to compute the inner
product. A group of discretized basis functions is called a ‘dic-
tionary’. Next, each discretized basis function in the dictionary is
normalized by the amplitude of the vector (discretized basis func-
tion vector) whose components are sample values of the discretized
basis function. After these processes, we calculate the coefficient of
the basis functions using the inner product. The inner product value
of the seismic data,

−−→
f (x), and the discretized basis function vectors,

−→x j (j = 1, 2, . . . , m), indicate the goodness of fit of each discretized
basis function to the seismic data, as shown in Fig. 3. Therefore,
when the best-fit discretized basis function for the seismic data is
found, the parameters of the selected basis function (wave number
and spatial shift) can be obtained from the dictionary. In addition,
the coefficient of the basis function can be estimated from the value
of the inner product, because the discretized basis function vector
used in the inner product corresponds to the unit vector. Thus, the
coefficient of the optimized discretized basis function, an , in the nth
iteration becomes

an = 〈Rn−1 f (x), xn〉, (4)

where Rn−1f(x) means the residual data in the previous iteration,
xn means optimized discretized basis function in the nth step and
〈·, ·〉 represents the inner product operator. Then, using eq. (4),
eq. (2) becomes

Rn f (x) = Rn−1 f (x) − 〈Rn−1 f (x), xn〉xn,

fn(x) = fn−1(x) + 〈Rn−1 f (x), xn〉xn . (5)

To interpolate seismic data, however, eq. (5) must be expressed
by the continuous basis function, g(x; θn), instead of the discretized
basis function xn . This discretized basis function does not have the
same amplitude as the continuous basis function because of normal-

ization. Therefore, the normalization value must be compensated for
as follows:

Rn f (x) = Rn−1 f (x) − 〈Rn−1 f (x), xn〉 g(x ; θn)

hn
,

fn(x) = fn−1(x) + 〈Rn−1 f (x), xn〉 g(x ; θn)

hn
, (6)

where hn is the amplitude ratio of the continuous basis function to
the normalized basis function.

To find the best-fit basis function in each iteration, all basis func-
tions in the dictionary must be conducted with the inner product of
the residual input data from the previous iteration. Using eqs (4) and
(5), the inner product value in the next iteration can be calculated
as follows:

aDic
j,n+1 =

〈
Rn−1 f (x) − an xn, xDic

j,n+1

〉
, ( j = 1, 2, 3, . . .) (7)

where aDic
j,n+1 and xDic

j,n+1 are inner product values and whole basis
functions in the dictionary in the next iteration, respectively. Be-
cause the inner product has linearity, eq. (7) can be converted into

aDic
j,n+1 =

〈
Rn−1 f (x), xDic

j,n+1

〉
−

〈
an xn, xDic

j,n+1

〉
. (8)

Because basis functions in the dictionary do not change by iter-

ation, the subscript of the basis functions in the dictionary, xDic
j,n+1,

that represent the iteration, n + 1, can be ignored. Therefore, the
equation finally becomes

aDic
j,n+1 = aDic

j,n −
〈
an xn, xDic

j

〉
. (9)

Using eq. (9), we can calculate the inner product value in the next
iteration more efficiently. Because the duration of the wavelet in the
space domain is limited, many inner product values of the previously
found basis function, and the basis functions in the dictionary, be-
come zero. Thus, we can reduce the computational cost by skipping
the unnecessary calculation.

Fig. 4 compares the interpolation results using the pressure
data between the sinusoidal-based matching pursuit interpolation
method and the wavelet-based one. Panel (a) shows the spatially
aliased seismic data. Using a sinusoidal basis function, when the
matching pursuit decomposition process is carried out for spatially
aliased seismic data, the aliased energy of the seismic data cannot
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Figure 9. Decimated input data to test the performance of the wavelet-based multicomponent matching pursuit interpolation method. Views (a–c) are expressed
in the t–y domain and (d–f) are expressed in the f–k domain: (a) and (d) are original data (trace interval = 20 m); (b) and (e) are decimated data sampled with
60 m spacing and its f–k spectrum, respectively; (c) and (f) are decimated data sampled with 100 m spacing and its f–k spectrum, respectively.

be properly distinguished. As a result, improperly found basis func-
tions made artificial noise, as shown by the white arrows in panel (b).
In contrast, the wavelets reduced the artificial noise caused by
aliased energy. In addition, since the duration of the wavelet in
the space domain is limited, the remaining aliased energy has less
influence on other events. Fig. 4(c) shows the improved interpola-
tion result and illustrates the strength of the wavelet basis function.

4 WAV E L E T - B A S E D I N T E R P O L AT I O N
B Y M AT C H I N G P U R S U I T U S I N G
M U LT I C O M P O N E N T S T R E A M E R DATA

Although wavelet-based matching pursuit yields better interpolation
results than sinusoidal-based matching pursuit when seismic data
are aliased, it is still limited when seismic data are severely aliased
in the spatial direction. To alleviate this problem, we followed the
idea of using multicomponent data (Vassallo et al. 2010; Kamil

et al. 2014). Vassallo et al. (2010) applied the sinusoidal-based
matching pursuit method to pressure and its crossline gradient to
improve de-aliasing performance. Because the aliasing problem is
related to the uniqueness problem when sampled data are expressed
by any basis function, additional data (e.g. the crossline gradient)
can also help wavelet-based matching pursuit to overcome the alias-
ing problem. Therefore, to improve de-aliasing performance, this
concept is applied to the wavelet-based matching pursuit method
developed in this study. In the case of a marine survey, because there
is no shear wave, the equation of motion can be expressed,

∂ P

∂y
= −ρ

∂Vy

∂t
, (10)

where P is the pressure, Vy is the particle velocity in crossline direc-
tion, y is the crossline distance and ρ is density. The differentiation
of pressure in eq. (10) can be expressed as the sum of basis functions
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Wavelet-based multicomponent matching pursuit interpolation 1839

Figure 10. Comparison of the sinusoidal-based multicomponent matching pursuit interpolation result and the wavelet-based result for decimated data with
60 m spacing: (a,c) Sinusoidal-based interpolation result (trace interval = 20 m) and its f–k spectrum, respectively; (b,d) Wavelet-based interpolation result
(trace interval = 20 m) and its f–k spectrum, respectively.

that are expressed as the partial differentiation of g(y; θ i) like eq.
(1) as follows:

∂ f (y)

∂y
=

∞∑
i=1

ai
∂g(y; θi )

∂y
. (11)

When we use the Ricker wavelet, described in eq. (3), as a basis
function, the basis function matched with the crossline gradient data

becomes

∂g(y, θi )

∂y
= (−2π 2k2

i (y − τyi ))(3 − 2π 2k2
i (y − τyi )

2)

× exp(−π 2k2
i (y − τyi )

2). (12)

In addition, we have to consider the balancing between pressure and
its derivative because they have different energy levels. We used the
weighting factor suggested by Vassallo et al. (2010). This optimal
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Figure 11. Comparison of the sinusoidal-based multicomponent matching pursuit interpolation result and the wavelet-based result for the decimated data with
100 m spacing. (a) and (c) present the sinusoidal-based interpolation result (trace interval = 20 m) and its f–k spectrum, respectively. (b) and (d) present the
wavelet-based interpolation result (trace interval = 20 m) and its f–k spectrum, respectively.

weighting factor was determined based on the energy ratio of two
data sets and the signal-to-noise ratio (SNR):

λ ∝
√√√√E

[
P2

P2
y

]
SNR(Py)

SNR(P)
. (13)

Next, to use two components simultaneously in the inner product,
the row vectors of the input data and the basis functions of the

dictionary must be composed of two components as follows

f (y) = [P(y) λVy(y)],

g′(y; θi ) =
[

g(y; θi ) λ
∂g(y; θi )

∂y

]
, (14)

where g′(y; θi ) is the rearranged basis function. The subsequent
processes are similar to the single component case. First, we find
the parameters of the best-fit basis function using the inner product
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Wavelet-based multicomponent matching pursuit interpolation 1841

Figure 12. Interpolation result for noisy data: (a) original reference data (trace interval = 20 m); (b) decimated input data (trace interval = 60 m);
(c) interpolation result of wavelet-based multicomponent matching pursuit method (trace interval = 20 m); (d) differences between the reference data and the
interpolation result.

of the input data f(y) and the normalized basis function of g′(y; θi ).
Then, the residual data and the output data are calculated iteratively
while the energy of the residual data sufficiently converges to zero.
Finally, the amplitude of the crossline particle velocity data (Vy(y))
is restored, considering the weighting factor λ.

5 C O N S T RU C T I O N O F B A S I S
F U N C T I O N D I C T I O NA RY

When we make the dictionary of the basis functions, wavelets with
various spatial shifts and peak wavenumbers are used. In this pro-

cess, the ranges of the two parameters are important because they
are related to the decomposition capability. In the case of spatial
shift, the maximum value has to be determined to cover the whole
distance of the seismic data in the trace interpolation. Then, the
range of the spatial shift is easily set from 0 to the maximum dis-
tance of the seismic data. In contrast, the maximum value of the
peak wavenumber should be decided carefully. Fig. 5 shows the
Ricker wavelet with a peak wavenumber of 0.002 m−1 in the space
domain and its amplitude spectrum in the wavenumber domain.
The peak wavenumber of the wavelet is related to its duration in
the space domain. The duration is inversely proportional to the peak
wavenumber. In addition, the maximum wavenumber of the wavelet
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1842 J. Choi et al.

Figure 13. The f–k spectrum of interpolation result for noisy data shown in Fig. 12: (a) original reference data; (b) decimated input data; (c) interpolation
result of wavelet-based multicomponent matching pursuit method; (d) differences between the reference data and the interpolation result.

is proportional to its peak wavenumber. Therefore, if the maximum
peak wavenumber is too low, the basis functions of the dictionary
cannot cover the maximum wavenumber of the input data. In con-
trast, if the maximum peak wavenumber is too high, an artificial
error can occur because the discretized basis function vector used
in the inner product has an insufficient number of samples to prop-
erly represent the continuous basis functions with small durations
in the space domain. Thus, the optimal value of the maximum peak
wavenumber for the dictionary is the peak wavenumber with which
wavelet in the space domain can be represent with the minimum

number of the samples. At this time, the sampling interval in the
space domain is the trace interval of the input data.

When the peak wavenumber of the Ricker wavelet is kmaj, its
bandwidth in the wavenumber domain ranges from 0 to 3kmaj and
its duration ranges from −0.7797/kmaj to 0.7797/kmaj in the space
domain (Ryan 1994). To find the optimal value of the maximum
peak wavenumber, kmaj,max, we suggest the following condition:

2 · 0.7797

kmaj, max
≥ ngrid dy, (15)
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Wavelet-based multicomponent matching pursuit interpolation 1843

Figure 14. Interpolation result of the wavelet-based multicomponent matching pursuit method using only eight traces: (a) original reference data; (b) decimated
input data; (c) interpolated data; (d) the difference between (a) and (c).

where ngrid and dy are the minimum number of samples of the
wavelet basis function vector that can uniquely represent the con-
tinuous wavelet and the trace interval of the input data, respectively.

Eq. (15) can be rearranged as follows:

1.5594

ngrid dy
≥ kmaj, max. (16)

On the other hand, our method uses not only the pressure but also
the particle velocity. In this case, multichannel sampling halves the
required sampling rate to avoid aliasing theoretically (Linden 1959;
Vassallo et al. 2010). Therefore, ngrid,multi, the minimum number of
samples of the wavelet basis function vector uniquely representing
the continuous wavelet when using both pressure and particle veloc-
ity data will be half of ngrid when using either pressure or gradient
alone.

To find the optimal ngrid,multi value of the Ricker wavelet, we anal-
yse the interpolation result depending on ngrid,multi. Fig. 6 compares
the interpolation results depending on the parameter ngrid,multi in the
t–y domain, and Fig. 7 shows their f–k spectrums. The trace inter-
vals of the input decimated data and the reconstructed data are 20
and 5 m, respectively. Fig. 6(a) shows the spatially aliased input
data, and Fig. 7(a) clearly demonstrates the aliasing effect in the
f–k spectrum. The interpolation result when ngrid,multi = 1 is shown
in Fig. 6(b). When ngrid,multi = 1, the maximum peak wavenumber,
kmaj,max, becomes 0.07797 m−1 according to eq. (16). As shown
in the red box of Fig. 6(b), artificial noises are created. From the
result, one sample (ngrid,multi = 1) is insufficient to delineate the

Ricker wavelet and the basis functions in the dictionary cannot de-
compose the aliased data perfectly due to the uniqueness problem.
When ngrid,multi and kmaj,max are 2 and 0.038985 m−1, respectively,
a successful interpolation result can be obtained (Figs 6c and 7c).
That means that two samples are sufficient to delineate the wavelet.
Figs 6(d) and 7(d) shows the interpolation result when ngrid,multi and
kmaj,max are 6 and 0.012995 m−1, respectively. The matching pursuit
decomposition process is stably carried out because ngrid,multi is suf-
ficient. However, the used kmaj,max is too small to recover the high
wavenumber component over 1.5 times the Nyquist wavenumber of
the input data as shown in the red circle of Fig. 7(d). Consequently,
for the Ricker wavelet, 2 is the optimal ngrid,multi. In other words,
continuous form of Ricker wavelet can be delineated with only 2
samples when we simultaneously use the pressure and the particle
velocity data. Therefore, eq. (16) finally becomes

1.5594

2dy
≥ kmaj,max, (17)

and this condition can be applied to data with any trace interval, dy,
as long as the Ricker wavelets are used as basis functions.

As described in above, kmaj,max is related to de-aliasing perfor-
mance of wavelet. In case of the Ricker wavelet, since the bandwidth
of the Ricker wavelet in the wavenumber domain ranges from 0 to
3kmaj, the de-aliasing capability of multicomponent wavelet-based
matching pursuit method is up to 4.6 times of Nyquist wavenumber
of input data.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/206/3/1831/2583543 by m

edlibrary@
hanyang.ac.kr user on 09 Septem

ber 2021



1844 J. Choi et al.

Figure 15. The f–k spectrum of interpolation result of the wavelet-based multicomponent matching pursuit method when the number of traces in the input data
is only eight shown in Fig. 14: (a) original reference data (6.25 m trace interval); (b) decimated input data (100 m trace interval); (c) interpolated data (6.25 m
trace interval); (d) the differences between (a) and (c).

6 N U M E R I C A L E X A M P L E ( S E A M
V E L O C I T Y M O D E L )

To test the performance of the wavelet-based multicomponent
matching pursuit method, we generated pressure and particle veloc-
ity synthetic seismic data using 2-D finite difference modelling (Han
et al. 2012) with the SEAM (SEG Advanced Modeling Program)
Phase 1 velocity model. Because the SEAM model was originally
a 3-D model, we extracted a 2-D vertical section at 20 km in the y-

direction, as shown in Fig. 8, to generate a 2-D synthetic data set. In
the generated synthetic data, the main frequency of the source was
10 Hz and the receiver interval was 20 m (Fig. 9a). Then, to create the
spatially aliased input data, pressure and crossline particle velocity
data were reduced through decimation to 60 m and 100 m spacing,
respectively (Figs 9b and c). The decimated data with 60 m spacing
were aliased a little over twice and the decimated data with 100 m
spacing were aliased about three times, as shown in Figs 9(e) and
(f). The interpolation results by sinusoidal-based and wavelet-based
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matching pursuit methods for 60 m spacing data are presented in
Fig. 10. In the case that the data were aliased about twice, both meth-
ods show interpolation results without artefacts in the time-space
domain (Figs 10a and b) and the frequency-wavenumber domain
(Figs 10c and d). To demonstrate the superior de-aliasing perfor-
mance of the wavelet-based method, we applied both methods to
decimated data with 100 m spacing, which were aliased three times.
For producing better result with the sinusoidal-based method, we
limit the range of the sinusoidal basis function for each frequency
so that the interpolation can be applied only to seismic events with
the slopes less than that of the direct wave following Vassallo et al.
(2010). In the wavelet-based method, we use linear weighting with
which the wavelet basis functions with lower peak wavenumbers
are found prior to those with higher peak wavenumbers to yield
the stable result. The interpolation results of both methods are not
perfect as shown in Figs 11(c) and (d). However, the wavelet-based
method (Fig. 11b) showed a more stable interpolation result than
the sinusoidal-based method (Fig. 11a) in the time-space domain.
The improperly found sinusoidal basis function affected the entire
data, whereas the improperly found wavelet basis function affected
only a limited area, as shown in Figs 11(a) and (b).

To investigate the effects of noise on the wavelet-based matching
pursuit method, we added Gaussian random noise to pressure and
crossline particle velocity synthetic data (SNR = 10), as shown
in Fig. 12(a). Then these data were decimated with 60 m spac-
ing, which can be successfully reconstructed using the wavelet-
based method in noise-free case (Fig. 12b). To analyse the effect
of noise depending on the frequency and the wavenumber, Gaus-
sian random noise, which is not band limited, was added separately
to the pressure and particle velocity data. The interpolation result
of the noise-added data and the differences between the reference
and interpolated data are presented in Figs 12(c) and (d), respec-
tively. It seemed to be well interpolated, like the noise-free case.
However, because the noise affected the inner product value which
measures the goodness of fit of the basis function in the matching
pursuit decomposition process, events with lower amplitude than
the noise could not be found. Except for events with lower am-
plitudes, all events were successfully interpolated, as confirmed by
the results shown in Figs 12(c) and (d). This aspect is also shown
in the f–k spectrum using the rectangles with red colour (Fig. 13).
In the Fig. 13(c), random noises in the red rectangles which have
higher wavenumber values than wavenumber bandwidth of main
signal are disappeared.

Finally, we tested the method with very few spatially sampled
data points, because crossline data are typically sparse and few
spatially sampled in marine seismic acquisition. Figs 14 and 15
show the interpolation result using only eight traces and its f–k
spectrum, respectively. Fig. 14(a) shows the reference undecimated
data (6.25 m spacing) which are generated by using the same ve-
locity model as Fig. 9(a), and Fig. 14(b) shows decimated input
data (100 m spacing). Although there were only eight traces with
100 m spacing, a typical streamer separation, in the input data, we
successfully interpolated the input data such that the output looked
almost the same as the reference data. The differences in time trace
and in f–k spectrum between the reference and interpolated data are
shown in Figs 14(d) and 15(d), respectively.

7 C O N C LU S I O N S A N D D I S C U S S I O N

We have developed a wavelet-based matching pursuit interpolation
method that improves the de-aliasing capability of matching pursuit

interpolation. The wavelet basis function offers important advan-
tages over the sinusoidal basis function for interpolating aliased
data. A wavelet better recognizes aliased wavenumbers due to its
broader bandwidth than a sinusoid which has a single wavenum-
ber. Furthermore, any misfit wavelet does not affect other locations
due to its limited spatial range. To further improve the de-aliasing
performance, we simultaneously used pressure and crossline par-
ticle velocity in the wavelet-based matching pursuit method. As a
result, we reconstructed the energy at over twice the Nyquist rate
and obtained more stable interpolation results. However, because
the wavelet basis function has more parameters than the sinusoidal
basis function, it is more time-consuming to determine the param-
eters by minimizing L-2 norm. To reduce the computational cost,
we used the inner product instead of L-2 norm minimization to
find the coefficient of the basis function. To ensure good perfor-
mance of the wavelet-based method, the parameter range of the
wavelets in the dictionary must be properly selected, because it
is related to the uniqueness problem in the matching pursuit de-
composition process. We formulated the optimal parameter range
according to the bandwidth in the wavenumber domain and the
duration in the space domain. The optimal parameter range varies
depending on the type of the wavelet.

In this paper, we interpolated the 2-D seismic data since the main
purpose of our method is interpolation of cross-line direction in
the marine seismic data which are relatively regular and severely
aliased. For this case, 1-D wavelet basis function was sufficient.
However, in order to perform the interpolation of the higher dimen-
sional, wavelet basis is also extended to higher dimension. However,
since the higher dimensional wavelet basis has more parameters to
find, the computational cost is also increased. Therefore, a tech-
nic which reduces the computational cost is required for higher
dimensional interpolation.
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