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The mutational theory of cancer proposes that changes in DNA 
sequence, termed ‘driver’ mutations, confer proliferative advan-
tage on a cell, leading to outgrowth of a neoplastic clone1. Some 
driver mutations are inherited in the germline, but most arise in 

somatic cells during the lifetime of the cancer patient, together with 
many ‘passenger’ mutations not implicated in cancer development1. 
Multiple mutational processes, including endogenous and exoge-
nous mutagen exposures, aberrant DNA editing, replication errors 
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clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer 
genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have 
distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational 
signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement 
signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with 
defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient 
BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across 
exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and 
progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
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and defective DNA maintenance, are responsible for generating 
these mutations1–3.

Over the past five decades, several waves of technology have advanced 
the characterization of mutations in cancer genomes. Karyotype 
analysis revealed rearranged chromosomes and copy number  
alterations. Subsequently, loss of heterozygosity analysis, hybridization 
of cancer-derived DNA to microarrays and other approaches provided 
higher resolution insights into copy number changes4–8. Recently, DNA 
sequencing has enabled systematic characterization of the full reper-
toire of mutation types including base substitutions, small insertions/
deletions, rearrangements and copy number changes9–13, yielding  
substantial insights into the mutated cancer genes and mutational  
processes operative in human cancer.

As for many cancer classes, most currently available breast cancer 
genome sequences target protein-coding exons8,11–15. Consequently, 
there has been limited consideration of mutations in untranslated, 
intronic and intergenic regions, leaving central questions pertaining 
to the molecular pathogenesis of the disease unresolved. First, the role 
of activating driver rearrangements16–18 forming chimaeric (fusion) 
genes/proteins or relocating genes adjacent to new regulatory regions 
as observed in haematological and other malignancies19. Second, the 
role of driver substitutions and indels in non-coding regions of the 
genome20,21. Common inherited variants conferring susceptibility to 
human disease are generally in non-coding regulatory regions and 
the possibility that similar mechanisms operate somatically in cancer 
was highlighted by the discovery of somatic driver substitutions in the 
TERT gene promoter22,23. Third, which mutational processes generate  
the somatic mutations found in breast cancer2,24. Addressing this  
question has been constrained because exome sequences do not inform 
on genome rearrangements and capture relatively few base substitu-
tion mutations, thus limiting statistical power to extract the mutational  
signatures imprinted on the genome by these processes24,25.

Here we analyse whole-genome sequences of 560 cases in order to 
address these and other questions and to pave the way to a compre-
hensive understanding of the origins and consequences of somatic 
mutations in breast cancer.

Cancer genes and driver mutations
The whole genomes of 560 breast cancers and non-neoplastic  
tissue from each individual (556 female and 4 male) were 
sequenced (Supplementary Fig. 1, Supplementary Table 1).  
We detected 3,479,652 somatic base substitutions, 371,993 small indels 
and 77,695 rearrangements, with substantial variation in the number 
of each between individual samples (Fig. 1a, Supplementary Table 3). 
Transcriptome sequence, microRNA expression, array-based copy num-
ber and DNA methylation data were obtained from subsets of cases.

To identify new cancer genes, we combined somatic substitutions 
and indels in protein-coding exons with data from other series12–15,26, 
constituting a total of 1,332 breast cancers, and searched for mutation 
clustering in each gene beyond that expected by chance. Five cancer 
genes were found for which evidence was previously absent or equivocal 
(MED23, FOXP1, MLLT4, XBP1, ZFP36L1), or for which the muta-
tions indicate the gene acts in breast cancer in a recessive rather than in 
a dominant fashion, as previously reported in other cancer types (see 
Supplementary Methods section 7.4 for detailed descriptions). From 
published reports on all cancer types (http://cancer.sanger.ac.uk/census), 
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Figure 1 | Cohort and catalogue of somatic mutations in 560 breast 
cancers. a, Catalogue of base substitutions, insertions/deletions, 
rearrangements and driver mutations in 560 breast cancers (sorted by 
total substitution burden). Indel axis limited to 5,000(*). b, Complete list 
of curated driver genes sorted by frequency (descending). Fraction of ER-
positive (left, total 366) and ER-negative (right, total 194) samples carrying 
a mutation in the relevant driver gene presented in grey. log10 P value of 
enrichment of each driver gene towards the ER-positive or ER-negative 
cohort is provided in black. Highlighted in green are genes for which there 
is new or further evidence supporting these as novel breast cancer genes.
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we then compiled a list of 727 human cancer genes (Supplementary 
Table 12). On the basis of driver mutations found previously, we 
defined conservative rules for somatic driver base substitutions and 
indel mutations in each gene and sought mutations conforming to 
these rules in the 560 breast cancers. We identified 916 probable driver 
mutations of these classes (Fig. 1b, Supplementary Table 14, Extended 
Data Fig. 1).

To explore the role of genomic rearrangements as driver muta-
tions16,18,19,27, we sought predicted in-frame fusion genes that might 
create activated, dominant cancer genes. We identified 1,278 unique 
and 39 infrequently recurrent in-frame gene fusions (Supplementary 
Table 15). Many of the latter, however, were in regions of high  
rearrangement density, including amplicons28 and fragile sites, and 
their recurrence is probably attributable to chance27. Furthermore, 
transcriptome sequences from 260 cancers did not show expression of 
these fusions and generally confirmed the rarity of recurrent in-frame 
fusion genes. By contrast, recurrent rearrangements interrupting the 
gene footprints of CDKN2A, RB1, MAP3K1, PTEN, MAP2K4, ARID1B, 
FBXW7, MLLT4 and TP53 were found beyond the numbers expected 
from local background rearrangement rates, indicating that they con-
tribute to the driver mutation burden of recessive cancer genes. Several 
other recurrently rearranged genomic regions were observed, including 
dominantly acting cancer genes ETV6 and ESR1 (without consistent 
elevation in expression levels), L1 retrotransposition sites29 and fragile 
sites. The significance of these recurrently rearranged regions remains 
unclear (Extended Data Fig. 2).

Incorporation of recurrent copy number changes, including homozy-
gous deletions and amplifications, generated a total of 1,628 likely 
driver mutations in 93 cancer genes (Fig. 1b). At least one driver was 
identifiable in 95% of cancers. The 10 most frequently mutated genes 
were TP53, PIK3CA, MYC, CCND1, PTEN, ERBB2, ZNF703/FGFR1 
locus, GATA3, RB1 and MAP3K1 (Fig. 1b, Extended Data Fig. 1), and 
these accounted for 62% of drivers.

Recurrent somatic mutations in non-coding regions
To investigate non-coding somatic driver substitutions and indels, we 
searched for non-coding genomic regions with more mutations than 
expected by chance (Fig. 2a, Supplementary Table 16, Extended Data Fig. 3).  

The promoter of PLEKHS1 exhibited recurrent mutations at two 
genomic positions30 (Fig. 2a) TTTTGCAAT TGAACA ATTGCAAAA 
(as previously reported30). The two mutated bases, within a 6 base pair 
(bp) core motif, are flanked, on either side by 9 base pairs of palin-
dromic sequence forming inverted repeats31. Most cancers with these 
mutations showed many base substitutions of mutational signatures 2 
and 13 that have been attributed to activity of APOBEC DNA-editing 
proteins that target the TCN sequence motif. One of the mutated bases 
is a cytosine in a TCA sequence context (shown above as the reverse 
complement, TGA) at which predominantly C>T substitutions were 
found. The other is a cytosine in ACA context, which showed both  
C>T and C>G mutations.

The TGAACA core sequence was mutated at the same two posi-
tions at multiple locations elsewhere in the genome (Supplementary 
Table 16c) where the TGAACA core was also flanked by palindromes 
albeit of different sequences and lengths (Supplementary Table 16c). 
These mutations were also usually found in cancers with many sig-
nature 2 and 13 mutations (Fig. 2a). TGAACA core sequences with 
longer flanking palindromes generally exhibited a higher mutation rate, 
and TGAACA sequences flanked by 9 bp palindromes exhibited an 
~265-fold higher mutation rate than sequences without them (Fig. 2b,  
Supplementary Table 16d). However, additional factors must influence 
the mutation rate because it varied markedly between TGAACA core 
sequences with different palindromes of the same length (Fig. 2c).  
Some TGAACA-inverted repeat sites were in regulatory regions but 
others were intronic or intergenic without functional annotation 
(examples in Supplementary Table 16c) or exonic. The propensity for 
mutation recurrence at specific positions in a distinctive sequence motif 
in cancers with numerous mutations of particular signatures renders it 
plausible that these are hypermutable hotspots32–34, perhaps through 
formation of DNA hairpin structures35, which are single-stranded at 
their tips enabling attack by APOBEC enzymes, rather than driver 
mutations.

Two recurrently mutated sites were also observed in the promoter 
of TBC1D12 (TBC1 domain family, member 12) (q value 4.5 × 10−2) 
(Fig. 2a). The mutations were characteristic of signatures 2 and 13 and 
enriched in cancers with many signature 2 and 13 mutations (Fig. 2a). 
The mutations were within the TBC1D12 Kozak consensus sequence 

Figure 2 | Non-coding analyses of breast cancer genomes.  
a, Distributions of substitution (purple dots) and indel (blue dots) 
mutations within the footprint of five regulatory regions identified as 
being more significantly mutated than expected is provided on the left. 
The proportion of base substitution mutation signatures associated with 
corresponding samples carrying mutations in each of these non-coding 

regions, is displayed on the right. b, Mutability of TGAACA/TGTTCA 
motifs within inverted repeats of varying flanking palindromic sequence 
length compared to motifs not within an inverted repeat. c, Variation in 
mutability between loci of TGAACA/TGTTCA inverted repeats with 9 bp 
palindromes.
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(CCCCAGATGGTGGG)), shifting it away from the consensus36. The 
association with particular mutational signatures suggests that these 
may also be in a region of hypermutability rather than drivers.

The WDR74 promoter showed base substitutions and indels  
(q value 4.6 × 10−3) forming a cluster of overlapping mutations20  
(Fig. 2a). Coding sequence driver mutations in WDR74 have not been 
reported. No differences were observed in WDR74 transcript levels 
between cancers with WDR74 promoter mutations compared to those 
without. Nevertheless, the pattern of this non-coding mutation cluster, 
with overlapping and different mutation types, is more compatible with 
the possibility of the mutations being drivers.

Two long non-coding RNAs, MALAT1 (q value 8.7 × 10−11, as previ-
ously reported12) and NEAT1 (q value 2.1 × 10−2) were enriched with 
mutations. Transcript levels were not significantly different between 
mutated and non-mutated samples. Whether these mutations are driv-
ers or result from local hypermutability is unclear.

Mutational signatures
Mutational processes generating somatic mutations imprint particu-
lar patterns of mutations on cancer genomes, termed signatures2,24,37. 
Applying a mathematical approach25 to extract mutational signa-
tures previously revealed five base-substitution signatures in breast 
cancer: signatures 1, 2, 3, 8 and 13 (refs 2, 24). Using this method for 
the 560 cases revealed twelve signatures, including those previously 
observed and a further seven, of which five have formerly been detected 
in other cancer types (signatures 5, 6, 17, 18 and 20) and two are new 
(signatures 26 and 30) (Fig. 3a, b, 4a, Supplementary Table 21a–c, 
Supplementary Methods section 15). Two indel signatures were also 
found2,24.

Signatures of rearrangement mutational processes have not previ-
ously been formally investigated. To enable this we adopted a rear-
rangement classification incorporating 32 subclasses. In many cancer 
genomes, large numbers of rearrangements are regionally clustered, for 
example in zones of gene amplification. Therefore, we first classified 
rearrangements into those inside and outside clusters, further subclassi-
fied them into deletions, inversions and tandem duplications, and then 
according to the size of the rearranged segment. The final category in 
both groups was interchromosomal translocations.

Application of the mathematical framework used for base substitu-
tion signatures2,24,25 extracted six rearrangement signatures (Fig. 4b, 
Supplementary Table 21). Unsupervised hierarchical clustering on the 
basis of the proportion of rearrangements attributed to each signature 
in each breast cancer yielded seven major subgroups exhibiting distinct 
associations with other genomic, histological or gene expression fea-
tures (Fig. 5, Extended Data Figs 4–6).

Rearrangement signature 1 (9% of all rearrangements) and rear-
rangement signature 3 (18% rearrangements) were characterized  
predominantly by tandem duplications (Fig. 4b). Tandem duplica-
tions associated with rearrangement signature 1 were mostly >100 kb 
(Fig. 4b), and those with rearrangement signature 3 were <10 kb 
(Fig. 4b, Extended Data Fig. 7). More than 95% of rearrangement 
signature 3 tandem duplications were concentrated in 15% of  
cancers (cluster D, Fig. 5), many with several hundred rearrangements of 
this type. Almost all cancers (91%) with BRCA1 mutations or promoter  
hypermethylation were in this group, which was enriched for basal-
like, triple negative cancers and copy number classification of a high 
homologous recombination deficiency (HRD) index38–40. Thus, inac-
tivation of BRCA1, but not BRCA2, may be responsible for the rear-
rangement signature 3 small tandem duplication mutator phenotype.

More than 35% of rearrangement signature 1 tandem duplications 
were found in just 8.5% of the breast cancers and some cases had 
hundreds of these (cluster F, Fig. 5). The cause of this large tandem 
duplication mutator phenotype (Fig. 4b) is unknown. Cancers exhib-
iting it are frequently TP53-mutated, relatively late diagnosis, triple- 
negative breast cancers, showing enrichment for base substitution  
signature 3 and a high HRD index (Fig. 5), but do not have BRCA1/2 
mutations or BRCA1 promoter hypermethylation.

Rearrangement signature 1 and 3 tandem duplications (Extended 
Data Fig. 7) were generally evenly distributed over the genome. However, 
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there were nine locations at which recurrence of tandem duplications 
was found across the breast cancers and which often showed multiple, 
nested tandem duplications in individual cases (Extended Data Fig. 8). 
These may be mutational hotspots specific for these tandem duplication 
mutational processes, although we cannot exclude the possibility that 
they represent driver events.

Rearrangement signature 5 (accounting for 14% rearrangements) 
was characterized by deletions <100 kb. It was strongly associated 
with the presence of BRCA1 mutations or promoter hypermethyla-
tion (cluster D, Fig. 5), BRCA2 mutations (cluster G, Fig. 5) and with 
rearrangement signature 1 large tandem duplications (cluster F, Fig. 5).

Rearrangement signature 2 (accounting for 22% rearrangements) 
was characterized by non-clustered deletions (>100 kb), inversions 
and interchromosomal translocations, was present in most cancers but 
was particularly enriched in oestrogen receptor (ER)-positive cancers 
with quiet copy number profiles (cluster E, GISTIC (genomic identifi-
cation of significant targets in cancer) cluster 3; Fig. 5). Rearrangement  
signature 4 (accounting for 18% of rearrangements) was characterized 
by clustered interchromosomal translocations, whereas rearrangement 
signature 6 (19% of rearrangements) had clustered inversions and  
deletions (clusters A, B, C; Fig. 5).

Short segments (1–5 bp) of overlapping microhomology character-
istic of alternative methods of end-joining repair were found at most 
rearrangements2,14. Rearrangement signatures 2, 4 and 6 were charac-
terized by a peak at 1 bp of microhomology, whereas rearrangement 
signatures 1, 3 and 5, associated with homologous recombination 
DNA repair deficiency, exhibited a peak at 2 bp (Extended Data Fig. 9).  
Thus, different end-joining mechanisms may operate with different 
rearrangement processes. A proportion of breast cancers showed rear-
rangement signature 5 deletions with longer (>10 bp) microhomologies 
involving sequences from short-interspersed nuclear elements, most 
commonly AluS (63%) and AluY (15%) family repeats (Extended Data 
Fig. 9). Long segments (more than 10 bp) of non-templated sequence 
were particularly enriched amongst clustered rearrangements.

Localized hypermutation: kataegis
Focal base-substitution hypermutation, termed kataegis, is generally 
characterized by substitutions with characteristic features of signatures 2  
and 13 (refs 2, 24). Kataegis was observed in 49% breast cancers, with 
4% exhibiting 10 or more foci (Supplementary Table 21c). Kataegis colo-
calizes with clustered rearrangements characteristic of rearrangement  

signatures 4 and 6 (Fig. 4b). Cancers with tandem duplications or deletions  
of rearrangement signatures 1, 3 and 5 did not usually demonstrate 
kataegis. However, there must be additional determinants of kataegis as 
only 2% of rearrangements are associated with it. A rare (14 out of 1,557 
foci, 0.9%) alternative form of kataegis, colocalizing with rearrange-
ments but with a base-substitution pattern characterized by T>G and 
T>C mutations, predominantly at NTT and NTA sequences (where 
N can be any base A, T, C or G), was also observed (Extended Data  
Fig. 10). This pattern of base substitutions most closely matches signature 
9 (Extended Data Fig. 10; http://cancer.sanger.ac.uk/cosmic/signatures),  
previously observed in B lymphocyte neoplasms and attributed to  
polymerase eta activity41.

Mutational signatures exhibit distinct DNA replication 
strand biases
The distributions of mutations attributable to each of the 20 muta-
tional signatures (12 base substitution, 2 indel and 6 rearrangement) 
were explored42 with respect to DNA replication strand. We found an 
asymmetric distribution of mutations between leading and lagging 
replication strands for many, but not all signatures42 (Fig. 4a). Notably, 
signatures 2 and 13, owing to APOBEC deamination, showed marked 
lagging-strand replication bias (Fig. 4a) suggesting that lagging-strand 
replication provides single-stranded DNA for APOBEC deamination. 
Of the three signatures associated with mismatch-repair deficiency 
(signatures 6, 20 and 26), only signature 26 exhibited replicative-strand 
bias, highlighting how different signatures arising from defects of the 
same pathway can exhibit distinct relationships with replication.

Mutational signatures associated with BRCA1 and 
BRCA2 mutations
Of the 560 breast cancers, 90 had germline (60) or somatic (14) inac-
tivating mutations in BRCA1 (35) or BRCA2 (39) or showed methyla-
tion of the BRCA1 promoter (16). Loss of the wild-type chromosome 
17 or 13 was observed in 80 out of 90 cases. The latter exhibited 
many base substitution mutations of signature 3, accompanied by 
deletions of >3 bp with microhomology at rearrangement break-
points, and signature 8 together with CC>AA double nucleotide 
substitutions. Cases in which the wild-type chromosome 17 or 13 
was retained did not show these signatures. Thus signature 3 and, 
to a lesser extent, signature 8 are associated with absence of BRCA1 
and BRCA2 functions.

Figure 4 | Additional characteristics of base substitution signatures and 
novel rearrangement signatures in 560 breast cancers. a, Contrasting 
transcriptional strand asymmetry and replication strand asymmetry 
between twelve base substitution signatures. b, Six rearrangement 

signatures extracted using non-negative matrix factorization. Probability 
of rearrangement element on y axis. Rearrangement size on x axis. 
del, deletion; tds, tandem duplication; inv, inversion; trans, translocation.
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Cancers with inactivating BRCA1 or BRCA2 mutations usually carry 
many genomic rearrangements. Cancers with BRCA1, but not BRCA2, 
mutations exhibit large numbers of rearrangement signature 3 small 
tandem duplications. Cancers with BRCA1 or BRCA2 mutations show 
substantial numbers of rearrangement signature 5 deletions. No other 
rearrangement signatures were associated with BRCA1- or BRCA2-null 
cases (clusters D and G, Fig. 5). Some breast cancers without identifiable 
 BRCA1/2 mutations or BRCA1 promoter methylation showed these 
features and segregated with BRCA1/2-null cancers in hierarchical  
clustering analysis (Fig. 5). In such cases, the BRCA1/2 mutations may 
have been missed or other mutated or promoter methylated genes may be 
exerting similar effects (see http://cancer.sanger.ac.uk/cosmic/sample/ 
genomes for examples of whole-genome profiles of typical BRCA1-
null, (for example, PD6413a, PD7215a) and BRCA2-null tumours (for 
example, PD4952a, PD4955a)).

A further subset of cancers (cluster F, Fig. 5) show similarities in 
mutational pattern to BRCA1/2-null cancers, with many rearrangement 
signature 5 deletions and enrichment for base substitution signatures 3  
and 8. However, these do not segregate together with BRCA1/2-null 
cases in hierarchical clustering analysis, have rearrangement signature 1  
large tandem duplications and do not show BRCA1/2 mutations. 
Somatic and germline mutations in genes associated with the DNA 

double-strand break repair pathway including ATM, ATR, PALB2, 
RAD51C, RAD50, TP53, CHEK2 and BRIP1, were sought in these can-
cers. We did not observe any clear-cut relationships between mutations 
in these genes and these mutational patterns.

Cancers with BRCA1/2 mutations are particularly responsive to cispla-
tin and PARP inhibitors43–45. Combinations of base substitution, indel 
and rearrangement mutational signatures may be better biomarkers  
of defective homologous-recombination-based DNA double-strand 
break repair and responsiveness to these drugs46 than BRCA1/2 muta-
tions or promoter methylation alone and thus may constitute the basis 
of future diagnostics.

Conclusions
A comprehensive perspective on the somatic genetics of breast can-
cer is drawing closer (see http://cancer.sanger.ac.uk/cosmic/sample/
genomes for individual patient genome profile, and Methods for  
orientation). At least 12 base substitution mutational signatures and 6 
rearrangement signatures contribute to the somatic mutations found, 
and 93 mutated cancer genes (31 dominant, 60 recessive, 2 uncertain)  
are implicated in genesis of the disease. However, dominantly  
acting activated fusion genes and non-coding driver mutations appear 
rare. Additional infrequently mutated cancer genes probably exist. 
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However, the genes harbouring the substantial majority of driver 
mutations are now known.

Nevertheless, important questions remain to be addressed. Recurrent 
mutational events including whole-chromosome copy number changes 
and unexplained regions with recurrent rearrangements could harbour 
additional cancer genes. Identifying non-coding drivers is challenging 
and requires further investigation. Although almost all breast cancers 
have at least one identifiable driver mutation, the number with only 
a single identified driver is perhaps surprising. The roles of viruses 
or other microbes have not been exhaustively examined. Thus, fur-
ther exploration and analysis of whole-genome sequences from breast 
cancer patients will be required to complete our understanding of the 
somatic mutational basis of the disease.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Sample selection. DNA was extracted from 560 breast cancers and normal tissue 
(peripheral blood lymphocytes, adjacent normal breast tissue or skin) and total 
RNA extracted from 268 of the same individuals. Samples were subjected to pathol-
ogy review and only samples assessed as being composed of >70% tumour cells, 
were accepted for inclusion in the study (Supplementary Table 1).
Massively parallel sequencing and alignment. Short insert 500 bp genomic librar-
ies and 350 bp poly-A-selected transcriptomic libraries were constructed, flowcells 
prepared and sequencing clusters generated according to Illumina library proto-
cols47. We performed 108 base/100 base (genomic), or 75 base (transcriptomic) 
paired-end sequencing on Illumina GAIIx, Hiseq 2000 or Hiseq 2500 genome 
analysers, in accordance with the Illumina Genome Analyzer operating manual. 
The average sequence coverage was 40.4-fold for tumour samples and 30.2-fold 
for normal samples (Supplementary Table 2).

Short insert paired-end reads were aligned to the reference human genome 
(GRCh37) using Burrows-Wheeler Aligner, BWA (v0.5.9)48. RNA sequencing data 
was aligned to the human reference genome (GRCh37) using TopHat (v1.3.3) 
(http://ccb.jhu.edu/software/tophat/index.shtml).
Processing of genomic data. CaVEMan (Cancer Variants Through Expectation 
Maximization: http://cancerit.github.io/CaVEMan/) was used for calling somatic 
substitutions.

Indels in the tumour and normal genomes were called using a modified Pindel 
version 2.0. (http://cancerit.github.io/cgpPindel/) on the NCBI37 genome build49.

Structural variants were discovered using a bespoke algorithm, BRASS 
(BReakpoint AnalySiS) (https://github.com/cancerit/BRASS) through discor-
dantly mapping paired-end reads. Next, discordantly mapping read pairs that 
were likely to span breakpoints, as well as a selection of nearby properly paired 
reads, were grouped for each region of interest. Using the Velvet de novo assem-
bler50, reads were locally assembled within each of these regions to produce a 
contiguous consensus sequence of each region. Rearrangements, represented by 
reads from the rearranged derivative as well as the corresponding non-rearranged 
allele were instantly recognizable from a particular pattern of five vertices in the 
de Bruijn graph (a mathematical method used in de novo assembly of (short) 
read sequences) component of Velvet. Exact coordinates and features of junc-
tion sequence (for example, microhomology or non-templated sequence) were 
derived from this, following aligning to the reference genome, as though they 
were split reads.

See Supplementary Table 3 for summary of somatic variants. Annotation was 
according to ENSEMBL version 58.

Single nucleotide polymorphism (SNP) array hybridization using the 
Affymetrix SNP6.0 platform was performed according to Affymetrix protocols. 
Allele-specific copy number analysis of tumours was performed using ASCAT 
(v2.1.1), to generate integral allele-specific copy number profiles for the tumour 
cells51 (Supplementary Tables 4 and 5). ASCAT was also applied to next-generation 
sequencing data directly with highly comparable results.

We sampled 12.5% of the breast cancers for validation of substitutions, indels 
and/or rearrangements in order to make an assessment of the positive predictive 
value of mutation calling (Supplementary Table 6).

Further details of these processing steps as well as processing of transcriptomic 
and miRNA data (Supplementary Tables 7 and 8) can be found in Supplementary 
Methods.
Identification of novel breast cancer genes. To identify recurrently mutated 
driver genes, a dN/dS method that considers the mutation spectrum, the sequence 
of each gene, the impact of coding substitutions (synonymous, missense, non-
sense, splice site) and the variation of the mutation rate across genes52,53 was 
used for substitutions (Supplementary Table 9). Owing to the lack of a neutral 
reference for the indel rate in coding sequences, a different approach was required 
(Supplementary Table 10, Supplementary Methods for details). To detect genes 
under significant selective pressure by either point mutations or indels, for each 
gene, the P values from the dN/dS analysis of substitutions and from the recur-
rence analysis of indels were combined using Fisher’s method. Multiple testing 
correction (Benjamini–Hochberg FDR) was performed separately for the more 
than 600 putative driver genes and for all other genes, stratifying the FDR cor-
rection to increase sensitivity (as described in ref. 54). To achieve a low false 
discovery rate, a conservative q-value cutoff of <0.01 was used to determine 
statistical significance (Supplementary Table 11).

This analysis was applied to the new whole-genome sequences of 560 breast 
cancers as well as a further 772 breast cancers that have been sequenced previously 
by other institutions.

See Supplementary Methods for detailed explanations of these methods.

Recurrence in the non-coding regions. Partitioning the genome into functional 
regulatory elements/gene features. To identify non-coding regions with significant 
recurrence, we used a method similar to the one described for searching for novel 
indel drivers (see Supplementary Methods for detailed description).

The genome was partitioned according to different sets of regulatory elements/
gene features, with a separate analysis performed for each set of elements, includ-
ing exons (n = 20,245 genes), core promoters (n = 20,245 genes, where a core 
promoter is the interval (−250,+250) bp from any transcription start site (TSS) 
of a coding transcript of the gene, excluding any overlap with coding regions),  
5′ UTR (n = 9,576 genes), 3′ UTR (n = 19,502 genes), intronic regions flanking exons  
(n = 20,212 genes, represents any intronic sequence within 75 bp from an exon, 
excluding any base overlapping with any of the above elements), any other sequence 
within genes (n = 18,591 genes, for every protein-coding gene, this contains any 
region within the start and end of transcripts not included in any of the above  
categories), non-coding RNAs (ncRNAs) (n = 10,684, full length lincRNAs, miRNAs  
or rRNAs), enhancers55 (n = 194,054), ultra-conserved regions (n = 187,057, a 
collection of regions under negative selection based on 1,000 genomes data20).

Every element set listed above was analysed separately to allow for different 
mutation rates across element types and to stratify the FDR correction54. Within 
each set of elements, we used a negative binomial regression approach to learn 
the underlying variation of the mutation rate across elements. The offset reflects 
the expected number of mutations in each element assuming uniform mutation 
rates across them (that is, Esubs,element = Σ j∈{1,2,…,192} (rjSjt), and, Eindels,element = μindel 
Sindel,element) (see Supplementary Methods 7 for a detailed description and defini-
tion of all parameters). As covariate here we used the local density of mutations in 
neighbouring non-coding regions, corrected for sequence composition and trinu-
cleotide mutation rates (that is, the t parameter of the dN/dS equations described 
in section 7.1 of Supplementary Methods). Normalized local rates were pre- 
calculated for 100 kb non-overlapping bins of the genome and used in all analyses. 
Other covariates (expression, replication time or Hi-C (genome-wide chromosome 
conformation capture)) were not used here as they were not found to substantially 
improve the model once the local mutation rate was used as a covariate. A separate 
regression analysis was performed for substitutions and indels, to account for the 
different level of uncertainty in the distribution of substitution and indel rates 
across elements.

µ= . ( = ∼ ( ( )) + )n Emodel glm nb formula offset logsubssubs subs local,subs

µ= . ( = ∼ ( ( )) + )n Emodel glm nb formula offset logindels indels indels local,indels

The observed counts for each element (nsubs,element and nindels,element) are compared 
to the background distributions using a negative binomial test, with the estimated 
overdispersion parameters (θsubs and θindels) estimated by the negative binomial 
regression, yielding P values for substitution and indel recurrence for each element. 
These P values were combined using Fisher’s method and corrected for multiple 
testing using FDR (Supplementary Table 16a).
Partitioning the genome into discrete bins. We performed a genome-wide screening 
of recurrence in 1 kb non-overlapping bins. We employed the method described in 
earlier section, using as covariate the local mutation rate calculated from 5 Mb up 
and downstream from the bin of interest and excluding any low-coverage region 
from the estimate (Supplementary Table 16b, Extended Data Fig. 3a for example). 
Significant hits were subjected to manual curation to remove false positives caused 
by sequencing or mapping artefacts.
Mutational signatures analysis. Mutational signatures analysis was performed 
following a three-step process: (i) hierarchical de novo extraction based on somatic 
substitutions and their immediate sequence context, (ii) updating the set of con-
sensus signatures using the mutational signatures extracted from breast cancer 
genomes, and (iii) evaluating the contributions of each of the updated consensus 
signatures in each of the breast cancer samples. These three steps are discussed in 
more details in the next sections.
Hierarchical de novo extraction of mutational signatures. The mutational catalogues 
of the 560 breast cancer whole genome sequences were analysed for mutational  
signatures using a hierarchical version of the Wellcome Trust Sanger Institute muta-
tional signatures framework25. Briefly, we converted all mutation data into a matrix, 
M, that is made up of 96 features comprising mutations counts for each mutation 
type (C>A, C>G, C>T, T>A, T>C, and T>G; all substitutions are referred to 
by the pyrimidine of the mutated Watson–Crick base pair) using each possible 
5′ (C, A, G, and T) and 3′ (C, A, G, and T) context for all samples. After conver-
sion, the previously developed algorithm was applied in a hierarchical manner  
to the matrix M that contains K mutation types and G samples. The algorithm 
deciphers the minimal set of mutational signatures that optimally explains the 
proportion of each mutation type and then estimates the contribution of each 
signature across the samples. More specifically, the algorithm makes use of a  
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well-known blind source separation technique, termed non-negative matrix factor-
ization (NNMF). NNMF identifies the matrix of mutational signature, P, and the 
matrix of the exposures of these signatures, E, by minimizing a Frobenius norm, 
while maintaining non-negativity:
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E N G,  is a matrix of real non-negative num-
bers of dimension N × G. The method for deciphering mutational signatures, 
including evaluation with simulated data and list of limitations, can be found in 
ref. 25. The framework was applied in a hierarchical manner to increase its ability 
to find mutational signatures present in few samples as well as mutational signatures 
exhibiting a low mutational burden. More specifically, after application to the orig-
inal matrix M containing 560 samples, we evaluated the accuracy of explaining the 
mutational patterns of each of the 560 breast cancers with the extracted mutational 
signatures. All samples that were well-explained by the extracted mutational sig-
natures were removed and the framework was applied to the remaining sub-matrix 
of M. This procedure was repeated until the extraction process did not reveal any 
new mutational signatures. Overall, the approach extracted 12 unique mutational 
signatures operative across the 560 breast cancers (Fig. 3, Supplementary Table 21).
Updating the set of consensus mutational signatures. The 12 hierarchically extracted 
breast cancer signatures were compared to the census of consensus mutational 
signatures25. Of the 12 signatures, 11 closely resembled previously identified muta-
tional patterns. The patterns of these 11 signatures, weighted by the numbers of 
mutations contributed by each signature in the breast cancer data, were used to 
update the set of consensus mutational signatures as previously performed in  
ref. 25. One of the 12 extracted signatures is novel and at present, unique for breast 
cancer. This novel signature is consensus signature 30 (http://cancer.sanger.ac.uk/
cosmic/signatures).
Evaluating the contributions of consensus mutational signatures in 560 breast cancers. 
The complete compendium of consensus mutational signatures that was found 
in breast cancer includes: signatures 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, and 30. We 
evaluated the presence of all of these signatures in the 560 breast cancer genomes 
by re-introducing them into each sample. More specifically, the updated set of 
consensus mutational signatures was used to minimize the constrained linear 
function for each sample:
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Here, m is a vector with 96 components corresponding to the counts of each of the 
mutation types in a sample, pi represents a vector with 96 components (correspond-
ing to a consensus mutational signature i), ei is a non-negative scalar reflecting the 
number of mutations contributed by signature i in that sample. N is equal to 12 
and it reflects the number of all possible signatures that can be found in a single 
breast cancer sample. Mutational signatures that did not contribute large numbers 
(or proportions) of mutations or that did not significantly improve the correlation 
between the original mutational pattern of the sample and the one generated by 
the mutational signatures were excluded from the sample. This procedure reduced 
over-fitting the data and allowed only the essential mutational signatures to be 
present in each sample (Supplementary Table 21b).
Kataegis. Kataegis, or foci of localized hypermutation, has been previously 
defined25 as 6 or more consecutive mutations with an average intermutation 
distance of less than or equal to 1,000 bp. Kataegis were sought in 560 whole- 
genome sequenced breast cancers from high-quality base substitution data using 
the method described previously25. This method likely misses some foci of kataegis 
sacrificing sensitivity of detection for a higher positive predictive value of kataegic 
foci (Supplementary Table 21c).
Rearrangement signatures. Clustered vs non-clustered rearrangements. We sought 
to separate rearrangements that occurred as focal catastrophic events or focal driver 
amplicons from genome-wide rearrangement mutagenesis using a piecewise con-
stant fitting method. For each sample, both breakpoints of each rearrangement were 
considered individually and all breakpoints were ordered by chromosomal position. 
The inter-rearrangement distance, defined as the number of base pairs from one rear-
rangement breakpoint to the one immediately preceding it in the reference genome, 
was calculated. Putative regions of clustered rearrangements were identified as having 
an average inter-rearrangement distance that was at least 10 times greater than the 
whole-genome average for the individual sample. Piecewise constant fitting parame-
ters used were γ = 25 and kmin = 10, with γ as the parameter that controls smoothness 
of segmentation, and kmin the minimum number of breakpoints in a segment.

The respective partner breakpoint of all breakpoints involved in a clustered 
region are likely to have arisen at the same mechanistic instant and so were con-
sidered as being involved in the cluster even if located at a distant chromosomal 
site. The rearrangements within clusters (‘clustered’) and not within clusters (‘non- 
clustered’) are summarized in Extended Data Table 4.
Classification: types and size. In both classes of rearrangements, clustered and 
non-clustered, rearrangements were subclassified into deletions, inversions and 
tandem duplications, and then further subclassified according to size of the rear-
ranged segment (1–10 kb, 10–100 kb, 100 kb–1 Mb, 1–10 Mb, more than 10 Mb). 
The final category in both groups was interchromosomal translocations.
Rearrangement signatures by NNMF. The classification produces a matrix of 32 dis-
tinct categories of structural variants across 544 breast cancer genomes. This matrix 
was decomposed using the previously developed approach for deciphering muta-
tional signatures by searching for the optimal number of mutational signatures that 
best explains the data without over-fitting the data25 (Supplementary Table 21d, e).
Consensus clustering of rearrangement signatures. To identify subgroups of samples 
sharing similar combinations of six identified rearrangement signatures derived 
from whole genome sequencing analysis we performed consensus clustering using 
the ConsensusClusterPlus R package56. Input data for each sample (n = 544, a 
subset of the full sample cohort) was the proportion of rearrangements assigned 
to each of the six signatures. Thus, each sample has 6 data values, with a total sum 
of 1. Proportions for each signature were mean-centred across samples before 
clustering. The following settings were used in the consensus clustering: number 
of repetitions = 1000; pItem = 0.9 (resampling frequency samples); pFeature = 0.9 
(resampling frequency); Pearson distance metric; Ward linkage method.
Distribution of mutational signatures relative to genomic architecture. 
Following extraction of mutational signatures and quantification of the exposures 
(or contributions) of each signature to each sample, a probability for each mutation 
belonging to each mutation signature (for a given class of mutation for example, 
substitutions) was assigned42.

The distribution of mutations as signatures were assessed across multiple 
genomic features including replication time, strands, transcriptional strands and 
nucleosome occupancy. See ref. 42 for technical details, per signature results.
Individual patient whole-genome profiles. Breast cancer whole-genome profiles 
were adapted from the R Circos package57. See http://cancer.sanger.ac.uk/cosmic/
sample/genomes for individual patient genome profiles. Features depicted in circos 
plots from outermost rings heading inwards: Karyotypic ideogram outermost. Base 
substitutions next, plotted as rainfall plots (log10 intermutation distance on radial 
axis, dot colours: blue, C>A; black, C>G; red, C>T; grey, T>A; green, T>C; 
pink, T>G). Ring with short green lines, insertions; ring with short red lines, dele-
tions. Major copy number allele (green, gain) ring, minor copy number allele ring 
(pink, loss), Central lines represent rearrangements (green, tandem duplications; 
pink, deletions; blue, inversions; grey, interchromosomal events). In each profile, 
the top right-hand panel displays the number of mutations contributing to each 
mutation signature extracted using NNMF in individual cancers. Middle right-
hand panel represents indels. Bottom right corner shows histogram of rearrange-
ments present in this cancer. Bottom left corner shows all curated driver mutations, 
top- and middle-left panels show clinical and pathology data respectively.
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Extended Data Figure 1 | Landscape of driver mutations. a, Summary of 
subtypes of cohort of 560 breast cancers. b, Driver mutations by mutation 
type. c, Distribution of rearrangements throughout the genome. Black 

line represents background rearrangement density (calculation based on 
rearrangement breakpoints in intergenic regions only). Red lines represent 
frequency of rearrangement within breast cancer genes.
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Extended Data Figure 2 | Rearrangements in oncogenes. a, Variation 
in rearrangement and copy number events affecting ESR1. Clear 
amplification in top panel, transection of ESR1 in middle panel and 
focused tandem duplication events in bottom panel. b, Predicted outcomes 
of some rearrangements affecting ETV6. Red crosses indicate exons 

deleted as a result of rearrangements within the ETV6 genes, black dotted 
lines indicate rearrangement break points resulting in fusions between 
ETV6 and ERC, WNK1, ATP2B1 or LRP6. ETV6 domains indicated are: 
N-terminal (NT) pointed domain and E26 transformation-specific DNA 
binding domain (ETS).
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Extended Data Figure 3 | Recurrent non-coding events in breast 
cancers. a, Manhattan plot demonstrating sites with most significant  
P values as identified by binning analysis. Purple highlighted sites were 
also detected by the method seeking recurrence when partitioned by 
genomic features. b, Locus at chr11 65 Mb, which was identified by 
independent analyses as being more mutated than expected by chance. 

Bottom, a rearrangement hotspot analysis identified this region as a 
tandem duplication hotspot, with nested tandem duplications noted at 
this site. Partitioning the genome into different regulatory elements, an 
analysis of substitutions and indels identified lncRNAs MALAT1 and 
NEAT1 (topmost panels) with significant P values.
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Extended Data Figure 4 | Copy number analyses. a, Frequency of copy 
number aberrations across the cohort. Chromosome position along  
x axis, frequency of copy number gains (red) and losses (green) y axis. 
b, Identification of focal recurrent copy number gains by the GISTIC 
method (Supplementary Methods). c, Identification of focal recurrent 
copy number losses by the GISTIC method. d, Heatmap of GISTIC 
regions following unsupervised hierarchical clustering. Five cluster 

groups are noted and relationships with expression subtype (basal, red; 
luminal B, light blue; luminal A, dark blue), immunohistopathology 
status (ER, PR, HER2 status; black, positive), abrogation of BRCA1 (red) 
and BRCA2 (blue) (whether germline, somatic or through promoter 
hypermethylation), driver mutations (black, positive), HRD index  
(top 25% or lowest 25%; black, positive).
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Extended Data Figure 5 | miRNA analyses. Hierarchical clustering of 
the most variant miRNAs using complete linkage and Euclidean distance. 
miRNA clusters were assigned using the partitioning algorithm using 
recursive thresholding (PART) method. Five main patient clusters were 
revealed. The horizontal annotation bars show (from top to bottom): 

PART cluster group, PAM50 mRNA expression subtype, GISTIC cluster, 
rearrangement cluster, lymphocyte infiltration score and histological 
grade. The heatmap shows clustered and centred miRNA expression data 
(log2 transformed). Details on colour coding of the annotation bars are 
presented below the heatmap.
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Extended Data Figure 6 | Rearrangement cluster groups and associated features. a, Overall survival (OS) by rearrangement cluster group. b, Age of 
diagnosis. c, Tumour grade. d, Menopausal status. e, ER status. f, Immune response metagene panel. g, Lymphocytic infiltration score.
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Extended Data Figure 7 | Contrasting tandem duplication phenotypes. 
Contrasting tandem duplication phenotypes of two breast cancers using 
chromosome X. Copy number (y axis) depicted as black dots. Lines 
represent rearrangements breakpoints (green, tandem duplications; 
pink, deletions; blue, inversions; black, translocations with partner 

breakpoint provided). Top, PD4841a has numerous large tandem 
duplications (>100 kb, rearrangement signature 1), whereas PD4833a 
has many short tandem duplications (<10 kb, rearrangement signature 3) 
appearing as ‘single’ lines in its plot.
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Extended Data Figure 8 | Hotspots of tandem duplications. A tandem duplication hotspot occurring in six different patients.
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Extended Data Figure 9 | Rearrangement breakpoint junctions. a, Breakpoint features of rearrangements in 560 breast cancers by rearrangement 
signature. b, Breakpoint features in BRCA and non-BRCA cancers.
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Extended Data Figure 10 | Signatures of focal hypermutation.  
a, Kataegis and alternative kataegis occurring at the same locus (ERBB2 
amplicon in PD13164a). Copy number (y axis) depicted as black dots. 
Lines represent rearrangements breakpoints (green, tandem duplications; 
pink, deletions; blue, inversions). Top, an ~10 Mb region including 
the ERBB2 locus. Middle, zoomed-in tenfold to an ~1 Mb window 

highlighting co-occurrence of rearrangement breakpoints, with copy 
number changes and three different kataegis loci. Bottom, demonstrates 
kataegis loci in more detail. log10 intermutation distance on y axis. Black 
arrow, kataegis; blue arrows, alternative kataegis. b, Sequence context of 
kataegis and alternative kataegis identified in this data set.
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