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In this paper, we study the problem of retrieving a ranked list of top-N items to a target 

user in recommender systems. We first develop a novel preference model by distinguish- 

ing different rating patterns of users, and then apply it to existing collaborative filtering 

( CF ) algorithms. Our preference model, which is inspired by a voting method, is well- 

suited for representing qualitative user preferences. In particular, it can be easily imple- 

mented with less than 100 lines of codes on top of existing CF algorithms such as user- 

based, item-based, and matrix-factorization-based algorithms. When our preference model 

is combined to three kinds of CF algorithms, experimental results demonstrate that the 

preference model can improve the accuracy of all existing CF algorithms such as ATOP and 

NDCG@25 by 3–24% and 6–98%, respectively. 
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1. Introduction 

The goal of recommender systems (RS) [1] is to suggest appealing items ( e.g. , movies, books, news, and music) to a

target user by analyzing her prior preferences. As the number of applications using RS as a core component has increased

rapidly, improving the quality of RS becomes a critically important problem. The quality of RS can be measured by various

criteria such as accuracy, serendipity, diversity, relevance, and utility [29,38] . In measuring the accuracy of RS, in particular,

two approaches have prevailed: rating prediction and top-N recommendation [36] . A typical practice of rating prediction is to

minimize prediction errors for all unobserved (or missing ) user-item pairs. In contrast, top- N recommendation provides users

with the most appealing top- N items. In this paper, we mainly focus on improving the accuracy of top- N recommendation. 

Collaborative filtering ( CF ) [37] has been widely used as one of the most popular techniques in RS. Basically, it is based

on users’ past behavior such as explicit user ratings and implicit click logs. Using the similarity between users’ behavior

patterns, CF suggests the most appealing top- N items for each user. In this process, existing CF algorithms [6,10,11,16,30,31]

return top- N items with the highest ratings in terms of rating prediction, and ignore the qualitative order of items for top- N

recommendation. Although some recent work [2,5,20,32,39] developed CF algorithms for optimizing top- N recommendation,
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Fig. 1. The rating distribution of two users u and v . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

they still have the limitations in identifying qualitative user preferences, i.e. , relative preferences between items with explicit

ratings. 

Specifically, two key issues in existing top- N recommendation are: (1) how to distinguish user experience between ob-

served and missing ratings and (2) how to model latent user preferences from observed ratings. As the solution to (1), for

instance, we may impute missing ratings as zero ( i.e. , negative user feedback ), as used in [5] . However, as to the solution to

(2), it is non-trivial to distinguish relative preferences between observed ratings ( i.e. , positive user feedback ) as user ratings

often have different distributions per user. 

To motivate our preference model, we illustrate a scenario in which two users u and v have rated for the same set of five

items { i 1 , . . . , i 5 } ( Fig. 1 ). Even if two users gave the same rating of 5 to item i 5 , the meaning of the rating can be interpreted

differently depending on rating distributions. For example, suppose that both u and v gave 5 to i 5 . Because v tends to give

many ratings of 5, it is difficult to determine how satisfactory v was really with i 5 . In contrast, because u rarely gives the

rating of 5, it is plausible to assure that u is very satisfied with i 5 . Therefore, we argue that u prefers i 5 more than v does. 

Our proposed preference model, which is inspired by a voting method , aims to discern subtle latent user preferences by

considering different rating distributions. While existing algorithms are mainly based on the quantitative values among items

to represent user preferences, our model exploits the qualitative order of items. Our preference model is able to convert raw

user ratings into latent user preferences. In our formal analysis, it can be derived from maximum likelihood estimation , which

is consistent with existing work [14] . 

We then develop a family of CF algorithms by embedding the proposed preference model into existing CF algorithms.

As an orthogonal way, our preference model can be easily combined with existing CF algorithms such as user-based neigh-

borhood, item-based neighborhood, and matrix-factorization-based algorithms. Observed user ratings are converted to user

preference scores and missing ratings are imputed as zero values. After this conversion is performed, existing CF algorithms

are applied with the converted user-item matrix. The key advantages of our proposed algorithms are two-fold: a simple

algorithm design and a sizable accuracy improvement in various kinds of CF algorithms. 

In order to validate our proposed algorithms, we lastly conduct comprehensive experiments with extensive settings.

Because user ratings tend to be biased to item popularity and rating positivity [5,27,35] , we employ two testing item sets:

All Items ( i.e. , All Items in a test item set) and Long-tail Items ( i.e. , non-popular items with a few ratings) [5] . In case of cold-

start users [21] who have rated only a few items, we also compare our proposed algorithms against existing CF algorithms. 

To summarize, this paper makes the following contributions. 

• We design a preference model in order to identify latent user preferences from user ratings. The idea of the preference

model is intuitive to understand, and easy to implement, costing less than 100 lines of codes, on top of existing CF

algorithms. 

• We propose a family of CF algorithms by incorporating the proposed preference model into existing CF algorithms. Our

preference model can be easily applied to existing CF algorithms. 

• We evaluate our proposed CF algorithms applied to user-based, item-based, and matrix-factorization-based algorithms.

Our proposed algorithms are validated over two test sets: All Items and Long-tail Items . It is found that our proposed

algorithms improve three kinds of CF algorithms by 3–24% and 6–98% for ATOP and NDCG@25. 

This paper is organized as follows. In Section 2 , we survey existing work for top- N recommendation. In Section 3 , we

discuss two categories of CF algorithms and their variants for top- N recommendation. In Section 4 , we design a prefer-

ence model and propose a family of CF algorithms using our preference model. In Section 5 , we show detailed evaluation

methodology. In Section 6 , we report and analyze the experimental results of our proposed algorithms. In Section 7 , we

finally conclude our work. 

2. Related work 

Collaborative filtering ( CF ) [37] is well-known as one of the most prevalent techniques in recommender systems (RS).

(The broad survey for RS can be found in [1,29] .) Conceptually, it collects the past behavior of users, and makes rating

predictions based on the similarity between users’ behavior patterns. The underlying assumptions behind CF are as follows:
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(1) If users have similar behavior patterns in the past, they will also make similar behavior patterns in the future. (2) The

users’ behavior patterns are consistent over time. The user behavior is used to infer hidden user preferences and is usually

represented by explicit ( e.g. , user ratings) and implicit user actions ( e.g. , clicks and query logs). In this paper, we assume that

the user behavior is represented by explicit user ratings on items. 

The approaches for CF can be categorized as two models: neighborhood models and latent factor models [37] . First, the

neighborhood models make predictions based on the similarity between users or items such as user-based algorithms [10]

and item-based algorithms [31] . Second, the latent factor models learn hidden patterns from observed ratings by using

matrix factorization techniques [11,17] . In particular, singular value decomposition ( SVD ) is widely used as one of the well-

established techniques [13,15,16,30] . In this paper, we mainly handle CF algorithms with explicit user ratings. 

Evaluation of top- N recommendation: Top- N recommendation provides users with a ranked set of N items [6] , which

is also involved to the “who rated what” problem [4] . To evaluate top- N recommendation, we have to take the charac-

teristics of observed ratings into account. That is, ratings are distributed not at random [22,23,34] . The ratings are biased

to item popularity [5,35] and tend to be more preferred than missing ratings, i.e. , rating positivity [27] . In this paper, we

thus employ two testing items such as All Items and Long-tail Items , and adopt various metrics for fair evaluation of top- N

recommendation. 

One-class collaborative filtering: When user ratings are represented by binary values, observed user ratings are simply

set as one (positive feedback). Meanwhile, because missing ratings can be seen as a mixture of unknown and negative

feedback, they need to be considered carefully. First, [26] introduced this problem to distinguish different semantics of

missing ratings. In addition, [25] proposed an improved weight scheme to discern missing ratings. As the simplest way,

we imputed all missing ratings as zero ( i.e. , negative feedback). We compare our proposed algorithms with the one class

collaborative filtering method, where missing values are considered negative feedback with uniform weights. In our future

work, we will discuss an alternative method for handling missing ratings, e.g. , a imputation method [21] for missing ratings.

Ranking-oriented collaborative filtering: For top- N recommendation, it is important to consider the ranking of items.

Weimer et al. [39] proposed CoFiRank that uses maximum margin matrix factorization to optimize the ranking of items.

Liu and Yang [20] developed EigenRank to decide the rankings of items using neighborhood-based methods and Hu [12]

proposed a preference-relation-based similarity measure for multi-criteria dimensions. In addition, [2,32] combined CF with

learning to rank methods to optimize the ranking of items. Shi et al. [33] combined rating- and ranking-oriented algorithms

with a linear combination function, and Liu et al. [19] extended probabilistic matrix factorization with list-wise preferences.

Rendle et al. [28] proposed Bayesian personalized ranking that maximizes the likelihood of pair-wise preferences between ob-

served and unobserved items in implicit datasets. In particular, [28] proposed a new objective function that aims to achieve

higher accuracy for top- N recommendation. Ning and Karypis [24] delveloped a sparse linear method ( SLIM ) to learn the sim-

ilarity between items for improving the accuracy of top- N recommendation. Recently, Tejeda-Lorente et al. [38] developed

a hybrid approach to combining the content-based the and collaborative filtering method in which the user participates in

the feedback process by ranking her interests in the user profiles. Liu et al. [18] adopted boosted regression trees to represent

conditional user preferences in CF algorithms. In this paper, we propose an alternative user preference model, and combine

it with a family of CF algorithms. 

3. Collaborative filtering algorithms 

In this section, we first introduce basic notations used throughout this paper. The domain consists of a set of m users,

U = { u 1 , . . . , u m 

} , and a set of n items, I = { i 1 , . . . , i n } . All user-item pairs can be represented by an m -by- n matrix R = U × I ,
where an entry r ui indicates the rating of user u to item i . If r ui has been observed (or known ), it is represented by a positive

value in a specific range. Otherwise, r ui is empty , implying a missing (or unknown ) rating. Let R 

+ ⊆ R denote a subset of

user-item pairs for which ratings are observed, i.e. , R 

+ = { r ui ∈ R | r ui is observed } . For the sake of representation, u and v
indicate arbitrary users in U , and i and j refer to arbitrary items in I . 

In the following, we explain existing CF algorithms. They can be categorized into: (1) neighborhood-based models and (2)

latent-factor-based models . 

3.1. Neighborhood models 

The neighborhood models are based on the similarity between either users or items. There are two major neighborhood

algorithms, i.e. , user-based and item-based algorithms, depending on which sides are used. The user-based algorithms make

predictions based on users’ rating patterns similar to that of a target user u . Let U ( u ; i ) be a set of users who rate item i

and have similar rating patterns to the target user u . The predicted rating ˆ r ui of user u to item i is computed by: 

ˆ r ui = b ui + 

∑ 

v ∈ U(u ;i ) (r v i − b v i ) w u v ∑ 

v ∈ U(u ;i ) w u v 
(1) 

where r v i is a rating of user v to item i , b v i is a biased rating value for v to i , and w u v is the similarity weight between two

users u and v . In other words, ˆ r ui is calculated by a weighted combination of neighbors’ residual ratings. Note that b ui and

w u v can be different depending on the rating normalization scheme and the similarity weight function. 
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On the other hand, the item-based algorithms predict the rating for target item i of user u based on the rating patterns

between items. Let I ( i ; u ) be a set of items that have rating patterns similar to that of i and have been rated by u . Let w i j

denote the similarity weight between two items i and j . Specifically, the predicted rating ˆ r ui is calculated by: 

ˆ r ui = b ui + 

∑ 

j∈ I(i ;u ) (r u j − b u j ) w i j ∑ 

j∈ I(i ;u ) w i j 

(2)

We discuss how the neighborhood models can be adapted for top- N recommendation. It is observed that predicting the

exact rating values is unnecessary for top- N recommendation. Instead, it is more important to distinguish the importance

of items that are likely to be appealing to the target user. Toward this goal, items are ranked by ignoring the denominator

used for rating normalization. By simply removing the denominators in Eqs. (1) and (2) , it can only consider the magnitude

of observed ratings. This modification can help discern the user experience between observed and missing ratings. Formally,

the predicted score is computed by: 

ˆ r ui = b ui + 

∑ 

v ∈ U(u ;i ) 
(r v i − b v i ) w u v (3)

Similarly, the predicted score in the item-based algorithms is calculated by: 

ˆ r ui = b ui + 

∑ 

j∈ I(i ;u ) 
(r u j − b u j ) w i j (4)

Note that ˆ r ui in Eqs. (3) and (4) means the score for quantifying the importance of item i to user u . For top- N recommen-

dation, it is observed that the non-normalized algorithms outperform conventional neighborhood algorithms that minimize

prediction errors. The results are also consistently found in existing work [5] . 

3.2. Latent factor models 

The latent factor model is an alternative way to infer hidden characteristics of rating patterns by using matrix factor-

ization techniques. In this paper, we adopt singular value decomposition ( SVD ) as the well-established matrix factorization

method [17] . A key idea of SVD is to factorize an m -by- n matrix R into an inner product of two low-rank matrices with

dimension f . That is, one low-rank matrix is called an m -by- f user-factor matrix and the other is called an n -by- f item-

factor matrix. Each user u is thus associated with an f -dimensional vector p u ∈ R 

f , and each item i is involved with an

f -dimensional vector q i ∈ R 

f . Formally, the predicted rating ˆ r ui is calculated by: 

ˆ r ui = b ui + p u q 
T 
i (5)

In this process, a key challenge is how to handle the presence of missing ratings. Recent work adopts an objective func-

tion that only minimizes prediction errors for observed ratings with regularization. Formally, the objective function is rep-

resented by: 

min 

p,q,b 

1 

2 

∑ 

r ui ∈ R 

+ 
(r ui − b ui − p u q 

T 
i ) 

2 + 

λ

2 

(|| p u || 2 + || q i || 2 ) (6)

where λ is a parameter for regularization. In order to improve the accuracy of rating predictions, other information such as

implicit user feedback [13] and temporal effects [15] can be used together in the objective function. 

Although the objective function is effective for minimizing prediction errors, it does not obtain high accuracy for top- N

recommendation [5] . This is because it does not differentiate between observed ratings and missing ratings. As a simplest

way, all missing ratings are considered negative user feedback, and they are imputed as zero, i.e. , ∀ r ui ∈ R / R 

+ : r ui = 0 .

The imputation for missing ratings enables us to discern user experience between observed ratings and missing ratings.

Furthermore, because this modification can form a complete m -by- n matrix R , the conventional SVD method can be applied

to R . 

R ≈ U�V 

T (7)

where a low-rank matrix approximation is used with dimension f . That is, U is an n -by- f orthonormal matrix, V is an

m -by- f orthonormal matrix, and � is an f -by- f diagonal matrix. The existing work [5] reports that the pure SVD using

Eq. (7) improves the accuracy of top- N recommendation. 

4. Proposed preference model 

Unlike the rating prediction that focuses on minimizing prediction errors of unrated items, top- N recommendation aims

to identify a sorted list of N items that a user would prefer. The key challenges in top- N recommendation are two-fold:

(1) how to distinguish the user experience between observed and missing ratings and (2) how to model user preferences

for observed ratings. Basically, the observed and missing ratings can be represented as positive/negative user feedback, i.e. ,

1 if the rating is observed and 0 otherwise. Because the observed ratings are at a different scale, we can exploit them for

deciding the relative preferences of items. In the following, we propose a preference model in order to address the challenges

for top- N recommendation. 
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4.1. Basic intuition 

Our main question for designing a preference model is: how does it effectively derive latent user preferences from observed

ratings? One simple way is to adopt existing rating normalization schemes. Let R 

+ 
u denote a set of observed ratings for target

user u . For instance, mean-centered normalization can be used as one of the popular rating normalization schemes. After the

average μ of R 

+ 
u is computed, each rating r ui in R 

+ 
u is replaced by r ui − μ. In that case, because normalized ratings with

negative values can be confused as negative feedback, it is difficult to distinguish user experience between observed and

missing ratings. In addition, when the relative preferences between items can be quantified by computing absolute distance

between normalized ratings, it does not discern different rating distributions for each user. 

As depicted in Fig. 1 , it is important to distinguish different rating distributions of two users u and v , where they have

rated for the same set of five items. When the mean-centered normalization is used, item i 1 rated by 1 can be interpreted

as negative feedback. In addition, the difference of normalized ratings between i 1 and i 5 is equal for two users u and v ,
even if the rating distributions of users are vastly different. This is because the existing normalization schemes are based on

quantitative ratings instead of qualitative ordering of items. 

To address this problem, we adopt an alternative preference model, which is inspired by a voting method, Borda count

method [7] . When items are sorted by the ascending order of ratings, the preference score pref ( r ui ) of item i for target user

u is computed by accumulating the number of items that are ranked lower than or equal to item i . Let pref op ( r ui ) denote the

number of items in R 

+ 
u that are satisfied with the condition for op , i.e. , pre f op (r ui ) = |{ r u j ∈ R 

+ 
u | r ui op r u j }| , where op can

be replaced with any comparison operator, e.g. , > , < , and = . Specifically, there are two cases for computing the preference

score. 

1. Given user rating r ui , we simply count the number of items that are ranked lower than i . Let pref > ( r ui ) is the preference

score of r ui , which is the number of items with lower rankings, i.e. , pre f > (r ui ) = |{ r u j ∈ R 

+ 
u | r ui > r u j }| . 

2. Let pre f = (r ui ) is the preference score of r ui , which is the number of items with the same rankings, i.e. , pre f = (r ui ) =
|{ r u j ∈ R 

+ 
u | r ui = r u j }| . 

By combining the two cases, the preference score of r ui can be computed as a weighted linear combination, where | R 

+ 
u |

is used as a normalization parameter. 

pre f (r ui ) = α · pre f > (r ui ) 

| R 

+ 
u | + β · pre f = (r ui ) 

| R 

+ 
u | (8) 

where α and β are weight parameters for pref > ( r ui ) and pre f = (r ui ) , respectively. Using this equation, we can convert user

ratings into qualitative user preference scores depending on different rating distributions. 

We now explain how to compute the preference scores of items with categories. When a set of user ratings is aggregated

into a set of rating categories, it is easier to handle the set of rating categories with a smaller size, e.g. , r ui ∈ { 1 , . . . , 5 } . Let

{ C 1 , . . . , C k } be a set of rating categories in a specific range. Intuitively, the items in a high rating category are ranked higher

than those in a low rating category. Suppose that r ui belongs to category C , i.e. , r ui ∈ C . To compute the preference score of

r ui , we simply count the number of items that are in low rating category C ′ , i.e. , C > C ′ , and the number of items in the

same category C . The preference score pref ( C ) of C is computed as: 

pre f (C) = α ·
∑ 

C ′ ∈{ C 1 , ... C k } 

pre f > (C, C ′ ) 
| R 

+ 
u | + β · pre f = (C) 

| R 

+ 
u | (9) 

where pref > ( C , C 
′ ) is the number of items that belong to lower rating category C ′ and pre f = (C) is the number of items that

belong to C . Based on the formal analysis in Section 4.3 , parameters α and β are set as 1.0 and 0.5, respectively. 

Example 1 (Qualitative preference) . Consider two users u and v who have rated the same set of 10 items. Table 1 describes

the observed ratings of two users, where the items are simply numbered in ascending order of ratings. Assuming the rating

categories range in { 1 , . . . , 5 } , Table 2 shows the preference scores of rating categories for u and v . That is, we count the

number of items for each category, and compute the preference score for each category by using Eq. (9) , where α = 1.0

and β = 0.5. After the preference scores are computed, user ratings are converted to the corresponding preference scores.

Table 3 depicts the preference scores of items for users u and v . When the mean-center scheme is used, both users u and

v have the same average value, i.e. , 3.2. The relative preference gap between two items i 4 and i 10 is thus equally computed

as 2 for both u and v . In contrast, because our preference model is based on the qualitative order of items, we can identify

user preference scores in a more sophisticated manner. While u rated 5 for both i and i , v rated 5 for only i . For i ,
9 10 10 10 

Table 1 

Observed ratings for users u and v . 

i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 

u 1 2 3 3 3 3 3 4 5 5 

v 2 2 2 3 3 3 4 4 4 5 
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Table 2 

Preference scores for rating categories of 

users u and v . 

C 1 C 2 C 3 C 4 C 5 

u 0.05 0.15 0.45 0.75 0.9 

v 0.0 0.15 0.45 0.75 0.95 

Table 3 

Converting ratings to preference scores for users u and v . 

i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 

u 0.05 0.15 0.45 0.45 0.45 0.45 0.45 0.75 0.9 0.9 

v 0.15 0.15 0.15 0.45 0.45 0.45 0.75 0.75 0.75 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the preference scores of u and v are thus different, i.e. , 0.9 and 0.95. In addition, the preference gap between i 4 and i 10 is

different as well, i.e. , 0.45 and 0.5. 

4.2. Applying our preference model 

Now, we discuss how to apply our proposed preference model to existing CF algorithms. First, the explicit ratings for

each user are converted to corresponding preference scores. Based on this conversion, user-item matrix R is updated. Let

R pre f denote a transformed matrix in which each entry represents a preference score. In this process, all missing ratings are

imputed as zero, as used in existing work [5] . Then, any existing CF algorithms can easily be applied to R pre f . 

We first discuss how the preference model is combined with neighborhood-based algorithms. In computing the predic-

tion score, a key difference is to use pref ( r ui ) instead of r ui − b ui in Eq. (3) . The predicted score in the user-based algorithms

is computed as: 

ˆ r ui = 

∑ 

v ∈ U(u ;i ) 
pre f (r v i ) w u v (10)

Similarly, the predicted score in the item-based algorithms is calculated as: 

ˆ r ui = 

∑ 

j∈ I(i ;u ) 
pre f (r u j ) w i j (11)

In both cases, ˆ r ui indicates the importance of items for top- N recommendation. 

Next, we explain how to apply the preference model for latent factor based algorithms. For top- N recommendation,

ranking-based models ( e.g. , [2,32,39] ) employ an objective function that minimizes the error of item ranking. However,

because the models are mainly based on the ordering of pair-wise items, they may fail to reflect overall rating distributions.

In addition, their computation overhead is prohibitively high if all pair-wise preferences of items are considered. To address

this problem, we first transform R into R pre f (as done in neighborhood-based algorithms), and then factorize R pre f using

the conventional SVD method. 

R pre f ≈ U�V 

T (12)

4.3. Formal analysis 

We now derive the preference model by using maximum likelihood estimation . For simplicity, suppose that a set of ratings

is represented by a rating distribution with categories. Given a set of category { C 1 , . . . , C k } , X i denotes a set of items assigned

to the corresponding rating category C i . All Items with ratings are associated with { X 1 , . . . , X k } . We estimate a preference score

θ i for the corresponding rating category C i . Let θ = { θ1 , . . . , θk } denote probability scores that each category is preferred.

When generating a ranked list L of observed items for user preferences, we identify a parameter θ that maximizes the

likelihood function. 

θ ∗ = arg max θ p(L | θ ) (13)

In that case, p ( L | θ ) can be replaced by the product of probability of generating the correct ranked list for any two items.

That is, p ( L | θ ) is represented by: 

p(L | θ ) = 

∏ 

i> j 

( ∏ 

x ∈ X i ,x ′ ∈ X j 
p(x > x ′ | θ ) 

) ∏ 

i 

( ∏ 

x � = x ′ ∈ X i 
p(x > x ′ | θ ) 

) 

(14)

where p ( x > x ′ | θ ) is the probability that item x is preferred to item x ′ , following binary distribution for p ( x ): 

p(x > x ′ | θ ) = p(x )(1 − p(x ′ )) (15)

where p ( x ) is the probability that item x is preferred. 
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As discussed in Section 4.1 , a set of user ratings is represented by a set of discrete rating categories { C 1 , . . . , C k } . We

can replace p ( X ) with the probability p ( C i ) for rating category C i , and combine Eqs. (14) with (15) . Therefore, p ( L | θ ) can be

computed by: 

p(L | θ ) = 

∏ 

C i >C j 

(
p(C i ) 

n (C i ) (1 − p(C j )) 
n (C j ) 

)∏ 

C i 

( p(C i )(1 − p(C i )) ) 
n (C i )(n (C i ) −1) / 2 

(16) 

where n ( C i ) is the number of items assigned to C i . 

By maximizing the log likelihood of p ( L | θ ), we can finally obtain the highest preference probability θ i ∈ θ , which is

derived as: 

p(C i ) = 

∑ 

i> j 

p(C i > C j ) + 

1 

2 

× p(C i = C j ) (17) 

where p ( C i > C j ) is the probability that C i is preferred to C j , and p(C i = C j ) is the probability that C i and C j are preferred

equally. In our experiments, we set α = 1.0 and β = 0.5 in Eq. (9) . It is found that the derivation for our preference model

is consistent with existing work [14] . 

5. Evaluation methodology 

In this section, we first explain real-life datasets used for evaluation ( Section 5.1 ), and then show various accuracy metrics

for top- N recommendation ( Section 5.2 ). 

5.1. Datasets 

We employ two real-life datasets of MovieLens 100K and MovieLens 1M . These are publicly available at http://grouplens.

org/datasets/movielens . The MovieLens 100K dataset includes 943 users, 1682 items, and 10 0,0 0 0 ratings, and the MovieLens

1M dataset includes 6040 users, 3952 items, and 1,0 0 0,209 ratings. The ratings take integer values ranging from 1 (worst)

to 5 (best). Table 4 summarizes the statistics for the two datasets. 

For fair evaluation, we run a 5-fold cross validation. The dataset is randomly split into two subsets, i.e. , 80% training

and 20% testing data. Let T r ⊂ R 

+ and T e ⊂ R 

+ denote training and testing subsets partitioned from R 

+ , i.e. , T r ∩ T e = ∅ ,
T r ∪ T e = R 

+ . Each subset is used for executing and evaluating CF algorithms. Specifically, Tr u and Te u denote a set of items

rated by target user u , i.e. , T r u = { i ∈ I | r ui ∈ T r} and T e u = { i ∈ I | r ui ∈ T e } . In particular, the items with the highest ratings are

taken as relevant items in Te u . Let T e + u denote a set of relevant items, i.e. , T e + u = { i ∈ I | r ui ∈ T e u , r ui = 5 } . That is, T e + u is used

as ground truth for measuring accuracy metrics. Meanwhile, the items with low ratings and unrated items are considered

non-relevant . In other words, suggesting the most preferred items only is treated as an effective top- N recommendation. 

In order to evaluate top- N recommendation, it is also important to select a set of candidate items that CF algorithms will

rank. Let L u denote a set of candidate items to be ranked for user u . Given L u , the CF algorithms sort L u by the descending

order of prediction scores and generate a sorted list with top- N items. Depending on the selection of L u , different top- N

items can be created [3] . For a generalized setting, we form L u = I − T r u as a set of whole items except for the items that

have been rated by user u . In this paper, we call this setting All Items . 

When using All Items , it is observed that the majority of ratings is biased to only a small fraction of popular items. Fig. 2

depicts the distribution of items in MovieLens 100K, where Y -axis represents popularity , i.e. , the number of observed ratings.

The items in X -axis are sorted by the descending order of popularity. In Fig. 2 , the top-100 popular items ( i.e. , about 6%)

have 29,931 ratings ( i.e. , about 30%). In that case, because the top- N items tend to be biased to a few popular items, top- N

recommendation may not bring much benefit for users. Note that the popularity bias of rated items can be found in other

datasets [5,27] . 

To address this problem, we design a more elaborated setting in selecting L u . Given a set I of items, it is partitioned

into two subsets in terms of popularity. That is, most popular 100 items and remaining items are called top-head and Long-

tail Items, respectively. Let Top denote a set of top-head items. In that case, we deliberately form L u as Long-tail Items,

i.e. , L u = ( I − T op) − T r u as shown in [5] . We call this setting Long-tail Items . The evaluation for Long-tail Items can be less

biased toward the popular items. Compared to All Items , it can be a more difficult setting. For extensive evaluation, we will

use both settings, i.e. , All Items and Long-tail Items . 
Table 4 

Detailed statistics of real-life datasets. 

MovieLens 100K MovieLens 1M 

Density 6.30% 4.26% 

Min. # of ratings of users 20 20 

Max. # of ratings of users 737 2,314 

Avg. # of ratings per user 106.04 165.59 

http://grouplens.org/datasets/movielens
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Fig. 2. The popularity distribution of items in MovieLens 100K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, we evaluate top- N recommendation for cold-start users [21] who have rated only a few items. Because it is more

challenging to identify users’ latent preferences using only a small number of ratings, top- N recommendation results become

less accurate. In this paper, the cold-start user setting is simulated in MovieLens 100K. Specifically, two subsets of users are

randomly chosen: 500 users as training users (30 0, 40 0, and 50 0 users, respectively), and 200 users as testing users. For

each target user, we vary the number of items rated by a target user from 5, 10 and 20 (Given 5, Given 10 and Given 20,

respectively), where the rated items are randomly selected. By default, the testing items are selected from Long-tail Items . 

5.2. Metrics 

There are several accuracy metrics to evaluate top- N recommendation. A difficulty for evaluating top- N recommendation

is that the number of observed ratings is usually small and missing ratings are simply ignored [6] . In addition, because

ratings are not at random [22,23,34] , top- N results can affect item popularity [5,35] and rating positivity [27] . To alleviate

the problem, we adopt various metrics to complement their drawbacks. For each metric, we report the average of all users

who have rated items in Te . 

First, we employ traditional accuracy metrics such as precision and recall used in the IR community. Let N u denote a

sorted list of N items as the result of top- N recommendation. The precision and recall at N are computed by: 

P @ N = 

| T e + u ∩ N u | 
N 

(18)

R @ N = 

| T e + u ∩ N u | 
| T e + u | (19)

where | T e + u | is the number of relevant observed items for user u . The two metrics consider the relevance of the top- N items,

but neglect their ranked positions in N u . 

Second, we employ normalized discounted cumulative gain ( NDCG ). The ranked position of items in N u highly affects NDCG.

Let y k represent a binary variable for the k th item i k in N u , i.e. , y k ∈ {0, 1}. If i k ∈ T e + u , y k is set as 1. Otherwise, y k is set as

0. In this case, NDCG@ N is computed by: 

NDCG @ N = 

DCG @ N 

IDCG @ N 

(20)

In addition, DCG@ N is computed by: 

DCG @ N = 

N ∑ 

k =1 

2 

y k − 1 

log 2 (k + 1) 
(21)

IDCG@ N means an ideal DCG at N , i.e. , for every item i k in N u , y k is set as 1. Note that, because large values of N are

useless for top- N recommendation, N is set to {5, 10, 15, 20, 25} for the three metrics. 

Lastly, we employ an alternative measure that reflects all positions of items in L u , area under the recall curve , also known

as ATOP [34] . Because ATOP is calculated by the average rank of all relevant items in Te u , it is more effective for capturing

the overall distribution for the rankings of relevant items. Let rank( i k ) denote the ranking score of item i k in L u . If i k is ranked

highest, rank( i k ) has the largest ranking score, i.e. , rank (i k ) = | L u | . Meanwhile, if i k is ranked lowest, rank( i k ) has the smallest

ranking score, i.e. , rank (i k ) = 1 . In that case, rank( i k ) is normalized by Nrank( i k ) = ( rank (i k ) − 1) / (| L u | − 1) . Formally, ATOP

is computed by: 

ATOP = 

1 

| T e + u | 
∑ 

i k ∈ Te + u 

Nrank (i k ) (22)



298 J. Lee et al. / Information Sciences 348 (2016) 290–304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that all four metrics are maximized by 1.0, i.e. , the higher they are, the more accurate top- N recommendation is. 

6. Experiments 

In this section, we first explain state-of-the-art collaborative filtering algorithms to compare our proposed algorithm

( Section 6.1 ). We then report our experimental results ( Section 6.2 ). 

6.1. Competing algorithms 

As the baseline method, we first compare the existing decoupled model [14] , called Decoupled . Because it has focused

on predicting the ratings of items, it is unsuitable for recommending top- N items. However, it is effective for evaluating

the key differences between Decoupled and our proposed algorithms using the preference model. We also compare a

non-personalized algorithm using item popularity , which is served as another baseline method. Specifically, it sorts items

by the descending order of popularity, ( i.e. , the number of ratings) and suggests most popular N items regardless of user

ratings, called ItemPopularity . Despite its simple design, it shows even higher accuracy than existing CF algorithms for

rating predictions ( i.e. , UserKNN , ItemKNN , SVD , and SVD ++ ) in All Items (as shown in Table 5 ) [5] . This is because it

can directly capture the popularity bias of items. 

We then discuss detailed implementations of the CF algorithms using our preference model and existing CF algorithms.

Note that our implementations are based on MyMediaLite [9] , which is a well-known open-source code for evaluating RS.

The key advantage of our proposed method is that existing CF algorithms can be easily extended by incorporating our

preference model. We apply our preference model to both neighborhood models and latent factor models. 

The neighborhood models can be categorized into two approaches: user-based and item-based algorithms. Broadly, the

neighborhood models consist of three key components: (1) rating normalization, (2) similarity weight computation, and (3)

neighborhood selection. First, the biased rating scheme [16] is used for rating normalization. Next, in order to quantify the

similarity weight, binary cosine similarity is used for both user-based and item-based algorithms. Lastly, k -nearest-neighbor

filtering is used for neighbor selection in U ( u ; i ) and I ( i ; u ). That is, the neighbors with negative weights are filtered out,
Table 5 

Evaluation for the accuracy of top- N recommendation (MovieLens 100K). 

Algorithms All Items 

ATOP P@25 R@25 NDCG@25 

Decoupled 0.831 0.022 0.151 0.087 

ItemPopularity 0.890 0.054 0.280 0.174 

UserKNN 0.791 0.006 0.030 0.011 

NonnormalizedUserKNN 0.786 0.060 0.280 0.191 

PrefUserKNN 0.927 (18%) 0.081 (35%) 0.440 (57%) 0.297 (56%) 

ItemKNN 0.812 0.042 0.184 0.106 

NonnormalizedItemKNN 0.749 0.046 0.205 0.137 

PrefItemKNN 0.925 (24%) 0.077 (67%) 0.411 (101%) 0.272 (98%) 

SVD 0.752 0.037 0.166 0.102 

SVD ++ 0.803 0.046 0.215 0.124 

PureSVD 0.888 0.078 0.425 0.272 

PrefPureSVD 0.930 (5%) 0.097 (24%) 0.500 (18%) 0.339 (25%) 

WRMF 0.942 0.092 0.490 0.320 

BPRSLIM 0.915 0.066 0.383 0.238 

BPRMF 0.942 0.083 0.449 0.282 

Long-tail Items 

ATOP P@25 R@25 NDCG@25 

Decoupled 0.785 0.007 0.066 0.033 

ItemPopularity 0.855 0.022 0.145 0.069 

UserKNN 0.752 0.002 0.014 0.004 

NonnormalizedUserKNN 0.761 0.031 0.203 0.113 

PrefUserKNN 0.904 (19%) 0.044 (42%) 0.334 (65%) 0.188(66%) 

ItemKNN 0.774 0.025 0.158 0.081 

NonnormalizedItemKNN 0.760 0.031 0.201 0.120 

PrefItemKNN 0.900 (18%) 0.041 (32%) 0.309 (54%) 0.175(46%) 

SVD 0.727 0.022 0.142 0.074 

SVD ++ 0.750 0.026 0.169 0.087 

PureSVD 0.879 0.053 0.394 0.226 

PrefPureSVD 0.908 (3%) 0.059 (11%) 0.424 (8%) 0.245 (8%) 

WRMF 0.924 0.057 0.418 0.243 

BPRSLIM 0.889 0.039 0.312 0.166 

BPRMF 0.924 0.050 0.368 0.193 
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Fig. 3. Comparison results of item-based algorithms in All Items over varying N (MovieLens 1M). 

Fig. 4. Comparison results of SVD-based algorithms in All Items over varying N (MovieLens 1M). 

Fig. 5. Comparison results of item-based algorithms in Long-tail Items over varying N (MovieLens 1M). 

 

 

 

 

 

 

and the highest similarity weights are chosen as k neighbors. Empirically, we set k = 80 for both user-based and item-based

algorithms. 

We compare the following user-based neighborhood algorithms: 

• UserKNN : user-based neighborhood algorithm [10] using Eq. (1) 

• NonnormalizedUserKNN : user-based neighborhood algorithm with non-normalized ratings [5] using Eq. (3) 

• PrefUserKNN : our proposed user-based neighborhood algorithm that incorporates the preference model using Eq. (10) 

Similarly, we compare the following item-based neighborhood algorithms: 

• ItemKNN : item-based neighborhood algorithm [31] using Eq. (2) 

• NonnormalizedItemKNN : item-based neighborhood algorithm with non-normalized ratings [5] using Eq. (4) 

• PrefItemKNN : our proposed item-based neighborhood algorithm that incorporates the preference model using Eq. (11) 

We also explain how to implement latent-factor-based algorithms. Although there are various latent factor models, we

focus on evaluating SVD-based algorithms and their variations [8] . The number of latent factors f is fixed as 50. In case

of SVD and SVD ++ , we set a regularized parameter λ = 0.015. Specifically, we compare the following latent-factor-based

algorithms: 

• SVD : typical SVD-based algorithm [30] with regularization for the incomplete matrix using Eq. (6) 

• SVD ++ : state-of-the-art SVD-based algorithm [16] that shows the highest accuracy in terms of prediction errors, i.e. ,

root mean squired error (RMSE) 

• PureSVD : SVD-based algorithm [5] for the complete matrix by filling missing ratings as zero using Eq. (7) 

• PrefPureSVD : our proposed SVD-based algorithm that incorporates the preference model using Eq. (12) 

Lastly, we compare our proposed algorithms with other latent-factor-based algorithms with implicit datasets. The ratings

used in the algorithms are thus represented by binary data. 
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Fig. 6. Comparison results of SVD-based algorithms in Long-tail Items over varying N (MovieLens 1M). 

Table 6 

Evaluation for the accuracy of top- N recommendation (MovieLens 1M). 

Algorithms All Items 

ATOP P@25 R@25 NDCG@25 

Decoupled 0.836 0.052 0.092 0.080 

ItemPopularity 0.898 0.111 0.210 0.193 

UserKNN 0.839 0.030 0.058 0.033 

NonnormalizedUserKNN 0.802 0.099 0.187 0.180 

PrefUserKNN 0.929 (16%) 0.139 (40%) 0.287 (54%) 0.269 (50%) 

ItemKNN 0.845 0.068 0.125 0.108 

NonnormalizedItemKNN 0.756 0.086 0.160 0.152 

PrefItemKNN 0.919 (22%) 0.136 (58%) 0.267 (67%) 0.245 (61%) 

SVD 0.818 0.064 0.113 0.103 

SVD ++ 0.842 0.080 0.151 0.140 

PureSVD 0.869 0.162 0.316 0.296 

PrefPureSVD 0.931 (7%) 0.184 (14%) 0.362 (15%) 0.338 (14%) 

WRMF 0.940 0.201 0.319 0.324 

BPRSLIM 0.909 0.136 0.229 0.224 

BPRMF 0.937 0.185 0.288 0.296 

Long-tail Items 

ATOP P@25 R@25 NDCG@25 

Decoupled 0.798 0.021 0.052 0.037 

ItemPopularity 0.867 0.043 0.105 0.072 

UserKNN 0.800 0.009 0.019 0.011 

NonnormalizedUserKNN 0.761 0.052 0.122 0.098 

PrefUserKNN 0.912 (20%) 0.079 (52%) 0.200 (64%) 0.165 (68%) 

ItemKNN 0.813 0.041 0.092 0.071 

NonnormalizedItemKNN 0.767 0.065 0.147 0.131 

PrefItemKNN 0.900 (17%) 0.077 (19%) 0.189 (29%) 0.155(18%) 

SVD 0.790 0.039 0.093 0.070 

SVD ++ 0.796 0.043 0.100 0.076 

PureSVD 0.899 0.126 0.318 0.275 

PrefPureSVD 0.929 (3%) 0.135 (7%) 0.349 (10%) 0.299 (9%) 

WRMF 0.929 0.134 0.251 0.230 

BPRSLIM 0.889 0.089 0.181 0.157 

BPRMF 0.923 0.117 0.219 0.197 

 

 

 

 

 

• WRMF : one class collaborative filtering [25,26] , where missing ratings are used as negative feedback with uniform

weights 

• BPRSLIM : sparse linear method [24] that leverages the objective function as Bayesian personalized ranking [28] 

• BPRMF : matrix factorization using stochastic gradient method where the objective function is Bayesian personalized

ranking for pair-wise preferences between observed and unobserved items in implicit datasets [28] 

All experiments were conducted in Windows 7 running on Intel Core 2.67 GHz CPU with 8GB RAM. All algorithms were

implemented with MyMediaLite [9] . For simplicity, the other parameters for each algorithm are set as default values pro-

vided in MyMediaLite. 

6.2. Experimental results 

We evaluate our proposed algorithms in extensive experimental settings. Specifically, our empirical study is performed

in order to answer the following questions: 
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Table 7 

ATOP comparison for cold-start user evaluation (MovieLens 100K). 

Algorithms # of training users = 300 

Given 5 Given 10 Given 20 

Decoupled 0.755 0.761 0.765 

ItemPopularity 0.826 0.834 0.846 

UserKNN 0.714 0.717 0.728 

NonnormalizedUserKNN 0.734 0.738 0.745 

PrefUserKNN 0.872 (19%) 0.879 (19%) 0.888 (19%) 

SVD 0.61 0.645 0.684 

SVD ++ 0.721 0.725 0.73 

PureSVD 0.723 0.772 0.792 

PrefPureSVD 0.854 (18%) 0.878 (14%) 0.890 (12%) 

WRMF 0.810 0.847 0.863 

BPRSLIM 0.705 0.766 0.807 

BPRMF 0.814 0.831 0.847 

# of training users = 400 

Given 5 Given 10 Given 20 

Decoupled 0.760 0.759 0.770 

ItemPopularity 0.831 0.837 0.850 

UserKNN 0.722 0.725 0.736 

NonnormalizedUserKNN 0.744 0.745 0.756 

PrefUserKNN 0.877 (18%) 0.882 (18%) 0.891 (18%) 

SVD 0.59 0.605 0.64 

SVD ++ 0.7 0.697 0.7 

PureSVD 0.74 0.782 0.817 

PrefPureSVD 0.863 (17%) 0.884 (13%) 0.902 (10%) 

WRMF 0.822 0.835 0.881 

BPRSLIM 0.722 0.777 0.826 

BPRMF 0.831 0.844 0.857 

# of training users = 500 

Given 5 Given 10 Given 20 

Decoupled 0.769 0.767 0.781 

ItemPopularity 0.834 0.838 0.852 

UserKNN 0.736 0.738 0.749 

NonnormalizedUserKNN 0.750 0.754 0.765 

PrefUserKNN 0.880 (17%) 0.885 (17%) 0.895 (17%) 

SVD 0.572 0.617 0.634 

SVD ++ 0.727 0.724 0.734 

PureSVD 0.734 0.782 0.822 

PrefPureSVD 0.872 (19%) 0.893 (14%) 0.914 (11%) 

WRMF 0.808 0.841 0.878 

BPRSLIM 0.722 0.784 0.832 

BPRMF 0.842 0.857 0.879 

 

 

 

 

 

 

 

 

 

 

 

1. Do our proposed algorithms using the preference model outperform existing algorithms in both of All Items and Long-tail

Items ? 

2. Do our proposed algorithms also outperform the existing algorithms in the cold-start user setting? 

3. Which one of our proposed algorithms show the highest accuracy in extensive experimental settings? 

4. Do our proposed algorithms show a consistent improvement for the four metrics? 

6.2.1. Evaluation for All Items 

Fig. 3 reports the accuracy of item-based neighborhood algorithms over All Items . For all algorithms, P@ N decreases with

N , R@ N increases with N , and NDCG@ N tends to stay constant with N . (For simplicity, we later report the experimental

results for Decoupled that shows the worst accuracy.) We found three key observations. First, for the three metrics, Pre-

fItemKNN shows the highest accuracy regardless of N . Specifically, PrefItemKNN improves NonnormalizedItemKNN by

0.093 ( i.e. , 61%) in terms of NDCG@25. Second, NonnormalizedItemKNN shows higher accuracy than ItemKNN as ob-

served in existing work [5] . Third, because of popularity bias of items, ItemPopularity outperforms item-based algorithms

for the three metrics. (In the setting of Long-tail Items , however, we found an opposite result.) We omit to report the results

for user-based algorithms because they show a similar tendency with item-based algorithms. 

Fig. 4 reports the accuracy of SVD-based algorithms over All Items . It is clear that PrefPureSVD outperforms all existing

SVD-based algorithms. For NDCG@25, PrefPureSVD improves PureSVD by 0.042 ( i.e. , 14%). In addition, ItemPopularity

shows higher accuracy than SVD and SVD ++ for the three metrics. Unlike the item-based algorithms, the normalized

variant PureSVD of SVD shows higher accuracy than ItemPopularity . 
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Table 8 

NDCG@25 comparison for cold-start user evaluation (MovieLens 100K). 

Algorithms # of training users = 300 

Given 5 Given 10 Given 20 

Decoupled 0.042 0.041 0.032 

ItemPopularity 0.061 0.061 0.066 

UserKNN 0.004 0.003 0.002 

NonnormalizedUserKNN 0.08 0.091 0.086 

PrefUserKNN 0.142 (78%) 0.149 (64%) 0.149 (73%) 

SVD 0.045 0.053 0.065 

SVD ++ 0.073 0.076 0.069 

PureSVD 0.079 0.114 0.145 

PrefPureSVD 0.142 (80%) 0.151 (33%) 0.168 (16%) 

WRMF 0.133 0.147 0.171 

BPRSLIM 0.065 0.099 0.109 

BPRMF 0.090 0.102 0.114 

# of training users = 400 

Given 5 Given 10 Given 20 

Decoupled 0.032 0.032 0.030 

ItemPopularity 0.066 0.069 0.074 

UserKNN 0.003 0.003 0.002 

NonnormalizedUserKNN 0.094 0.099 0.100 

PrefUserKNN 0.155 (65%) 0.159 (61%) 0.153 (53%) 

SVD 0.033 0.040 0.050 

SVD ++ 0.070 0.068 0.070 

PureSVD 0.083 0.114 0.157 

PrefPureSVD 0.143 (72%) 0.153 (34%) 0.167 (6%) 

WRMF 0.136 0.160 0.178 

BPRSLIM 0.074 0.106 0.125 

BPRMF 0.089 0.105 0.123 

# of training users = 500 

Given 5 Given 10 Given 20 

Decoupled 0.028 0.028 0.023 

ItemPopularity 0.068 0.062 0.070 

UserKNN 0.004 0.004 0.004 

NonnormalizedUserKNN 0.094 0.097 0.102 

PrefUserKNN 0.152 (62%) 0.154 (59%) 0.160 (57%) 

SVD 0.029 0.036 0.043 

SVD ++ 0.082 0.080 0.080 

PureSVD 0.078 0.109 0.148 

PrefPureSVD 0.140 (80%) 0.148 (36%) 0.173 (17%) 

WRMF 0.130 0.151 0.174 

BPRSLIM 0.067 0.095 0.125 

BPRMF 0.097 0.100 0.124 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2. Evaluation for Long-tail Items 

Fig. 5 depicts the accuracy comparison of item-based algorithms over Long-tail Items . In particular, there are two key

observations. First, PrefItemKNN still shows the highest accuracy among all item-based algorithms for the three metrics.

PrefItemKNN apparently outperforms NonnormalizedItemKNN by 0.024 ( i.e. , 18%) for NDCG@25. Second, Nonnormal- 

izedUserKNN outperforms ItemPopularity for the three metrics, unlike the results in All Items . 

Fig. 6 depicts the accuracy of SVD-based algorithms. It is apparent that PrefPureSVD outperforms all existing SVD-based

algorithms for the three metrics. Similar to All Items , PureSVD is higher than SVD and SVD ++ in accuracy. Meanwhile,

ItemPopularity and SVD ++ are comparable in Long-tail Items . 

In summary, Tables 5 and 6 report comparison results for all algorithms (including Decoupled , WRMF , BPRSLIM , and

BPRMF ) in MovieLens 100K and MovieLens 1M, respectively. Note that, in both tables, gray color rows indicate our proposed

algorithms and bold font signifies the highest accuracy compared to previous baseline algorithms. Besides, the percent in

parentheses is a relative improvement ratio of our proposed algorithms using the preference model, compared to the base CF

algorithms: NonnormalizedUserKNN , NonnormalizedItemKNN , and PureSVD . For all metrics, our proposed algorithms

outperform the existing algorithms in both settings. In both datasets, our proposed algorithms consistently outperform all

existing algorithms. Compared to PrefUserKNN and PrefItemKNN , PrefPureSVD shows the highest accuracy. In addition,

PrefPureSVD shows comparable and better accuracy than other latent-factor-based methods using ranking models. In par-

ticular, PrefPureSVD always outperforms the existing algorithms in terms of recall@25 and NDCG@25. 
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6.2.3. Evaluation for cold-start users 

Tables 7 and 8 describe comparison results for user-based and SVD-based algorithms for ATOP and NDCG@25. Note that,

since the data setting is based on cold-start users, item-based algorithms cannot be applied. (In case of cold-start items, it

is found that the item-based algorithms show similar results with user-based algorithms.) As the number of training users

and the number of items rated for testing increases, ATOP and NDCG@25 increase. Regardless of parameter settings, our

proposed algorithms PrefUserKNN and PrefPureSVD outperform all existing algorithms. PrefUserKNN and PrefPureSVD

show comparable results in both metrics. When the number of training users and the number of given ratings is small, Pre-

fUserKNN is slightly better than PrefPureSVD . Meanwhile, as the parameter values increase, PrefPureSVD shows higher

accuracy than PrefUserKNN . (Because our proposed algorithms show consistently the highest accuracy, we skip the results

for other metrics.) Similar to All Items and Long-tail Items settings, PrefPureSVD always outperforms existing latent-factor-

based algorithms in terms of the ATOP, and it shows a comparable accuracy in terms of the NDCG@25. 

7. Conclusion 

In this paper, we have studied how to improve the accuracy of top- N recommendation. To address this problem, two

key challenges arise: (1) how to distinguish user experience between observed and missing ratings and (2) how to infer

latent user preference for observed ratings. We first designed a preference model based on the qualitative order of items.

We then proposed a family of CF algorithms that combine the preference model with existing CF algorithms: user-based

neighborhood, item-based neighborhood, and matrix-factorization-based algorithms. The empirical study showed that our

proposed algorithms improved the existing algorithms by 3–24%, 7–67%, 8–101%, and 6–98% for ATOP, P@25, R@25, and

NDCG@25, respectively. 

In future work, we plan to consider two directions to further improve the accuracy of our proposed algorithms. First,

we considered all missing ratings as negative feedback. Inspired by one class collaborative filtering [25,26] , we plan to

distinguish the weight of missing ratings based on the confidence of negative feedback. We hope that such a fine-grained

distinction scheme for negative feedback can contribute to the improvement of accuracy. Second, we plan to combine our

proposed preference model with a pair-wise ranking model of items in Bayesian personalized ranking [28] . We expect that

such an idea can represent relative preferences more effectively. 
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