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Abstract

Background: Translation of nucleotides into a numeric form has been approached in many ways and has allowed
researchers to investigate the properties of protein-coding sequences and noncoding sequences. Typically, more
pronounced long-range correlations and increased regularity were found in intron-containing genes and in
non-transcribed regulatory DNA sequences, compared to cDNA sequences or intron-less genes. The regularity is
assessed by spectral tools defined on numerical translates. In most popular approaches of numerical translation the
resulting spectra depend on the assignment of numerical values to nucleotides. Our contribution is to propose and
illustrate a spectra which remains invariant to the translation rules used in traditional approaches.

Results: We outline a methodology for representing sequences of DNA nucleotides as numeric matrices in order to
analytically investigate important structural characteristics of DNA. This representation allows us to compute the
2-dimensional wavelet transformation and assess regularity characteristics of the sequence via the slope of the
wavelet spectra. In addition to computing a global slope measure for a sequence, we can apply our methodology for
overlapping sections of nucleotides to obtain an “evolutionary slope.” To illustrate our methodology, we analyzed 376
gene sequences from the first chromosome of the honeybee.

Conclusion: For the genes analyzed, we find that introns are significantly more regular (lead to more negative
spectral slopes) than exons, which agrees with the results from the literature where regularity is measured on “DNA
walks”. However, unlike DNA walks where the nucleotides are assigned numerical values depending on nucleotide
characteristics (purine-pyrimidine, weak-strong hydrogen bonds, keto-amino, etc.) or other spatial assignments, the
proposed spectral tool is invariant to the assignment of nucleotides. Thus, ambiguity in numerical translation of
nucleotides is eliminated.

Reviewers: This article was reviewed by Dr. Vladimir Kuznetsov, Professor Marek Kimmel and Dr. Natsuhiro Ichinose
(nominated by Professor Masanori Arita).
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Background
Structures of eukaryotic genomes
A genome is a complete set of genetic material for an
organism. Except for RNA viruses, genomes are made of
DNA (consisting of A, C, G, and T nucleotides). While
the genomes of prokaryotes are gene-rich with a few
noncoding regions, eukaryotic genomes contain longer
intergenic sequences. In fact, only a small fraction (< 2%)
of the eukaryotic genomes are comprised of genes, but
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the majority of those genes code for proteins [1]. In gen-
eral, protein synthesis requires two steps: transcription
and translation. In eukaryotes, a pre-mRNA is synthe-
sized from a DNA template during the transcription
process. Later, the pre-mRNAs undergo extensive modi-
fications, including the splicing out of noncoding regions
(introns) and the joining of coding regions (exons) to pro-
duce mature mRNAs. In the translation step, the mature
mRNAs are translated into proteins.
As introns do not appear in the mature mRNA, they

were originally thought to carry unimportant sequences
[2]. However, introns are now known to have biological
functions [3]. They harbor a variety of regulatory elements
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such as untranslated RNAs and splicing control elements,
which regulate the mRNA processing and allow alterna-
tive splicing, a mechanism leading to greater variability of
gene products (proteins). In addition to sequence motifs
of introns that are driven by their roles during tran-
scription, introns also carry features that associate with
exon structure. Zhu and coworkers analyzed the variabil-
ity of intron-exon architecture across many genomes and
detected that some intron properties such as length, ordi-
nal position, and GC content are correlated with the exon
structure. One notable correlation was observed between
the GC content of an intron and its flanking exons [4].
Local irregularities along a DNA strand, compared to

surrounding regions, have been associated with biologi-
cal functionality (i.e. coding for proteins and functional
RNAs). Haimovich [5] suggested that if pattern irregu-
larities are observed in introns, it may indicate biologi-
cal significance of specific intron regions. In addition to
presence/absence of biological functionality, variation of
long-range correlation levels of different genomic regions
has been used in the study of origin of genes and introns
[6] and the effects of mutation accumulations or various
evolutionary genomic events (replication slippage, recom-
bination, translocation, and transposition) on sequence
regularity [7].

Previous work on translating DNA nucleotides to
numerical sequences
Translating DNA into a numeric form has been
approached in many ways and has allowed researchers
to investigate the properties of protein-coding sequences
and noncoding sequences. Peng et al. [8] first mapped
nucleotide sequences onto a “DNA walk” in which the
walker moves along the DNA sequence, stepping up
(u(i) = +1) if a pyrimidine occurs and stepping down
(u(i) = −1) if a purine occurs. They characterize the
fractal landscape of DNA quantitatively using the mean
fluctuation function F(l), defined by

F2(l) =
[
�y(l) − �y(l)

]2
, (1)

where y(l) for a given l, defined to be y(l) = ∑l
i=1 u(i),

is a trajectory of the DNA walk and �y(l) = y(l0 + l) −
y(l0), where l0 is a given position in over all positions
in the gene. In (1), the overline stands for the average.
Segments of DNA which are uncorrelated or only short-
range correlated have F(l) ∼ l1/2, while segments with
long-range correlation have F(l) ∼ lα (α �= 1/2). For
the sequences studied, Peng et al. found long-range cor-
relations (regularity) in intron-containing genes and in
non-transcribed regulatory DNA sequences, but not in
cDNA sequences or intron-less genes. A similar large scale
study has also shown the presence of long-range correla-
tions for noncoding sequences [9]. More recently, a group

of researchers attempted to quantify the degree of non-
stationarity of DNA sequences through rescaled range
analysis [10]. They used the rescaled range of a segment to
estimate its Hurst exponent, a measure of self-similarity.
Their methodology illustrated, in agreement with ear-
lier results, that exons (coding regions) have lower Hurst
exponents than introns (noncoding regions).
Numeric conversion methodologies other than the

DNA walk have also been proposed. Stoffer et al.
[11] approached the problem of scaling in nucleotide
sequences by using so-called “spectral envelopes”. The
idea behind this methodology is to find numerical scal-
ing values to assign to each category of nucleotide which
will maximize the variance of the resulting stationary time
series’ spectral density across frequencies relative to the
total variance. Anothermore simplistic approach is to rep-
resent DNAwith four separate binary indicator sequences
corresponding to the four nucleotide bases [12–14]. Often
binary indicator sequences are grouped according to their
chemical structures for statistical analysis [15–17].
One interesting numericmapping solution uses the con-

cept of symbolic autocorrelation [18]. Given the sequence
of nucleotide symbols xi, its symbolic autocorrelation is
the numeric sequence rk

rk =
n−1∑
i=0

d
(
xi, xi+k

)
,

where for any two symbols a and b,

d(a, b) =
{
1, if a = b
0, if a �= b

Then the discrete Fourier transform of this autocorrela-
tion is the spectrum of the symbolic data.
Our approach in this paper is to translate sequences of

DNA into numeric matrices to be analyzed via wavelet
analysis. We define the cumulative evolutionary slope of
a sequence and show how it can be used to assess the
scaling in nucleotide sequences. An advantage of the
proposed method is its invariance with respect to assign-
ment of nucleotides to their numerical values. Unlike the
DNA walks where the nucleotides are assigned numerical
values depending on nucleotide characteristics (purine-
pyrimidine, weak-strong hydrogen bonds, keto-amino,
etc.) or other spatial assignments, the proposed scaling
measure is invariant to the assignment of nucleotides.
Thus, ambiguity in numerical translation of nucleotides is
eliminated.

Methods
From ACGT to numbers
About wavelet transforms and regularitymeasures
In this section we briefly and informally discuss wavelet
transforms and terminology necessary for understanding
the introduced methodology.
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Wavelet transforms of signals/images are atomic repre-
sentations in terms of orthogonal basis functions, similar
to Fourier transforms. Orthogonal basis functions are
formed by integer shifts and dilations of two fixed func-
tions: a wavelet function and a scaling function. Thus,
each basis function in the wavelet representation car-
ries information about location and scale features of the
signal/image. As such, the wavelet transforms are often
dubbed time/scale decompositions.
Operationally, wavelet transforms are implemented by

fast filtering according to Mallat’s algorithm. Each wavelet
can be connected with a pair of filters: smoothing and
differencing, and wavelet transforming of a signal/image
amounts to repetitive filtering. The pair of wavelet fil-
ters are called quadrature mirror filters. More infor-
mation on wavelet constructions, decompositions and
connections with filtering can be found in an excellent
monograph [19].
Since the wavelet transforms are linear and orthogo-

nal, they also can be represented by sparse orthogonal
matrices consisting of elements of quadrature mirror fil-
ters. Matrix representations of wavelet transforms are
convenient for relatively short signals; the transform is
conducted by multiplying the input with a wavelet matrix.
More about forming wavelet matrices from the filter ele-
ments is described in [20].
As we indicated, wavelet transforms lead to coefficients

(numerical values) representing the nature of a given sig-
nal at different locations/resolutions. These coefficients
may be used to form the wavelet-based spectra of the sig-
nal, showing the relationship between the resolution of
the signal and the averagedmagnitudes of the coefficients.
By assessing the wavelet-based spectra, we may better
understand the mathematical characteristics of the over-
all signal. If the energies (an engineering term for squared
coefficients in the wavelet decomposition) decay regularly,
this signifies scaling in the data, meaning all resolutions
contribute to the overall observed phenomenon. In this
case, a measure of regularity can be calculated as the rate
of energy decay. More precisely, if the logarithms of aver-
age energies in different scales decay linearly with the
scale index, then the slope of this decay is describing the
regularity of the original signal/object. Thus the spectral
slope of the wavelet-based spectra can precisely measure
the degree of a signal’s regularity.
For details about the wavelet-based spectra and its appli-

cation to assessing regularity of signals/images we direct
the reader to [19, 21].

Translating tomatrices via assignment of unit vectors
Suppose that a nucleotide sequence of length N is
encoded to the index matrix 4×N such that A is coded as
e1 = (1, 0, 0, 0)′,C as e2 = (0, 1, 0, 0)′,G as e3 = (0, 0, 1, 0)′

and T as e4 = (0, 0, 0, 1)′. Denote this matrix with Y. For
example,

GATCTCT . . . −→ Y =

⎡
⎢⎢⎣
0 1 0 0 0 0 0
0 0 0 1 0 1 0 . . .

1 0 0 0 0 0 0
0 0 1 0 1 0 1

⎤
⎥⎥⎦ .

Assume also that N is a power of 2 for implemen-
tational purposes. Define Y ∗ as the matrix formed by
accumulating across the rows of Y. Continuing the above
example,

Y ∗ =

⎡
⎢⎢⎣
0 1 1 1 1 1 1
0 0 0 1 1 2 2 . . .

1 1 1 1 1 1 1
0 0 1 1 2 2 3

⎤
⎥⎥⎦ .

If W4 is a 4 × 4 matrix corresponding to Haar wavelet
transform of depth 2, then

W4 =

⎡
⎢⎢⎣

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2√
2/2 −√

2/2 0 0
0 0

√
2/2 −√

2/2

⎤
⎥⎥⎦ .

DefineD = W4×Y ∗ to be amatrix in which the columns
of Y ∗ are Haar transformed. In D the accumulated unit
vectors are replaced by Haar orthogonal vectors that are
columns of W4. This transforms the sparse Y to a more
dense representation, D. For example,

GATC . . . −→ Y ∗ −→ D =

⎡
⎢⎢⎢⎣

1/2 1 3/2 2 . . .

−1/2 0 −1/2 0 . . .

0
√
2/2

√
2/2 0 . . .√

2/2
√
2/2

√
2

√
2 . . .

⎤
⎥⎥⎥⎦ .

Transform the rows of D using wavelet transform that
has the depth ≥ 2 to obtain matrix Z of size 4 × N . In
matrix notation,

Z = W4 × Y ∗ × W ′
N ,

where WN is an N by N matrix. Now Z is the 2-D scale-
mixing wavelet transform of Y ∗, see Ramirez et al. [22].
The wavelet basis generating matrix WN can be arbi-

trary, but the Haar is most natural since the rows of D
are piecewise constant. Also, when N is large (say, > 211)
the transformation by WN is done by Mallat’s algorithm
instead of direct matrix multiplication.
A submatrix ofZ,Z2 = Z(3 :4,N/2+1 : N) corresponds

to the finest details of scale-mixing 2-D wavelet transform
while Z1 = Z(2,N/4+1 : N/2) is the next coarser detail
level. Since one dimension of Z is 4, there are only 2 levels
of details Z1 and Z2 that form the hierarchy for defining
the log-spectral slope (see Fig. 1 (top)).
Unlike the traditional wavelet log-spectra that is based

on log average energies at several levels, usually ≥ 4
depending on size of data, here we have only two spectral
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Fig. 1 Log-spectral slope hierarchies. Illustration of submatrices Z1
and Z2, the levels of details forming the hierarchy for defining the
log-spectral slope, in the original (top) and invariant (bottom)
procedures

points – generated by Z1 and Z2, and the slope is esti-
mated from that pair. Log-spectral slope, or simply slope s
is defined as

s = log
(
Z∗2
2

)
− log

(
Z∗2
1

)
,

where A∗2 is the average entry of Hadamard square A ∗ A
for arbitrary matrix A. (Since Hadamard square squares
each entry of matrix, the A∗2 is the mean of the squared
entries of A.) The slope measures the change in energy
between adjacent dyadic levels of the transformed matrix.
If equal to 0, then the energies are comparable, and this
case corresponds to independent random nucleotides. A
negative slope indicates presence of regularity. In the 1-
dimensional case (e.g. time series), high regularity means
having long-term positive autocorrelation. In other words,
a high value in the series will probably be followed by
another high value, and the values a long time into the
future will also tend to be high. This concept of regular-
ity may similarly be extended to the 2-dimensional case.
In contrast, a positive slope indicates an “explosion of

energy” at finer levels of detail, indicating “zig-zagging”
irregularities in the sequence. This simply means that the
average magnitudes of wavelet coefficients are larger at
small scales which translates to high anti-persistence in
signal behavior.

Equivalence classes
Consider a particular DNA subsequence, say ACGT. Let
the sequence be assigned to {e1, e2, e3, e4}, as defined in
the previous section, in this order and the resulting slope
be s. This sequence consists of two pairs of dinucleotides,
AC and GT. The slope is not changed if the nucleotides
within each pair are permuted and if the pairs themselves
are permuted. For example, the same slope is obtained by
assigning ACTG,CAGT,CATG,GTAC,GTCA,TGAC, and
TGCA to {e1, e2, e3, e4}.
Furthermore, the 24 permutations of ACGT lead to

4!
2! 2! 2!

= 24/8 = 3

equivalence classes that result in three different slopes.
Table 1 lists the assignments in these equivalence classes.
We notice that each class represents a nucleotide char-

acteristic. The class of AC and GT corresponds to amino
and keto, that of AG and CT purines and pyrimidines, and
that of AT and CG weak hydrogen bonds and strong ones.

Translation invariant procedure
In order to be an effective measure of regularity, the slope
should not depend on the way in which nucleotides are
assigned to unit vectors. The simplest way to find a rep-
resentative slope is to average the slopes s1, s2 and s3,
where the subscript denotes the equivalence class. An
alternative (and better) way is to assign nucleotides to unit
vectors based on representatives from each of the equiv-
alence classes and stack these unit vectors together. For
example, ACGT, AGCT, and ATCG could each be assigned
to (e1, e2, e3, e4), or equivalently, any other representative
triple from the three columns in Table 1. Ultimately, each
nucleotide is assigned a vector of length 12. For example,

Table 1 Three equivalence classes of assignments of nucleotides
to unit vectors that lead to three different slopes, s1, s2 and s3

s1 s2 s3

ACGT AGCT ATCG

ACTG AGTC ATGC

CAGT GACT TACG

CATG GATC TAGC

GTAC CTAG CGAT

GTCA CTGA CGTA

TGAC TCAG GCAT

TGCA TCGA GCTA
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if ACGT, AGCT, and ATCG are used, C would correspond
to (0 1 0 0 0 0 1 0 0 0 1 0)′.
Following this procedure, Y becomes a 12×N matrix. In

implementations, a matrix Y with 16 rows is used where
the last four rows are arbitrary (say zeros) and serve only
to fulfill the power of 2 requirement for operational use of
wavelets. Since the Haar basis is used, this padding does
not leak to the relevant coordinates. Then Y ∗ is computed
by accumulating across the columns of Y. If Z is produced
using the Haar wavelet, and the slope is estimated, this
slope is invariant with respect to permutation of coding.
In matrix notation,

Z = W16 × Y ∗ × W ′
N .

In this case, the submatrices of Z defining the slope are
Z2 = Z(9 : 14,N/2 + 1 : N) and Z1 = Z(5 : 7,N/4 + 1 :
N/2) (see Fig. 1 (bottom)). This resulting slope is invariant
with respect to the assignment of unit vectors e1 through
e4 to the nucleotides, as long as the assignments from each
of the three equivalence classes are used to formmatrix Y .

Cumulative evolutionary slope
Take a submatrix Y ∗

k of size 16 × k and shift it along the
nucleotide. Transform it to Zk as

Zk = W16 × Y ∗
k × W ′

k ,

and find corresponding slopes. This series of slopes is
the cumulative evolutionary slope for the sequence. We
emphasize that for fixed submatrix this gives a single
slope. The slope dynamically changes as the submatrix
slides along the nucleotide sequence. The term evolution-
ary has no biological content, it indicates that the slope
changes in the process.
If the Haar wavelet basis is used, the shifts should be

with steps divisible by 4. Values of k that are too small lead
to noisy evolutionary slope, while values too large lead to
loss of locality. As an illustration of the calculation of the
cumulative evolutionary slope, Fig. 2 shows three shifts in
a nucleotide sequence generate matrix Zk and associated
slopes.

Application
To illustrate our methodology, we study regularity char-
acteristics of exons and introns from the honeybee’s
first chromosome. The average GC contents for the
sequences analyzed are 32.16% for exons and 24.59% for
introns, and the average exon and intron lengths are 239
nucleotides and 1,791 nucleotides respectively. A compre-
hensive study of the honeybee genome indicates honeybee
genes are much depleted in C and G nucleotides (gene-
averaged GC content of 29%) [23].

Data
The reference DNA sequence from chromosome 1
(linkage group LG1) of the honeybee representative
strain, Apis mellifera Amel_4.5, is used in our analy-
sis. We obtained the sequence from the NCBI Genome
Database (http://www.ncbi.nlm.nih.gov/genome, retrieved
November 7, 2013). The DNA sequence of chromosome 1
(NC_007070.3) contains a total of 29,893,408 base pairs.
The overall GC content is 31.20%.
For each gene, we use the NCBI annotations of cod-

ing sequences (CDSs) to identify exon-intron boundary.
Then, we parse the gene sequences into coding and non-
coding regions. There are 1,669 genes in the honeybee
first chromosome, but only 376 genes contain known
locations of CDSs. Therefore, we limit our analysis to this
subset of genes. DNA has a double helix structure with
a complementary nucleotide sequence on each strand. To
represent the duplex structure as a single strand, we treat
all gene sequences on the reverse strand as if they were
located on the forward strand. Specifically, we correct
the gene direction and represent the gene sequences with
their complementary sequences. This way, every gene can
be read from left to right during the DNA analysis. All
sequence processing tasks were performed with in-house
Perl scripts, and subsequent analysis was performed using
MATLAB [see Additional files 1 and 2].

Results and discussion
Comparing regularity of honeybee and simulated DNA
To assess regularity characteristics of the honeybee DNA,
we first compute global slope measures. Take as an exam-
ple a single gene sequence from the honeybee’s first
chromosome:

DNA = [TCGTGAAGAGGCAAAGGAATCAATAAACGAAGTT

GCGGTGAATAGCGA...

...ATCCACTGGGCCGGATATTTATCACGTCCCTCGTGTC

CACTTTCAAAG]

As the length of this sequence is 877 nucleotides but
computing global slope requires the length to be a power
of 2, we truncate the sequence to include the first 512
nucleotides and calculate the global slope of this short-
ened sequence. We also generate 10,000 random DNA-
like sequences, generated from the multinomial distribu-
tion where the proportions of nucleotides match those
of the original gene sequence (in this case: 33.03% A,
16.28% C, 19.84% G, 30.85% T). These simulated DNA-
like sequences serve as a control for examining overall
regularity characteristics of the actual DNA sequence.
Figure 3 plots the bootstrap distribution of global slopes

from simulated DNA-like sequences as a histogram and
plots the global slope from the honeybee DNA sequence
as a vertical red line. Comparing the actual and simulated

http://www.ncbi.nlm.nih.gov/genome
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Fig. 2 Cumulative evolutionary slope calculation. Overlapping sequences of DNA nucleotides are represented as matrices, the scale-mixing wavelet
transformation is applied to these matrices, log average energies are computed for the shown detail levels, and slopes are calculated
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Fig. 3 Comparing regularity of actual and simulated DNA sequences -
global. Global slope for the honeybee DNA (red line at −1.7825)
sequence and empirical distribution of slopes for 10,000 simulated
random DNA-like sequences of length 29 (ASL = 0.0676)

DNA sequences, the actual DNA sequence’s slope falls
in the left tail of the control distribution. The achieved
significance level (ASL) for this simulation (area in the
bootstrap distribution left of the red bar) is 0.0676. This
result indicates that the honeybee nucleotide sequence is
generally more regular than the randomly generated DNA
based on the bootstrap distribution of the slopes from
DNA-like sequences. We also conduct a permutation test
by taking the DNA sequence and permuting it 20,000
times. For each permutation we find the spectral slope.
The achieved significance rate (empirical p-value) for this
test is 0.0638 [see Additional file 3].
Figure 4 compares the cumulative evolutionary slope of

the honeybee DNA to that of a simulated random DNA-
like sequence. Note that this time, the gene sequence only
has to be truncated so that the length is divisible by the
step size. In each plot, the red horizontal line indicates
the overall mean of the slopes. The average cumulative
evolutionary slope for the honeybee gene is around −1.8,
while the average cumulative evolutionary slope for the
simulated sequence is around −1.6. These plots support
the claim that the actual honeybee DNA is more regular
than the randomly generated DNA.
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Fig. 4 Comparing regularity of actual and simulated DNA sequences - cumulative evolutionary. Honeybee cumulative evolutionary slope for gene
“LOC100577807” (left); Cumulative evolutionary slope for a random DNA-like sequence (right); In both cases window size was 25

Figure 5 shows Z, the 2-D scale mixing wavelet trans-
form of Y ∗, with highlighted detail levels used in the local
slope calculation. As previously stated, rows 8, 15, and
16 are excluded in the slope calculation due to the arbi-
trary rows of zeros added to the original numericmatrix in
order to satisfy the power of 2 requirement for operational
use of wavelets.

Comparing regularity of exons and introns
What happens when we compare sequences of exons and
introns within the honeybee? Considering 376 genes for
which the coding designations are known, we plot the
cumulative evolutionary slope for each gene sequence.
We label sections of the plot as introns, exons, or a

combination of the two. We find it necessary to define
combination regions due to our evolving slope method-
ology. Since we calculate local slopes for overlapping
regions of DNA nucleotides of fixed length, some regions
of nucleotides contain both exons and introns. Without
defining combination regions, the local slopes of exons

5 10 15 20 25 30

2

4

6

8

10

12

14

16

Fig. 5 Detail levels in slope calculation. An illustration of detail levels
of Z used in the slope calculation for window size 32, honeybee DNA

and introns are averaged together, causing ambiguity in
the results.
Figure 6 shows the cumulative evolutionary slope for

one of the genes on the first chromosome. The dotted
red lines show divisions between types of regions (exons,
introns, combination). Solid red lines indicate average
slope values for exons, solid green lines indicate average
slope values for introns, and solid blue lines indicate aver-
age slope values for sequences with a mix of exons and
introns. We choose a window size of 25 with step size 23
to capture characteristics of coding sequences, which are
sometimes only around 50 nucleotides in length.
It is evident from Figs. 6 and 7 that exons are associated

with less negative slopes (more irregular) while introns
are associated with more negative slopes (more regular).
Figure 6 gives an example of results from a shorter gene
on the first chromosome, while Fig. 7 gives two examples
of results from longer genes with long introns (character-
istic of the honeybee genome, as discussed previously) on
the first chromosome. Similar results are obtained for the
other genes on the first chromosome. The average cumu-
lative evolutionary slope across all 376 genes for exons
and introns are −1.7395 and −1.8410, respectively (sam-
ple sizes: 1974, 2296). A two sample t-test reveals this
difference in slopes to be highly significant (t-statistic =
17.4, p-value ≈ 0). Note that some coding, noncoding, or
combination regions were excluded due to infinite slopes.
These infinite slopes are due to zero-valuedmean energies
for the finest detail level (see Fig. 5). In our analysis, 69
genes have at least one section with infinite slope. Inter-
estingly, of those 69 genes containing at least one infinite
slope, 57 have infinite slopes for intron sections only.
To better understand the level of separation between

the slopes of exons and introns, we find kernel density
estimates computed at 100 points covering the range of
the data (Fig. 8). In addition, we compute the slope value
(s∗ = −1.735) to discriminate between exons and introns
which maximizes the Youden Index, defined as

J = sens + spec − 1,
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Fig. 6 Honeybee cumulative evolutionary slope for gene “LOC408625” on the first chromosome. Solid red line: Average slope for a coding sequence
(exons), solid green line: Average slope for a noncoding sequence (introns), solid blue line: Average slope for a sequence with a mixture of coding and
noncoding, dotted red line: Division between type (exons, introns, combination) of region

where sens is the sensitivity and spec is the specificity of
the classification.
Table 2 summarizes the classification results for s∗ =

−1.735. The sensitivity and specificity of this classifica-
tion are 50% and 76.2%, respectively, and the overall
accuracy is 64.1%. The Matthews correlation coefficient
(MCC) is 0.27. Our intention in presenting these classifi-
cation results is not to suggest that this procedure is meant
for classifying sequences of nucleotides as either exons
or introns. Rather, our intention is to present the level of
separation between the cumulative evolutionary slopes of
exons and introns, as amechanism for characterizing their
regularity properties.
Our analysis of 376 genes from the first chromosome

of the honeybee illustrates that introns are significantly
more regular (lead to more negative spectral slopes) than
exons. The biological explanation for this observed long-
range correlation of introns (intron regularity) is not yet
understood. The only known pattern that occurs repeat-
edly in every intron is the presence of splice donor and
acceptor sites near the exon-intron boundary, and the
inclusion of some regulatory elements towards the end
of an intron. Our methodology uses a window size of 32
nucleotides for the cumulative slope calculation. There-
fore, it is unlikely that the presence of splicing and regula-
tory motifs within the introns contributed to the reported
regularity since they are most likely located in different
windows.

As a side note, based on the works [6, 24], the presence
of long-range correlations within the honeybee introns
suggests their modern introns may be almost identical
to the primordial ones and/or introns were subjected
to large evolutionary constraints, thus maintaining their
primitive periodicity. This hypothesis is supported by well
studied organizational and evolutionary characteristics
of the honeybee genome. The honeybee and two other
insects, the fruitfly and the malaria mosquito, share about
one thousand ancient genes (The Honeybee Genome
Sequencing Consortium, 2006). This gene set was used to
identify honeybee’s evolutionary rate from its ancestors.
The study shows that honeybee retains the greatest frac-
tion of ancient genes (∼33%) and ancient introns (∼80%).
It highlights that honeybee’s genes appear to be ancient
and that honeybee evolves more slowly than the fly and
the mosquito [23]. Therefore our observations that the
honeybee’s genes have low GC content and remarkably
long introns with high regularity are in concordance
with the high proportion of ancient genes and ancient
introns.

Conclusions
We have proposed a new method for representing
sequences of DNA nucleotides as numeric matrices in
order to analytically investigate regularity characteris-
tics of DNA. Previous methods, where the nucleotides
are assigned numerical values depending on nucleotide
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Fig. 7 Honeybee cumulative evolutionary slope for genes “ARD1”
(top) and “DAT ” (bottom) on the first chromosome. Solid red line:
Average slope for a coding sequence (exons), solid green line: Average
slope for a noncoding sequence (introns), solid blue line: Average
slope for a sequence with a mixture of coding and noncoding, dotted
red line: Division between type (exons, introns, combination) of region

characteristics (purine-pyrimidine, weak-strong hydrogen
bonds, keto-amino, etc.), lead to different regularity
measures when different assignments are used. Our
proposed method, however, results in a consistent regu-
larity measure through the use of equivalence classes in
forming the assignment procedure. Thus, subjectivity in
numerical translation of nucleotides is eliminated.
We have also defined the cumulative evolutionary slope

as a sequence of log-spectral slopes computed from sub-
matrices of wavelet transformed matrices corresponding
to overlapping sequences of DNA nucleotides. Shorter
overlapping sequences result in noisier cumulative evolu-
tionary slope, while longer overlapping sequences result
in smoother cumulative evolutionary slope.
In order to illustrate our methodology, we have analyzed

376 genes from the first chromosome of the honeybee.

−3 −2.5 −2 −1.5 −1 −0.5
0

0.5

1

1.5

2

2.5

3

Fig. 8 Kernel density estimates. Kernel density estimates for
cumulative evolutionary slopes, shown on the horizontal axis, of
exons (red) and introns (green)

We have found that introns are significantly more regular
(lead to more negative slopes) than exons, which agrees
with the results from the literature where regularity is
measured on “DNAwalks” [8–10]. Due to its objectivity in
numerical translation, we suggest that this methodology
may be extended to study the regularity characteristics of
various DNA sequences in order to elaborate interesting
patterns.

Reviewer reports
Response to referee team 1: Dr. Vladislav Bondarenko and
Dr. Vladimir Kuznetsov

Major comment: The manuscript (at least in some
sections) is written in non-professional biological
language with numerous examples of incorrect usage of
terminology. Basic assumptions are often skipped or
confused and not defined properly. The paper must be
written with respect to the standards and stile
acceptable for publication in the scientific journals. The
actual novelty of this work is not clearly represented.
Overall advantage of implementation of the method for
a discrimination of intron and CDS sequences raises
methodological and biological questions.

The reviewer’s point is well taken. The intended audi-
ence of this paper are data scientists in the field of biology,

Table 2 Classification results for the cut-off slope value,
s∗ = −1.735, which maximizes the Youden Index

Exons Introns Total

Slope > s∗ 987 546 1533

Slope ≤ s∗ 987 1750 2737

Total 1974 2296 4270
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and to this end we formalized our biological content.
The “Background” chapter is completely rewritten and a
paragraph added to “Results and discussion”
The novelty of this work is

1. The discovery of three equivalence classes, each class
represents a nucleotide characteristic.

2. The use of cumulative evolutionary slope of
equivalence classes allows the analysis of sequence
regularity to be independent of nucleotide symbols
or properties.

3. Cumulative evolutionary slopes were identified along
a gene sequence using a sliding window approach.
Average slopes for introns, exons, and the combined
regions were calculated to represent the local
regularity along a gene. Without defining the
combination regions (regions spanning intron and
exon boundaries), the slopes were getting averaged
for portions of exons and introns together and the
results were not as clear.

4. Many researchers regard the term “sequence
regularity” differently. Some examined the
nucleotide sequence landscape in term of “DNA
walk” (Peng, 1992; Buldyrev et al., 1995). Some
looked at the regularity across multiple exons and
introns as the common distance among them (Ieviņa
et al., 2006). In this work, we developed a cumulative
evolutionary slope of equivalence classes to quantify
sequence regularity within genes. In addition, we
looked for regularity within an exon or intron itself.

5. The biological explanation for the observed
long-range correlation of introns (intron regularity)
is not yet understood. The only known pattern that
occurs repeatedly in every intron is the presence of
splice donor and acceptor sites near the exon-intron
boundary, and the inclusion of some regulatory
elements towards the end of an intron. Our
methodology used the window size of 32 nucleotides
for cumulative slope calculation. Therefore, it is
unlikely that the presence of splicing and regulatory
motifs within the introns will contribute to the
reported regularity since they are most likely located
in different windows.

Comments and Questions
1.What is an “overlapping section of nucleotides”?

Please provide a definition for an “evolutionary slope”
and how is it different from the slope of a wavelet
spectra. How these terms are related to biological
evolution and comparative genomics?

The term “evolutionary slope” is common mathemati-
cal jargon for the slope that is calculated from subsequent
sequences of along the genome. It has no connotation
to biological evolution, the “evolutionary” relates to the

moving of a subsequence of fixed length from which the
slope is calculated. To avoid misunderstanding we added
the following explanatory sentence:
The definition of evolutionary slope now reads as

follows

Take a submatrix Y ∗
k of size 16 × k and shift it along

the nucleotide. Transform it to Zk as

Zk = W16 × Y ∗
k × W ′

k ,

and find corresponding slopes. This series of slopes is
the cumulative evolutionary slope for the sequence. We
emphasize that for a fixed submatrix this gives a single
slope. The slope dynamically changes as the submatrix
slides along the nucleotide sequence. The term
evolutionary has no biological content, it indicates that
the slope changes in the process.

2. The abstract should be more understandable. I did
not understand a conclusion of the abstract: “Thus,
subjectivity in numerical translation of nucleotides is
eliminated”.

The term subjectivity was changed to ambiguity. In
traditional ways of assigning numbers to nucleotides,
especially in DNA walks, 1 can be assigned to A,T, and -1
to C,G, or 1 to A,G and -1 to C,T, etc., leading to differ-
ent slopes. Our proposed methods always leads to unique
slope given the existence of three equivalence classes. We
slightly modified the abstract.

3. In the first sentence of a “Background” section,
definition of a DNA molecule is incomplete and wrong.
A phrase “In all eukaryotic species” is improperly used
indicating that a DNA with a double helix structure
consisting of purines and pyrimidines is characteristic to
eukaryotes only, which is definitely a wrong statement.

Thank you for the comment. We addressed the state-
ment in the revised Background.

4. The same is related to a phrase “Protein synthesis of
eukaryotes requires two steps: transcription and
translation . . . ”.

Thank you for the comment. This we also addressed in
the revised Background.

5. After that phrase authors should indicate that
further they describe specifically mRNA processing.
Post-transcriptional processing of different types of
RNAs is also different.

The section focuses on fundamental steps of central
dogma in biology and is not intended to discuss the
process in great details. The section had been revised
accordingly.
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6. “spliced mRNA” is not “a mature mRNA” yet, and
these definitions should not be confused. Generally,
authors should provide references to a competent
scientific literature and other authors contribution to
accompany every questionable statement.

Thank you for the comment. The Background section
has been revised to indicate that intron splicing is part of
the mRNA processing step.

7. Is there the parameters of your method/program
sensitive to a sequence source, its complexity length,
and sequence errors in a dataset?

Our method does not address this issue, but we selected
one of the best complete genomic sequences at the time to
ensure sequence errors are minimal. Also, our models are
not generative, but rather descriptive.

8. Please specify where is and where is not a novelty of
your method.

We outline the novelty of our research in response to
Major Comment above.

9. Please, provide a definition of a “real DNA’. This term
seems not scientifically sound. Is an observed difference
between cumulative evolutionary slope and ones of
random sequences statistically significant?

We agree with the reviewer, and term “real DNA” was
dropped. The intended meaning was in the context of
simulation of a DNA-like sequence based only on the
observed nucleotide frequencies, asmultinomial. Thenwe
contrasted simulated and genuine DNA arrays, to which
we referred as “real”.

10. Constructing the predictive model, the authors
introduced a class of equivalence for the paired
nucleotides. In fact, they proposed a code allowing the
permutations within neighbouring nucleotides and
between neighbouring sequence pairs. They said that
“The slope is not changed if the nucleotides within each
pair are permuted and if the pairs themselves are
permuted”. Is there a biological basis for these
assumptions?

This is very interesting question. As the separation to
equivalence classes and the slope invariance given the
code representation from the class, this invariance is
purely mathematical property.

11. Is your slope measure invariant to different kind of
sequence truncation (at the beginning of a CDS, its end)
or repeated loci)?

The invariance relates only to the proposed coding of
nucleotides. Sequence truncation, repeated loci are likely
to induce change in slope.

12. How different length of truncated regions was
normalized on a Figs. 6 and 7? Is it scalable; if yes,
please explain.

Thanks for this question. The results shown at Figs. 6
and 7 did not require normalization and are scalable. Mul-
tiplying the wavelet coefficients with any scalar would
affect the intercept of the linear fit of “energy” decay, but
not the slope.

13. Please indicate your motivation and selection
criteria for the organism of interest (honeybee). Why
genes located on a chromosome 1 only have been used
for analysis. Why Honeybee and why first chromosome?
Results for other species might be important for
evaluation of the method.

Since our newly developed mathematical approach
aims at quantifying sequence regularity within genes,
we deemed it is necessary to emphasize the application
to gene sequences of one organism at a time to see if
the method is effective. During our preliminary analy-
sis (November 2013), NCBI Genome Database provided
a collection of reference sequences of many prokaryotic
and eukaryotic organisms. We set to study the genome of
eukaryotes as their genes comprise of exons and introns.
Accurate exon-intron boundaries are crucial information
in our work. Therefore, we must exclude any unfin-
ished works or ambiguous sequences. Several filters were
applied to the entire NCBI Genome Database. First, the
sequence list was filtered such that only organisms with
the status “complete” for their genome records were
retained. This yields a list of reference genomes for 204
eukaryotic organisms. Next, we omitted any organisms
that have multiple “representative strains” as gene anno-
tations could be unclear. Then, we collected only genomic
sequences with the accession prefix “NC” to ensure the
sequence is completed, curated, and regarded as the refer-
ence assembly. The genome of Honeybee (Apis mellifera)
was selected for several reasons:

• Honeybee is one of several model organisms. We
expected that it is subjected to extensive studies,
including gene annotations, and the evolution and
characterization of the gene structure.

• Honeybee has one representative strain called “Apis
mellifera Amel_4.5”.

• The reference sequences accession number for
honeybee genome starts with the prefix “NC” which
denotes complete genomic molecule, usually
reference assembly. This provides a higher confident
over partial genomes of many higher eukaryotes.
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• Due to time constraint, we did not analyze all genes
in the honeybee genome. Instead, we focused on high
confident annotated genes located on honeybee
chromosome 1. This chromosome has the largest size
and contains the highest number of genes.

14.What is an exact p-value for observed global slopes
on Fig. 3? Is it significant?

Given the large sample sizes in calculating the spec-
tra, the p values will be highly significant, given the
overpowering. Moreover, the significance of p-values
may not translate to an efficient classification procedure.
Instead we opted classification measures (confusion table)
to describe differences between coding and non-coding
regions.

15. The estimations of specificity, sensitivity, robustness
and reproducibility of the method must be reported.

It was partially reported. On page 10 there is a state-
ment: “Table 2 summarizes the classification results for
s∗ = −1.735. The sensitivity and specificity of this classi-
fication are 50% and 76.2%, respectively, and the overall
accuracy is 64.1%. The Matthews correlation coefficient
(MCC) is 0.27.” Our analysis did not involvemultiple chro-
mosomes to assess the robustness and reproducibility.

16. It is important to demonstrate the advantages and
disadvantages of your method in a comparison with
alternative methods, for instance, the probabilistic
models taking in to account triplet code and a relatively
high evolutionary conservation of SDS sequences.

We stated that alternative methods all agree in the fact
that coding regions translate to more irregular numeri-
cal objects while the non-coding regions exhibit increased
regularity. We are not aware of any methodology that will
be comparable to the proposed on equal terms (multi-
ple codes from equivalence classes, wavelet spectra from
matrices/images).

17.Which programming language has been used?

Our spectral analyses was done in MATLAB. All
sequence processing tasks were performed with in-house
Perl scripts.

18. The programming code and the instruction must be
publicly available to research community according to
open-source management of Biol. Direct journal.

We plan to post MATLAB code and illustrative data
form the 1st chromosome to illustrate the methodology.
The suite will be posted on Jacket Wavelets web reposi-
tory: http://gtwavelet.bme.gatech.edu/.

Response to referee 2: Professor Marek Kimel
Thank you for your insightful comments.

Page 4.More information is needed for the reader to
understand Haar transforms. As it is now, the
background is missing which will distract many readers.
An example of this is mentioning the Mallat’s algorithm
with no discussion. On the same page the notion of the
’energy’ of spectral components is mentioned, which
apparently is basic for understanding the principle on
which the method is based. Also, define the Hadamard
square.

We gave a brief and informal introduction to wavelets.
Mindful of the audience, we avoided technicalities. How-
ever, we directed interested readers to important refer-
ences where detailed descriptions can be found.
Hadamard square is defined.

Page 5.Meaning of positive slope is defined as
“explosion of energy”, indicating “zig-zagging” in the
sequence. This is not informative. Similarly, it is unclear
(to me at least) why the slope is invariant with respect
to permutations within and among AC and GT and not
with respect to other permutations?

It would be very difficult and possibly not illuminating
to formalize these statements. Since positive slope means
that the average energy at the higher resolution level
exceeds the energy in the coarser resolution level, positive
slope signifies high irregularity. The signals with excess
of irregularity (Hurst exponents between 0 and 0.5) are
anti-persistent, informally described as zig-zagging. The
following sentence is added: “... This simply means that
the average magnitudes of wavelet coefficients are larger
at small scales which translates to high anti-persistence in
signal behavior.”
As regards the permutations of AC and GT within the

pairs and among the pair, this is true only for s1 column of
Table 1. Pairs AG and CT (column 2) and AT and CG (col-
umn 3) have the same properties. Note that one element
of each column is needed for the invariant coding.

Page 5. The slope “should not depend” on the way ..., or
it simply “does not depend” (?) Also, the way vector are
“stacked” so they form 12 x N Y-matrix, is not clear.
Maybe a larger example would help. This seems
fundamental for the method.

Thanks for your comments. When we referred to slope
that “should not depend” on the assignment of nucleotides
to their numerical translations, we referred to gener-
ation of DNA walks, where spectra depends on how
the nucleotides are coded. For example, the DNA walk
A,T −→ +1, C,G −→ −1 has different spectra (and

http://gtwavelet.bme.gatech.edu/
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consequently spectral slopes) from the walk generated by
A,G −→ +1, C,T −→ −1, even though the sequence
is common. So our point was that the proposed method
leads to no ambiguities and translation is unique.

Page 7. The two mechanisms of intron length increase
are mentioned, but the description is cursory. Explain
more or drop. The simulation-based test seems
simplistic. A permutation test (one of many discussed in
the literature) I think would be more on target.

We are grateful for your suggestion and agree that per-
mutation test here would be more on target. The way we
did simulation is a variant of parametric bootstrap, where
we selected samples from a multinomial distribution with
prescribed probabilities of classes. As such, the propor-
tions of nucleotides are matched only via expectations and
not exactly. Permutation test will keep these proportions
fixed.
We conducted the permutation test by taking the DNA

string, permuting the string 20,000 times and for each
permutation we found the spectral slope. The achieved
significance rate for this test is 0.0638. Please see the
included figure illustrating the results of the permuta-
tion test. Note that slope -1.7825 (red) falls in the left
tail of the distribution. Therefore, given the fixed content
of nucleotides, the autocorrelation among nucleotides,
that is, spectral slopes in the wavelet domain, distinguish
genuine genome from random sequences.
The following was added: “... We also conduct a permu-

tation test by taking the DNA sequence and permuting it
20,000 times. For each permutation we find the spectral
slope. The achieved significance rate (empirical p-value)
for this test is 0.0638”.

Page 8. Please explain the biological interpretation of
combination slopes. Also, referring to the study of
Youden Index, please describe in more detail the sample
that was used as a gold standard and reasons it is
believed to be a gold standard. As a general remark,
why is the honeybee genome considered? The most
natural choice is probably human genome, and even
better, several genomes of distantly related species.

The scaling separation of exons and introns is a
phenomenological observation, and we did not find an
explanatory biological interpretation so far. Informally,
one biologist from Georgia Tech postulates that increased
regularity in exons may serve as a “protection of the code”
because regular patterns are more easily repairable as
compared to the irregular.
As regards the gold standard, the genome of honeybee

is fully sequenced and we know exact locations of exons,
introns, or combinations. We agree with you that human

genome would be more interesting for the readership or
some comparative analysis of genomes in distantly related
species. We thank you for the suggestion and we hope to
address this in the future.

Response to referee 3: Dr. Natsuhiro Ichinose (nominated
by Professor Masanori Arita)

The matrix W4 (or W16) is not necessary to be the
wavelet transformation. It would be important that W4
provides some types of the “DNA walk”. For example,
the second row of D corresponds to the DNA walk in
which A or C implies +1/2 and G or T implies -1/2.
Another row corresponds to another type of the DNA
walk. Especially, the first row of D is redundant because
D1j = j/2 for any sequences. Since the first row is not
used in calculation of the scaling measure, it should be
removed. Therefore, the authors should reconsider the
matrix W4 and W16. If there is an implementation
reason such that W4 or W16 is necessary to be the
wavelet transformation, the authors should discuss that.

The reviewers are correct. The matrices W4 (or W16)
may not necessarily be the wavelet transform matrices.
However, there are compelling reasons why these should
be selected as wavelet matrices:
(i) Wavelet matrices are orthogonal and as such, they

preserve the energy. This preservation of energy is critical
for coherent definition of spectra,
(ii) The levels defined by wavelet matrices are dyadic

and thus the energies decay among the levels in a cal-
ibrated manner. This means that if perfect mathemati-
cal monofractal is decomposed, the spectral slope will
be −(2H + d) where H is Hurst exponent and d is dimen-
sion of the object.With non-wavelet matrices the counter-
part of slope may not be connected with H in an obvious
manner.
The first row in D, as the reviewer points out is redun-

dant, but this row is not taken in the calculation of spectral
slopes for it corresponds to scaling wavelet coefficients
and not the detail. Only detail coefficients are used for
spectral assessment.
Non-wavelet matrices can be used if the cluster-

ing or classification of the nucleotide sequences is of
interest, without being precise about exact degree of
scaling.

2. In Results and discussion The advantage of the
proposed method is that the scaling measure is
invariant to the assignment of nucleotides. This implies
that the method can capture any characteristics of
nucleotides (e.g., amino and keto, purine and
pyrimidine, and GC-content). Nevertheless, the authors
showed only an example of intron-exon sequences in
honeybee. As mentioned by the authors in Background,
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the exon sequences are correlated with GC-content.
Therefore, it is validated that the method can capture
the characteristics of the GC-content, but it can not be
validated for the other characteristics. To claim the
universality of the method, the authors should show
that the method can be applied to any characteristics of
nucleotides (e.g. purine and pyrimidine) by using the
other example of biological sequences or simulated
sequences.

The scaling measures (slopes) indeed depend on the
GC-content of nucleotides. However, we demonstrated
through our permutation test that when GC-content is
fixed, spectral slopes still differ for different sequences. In
this paper, we have taken exons and introns as examples of
types of sequences to be analyzed using our methodology.
We plan to investigate other examples of sequences in the
future.

Minor comments 1. In Fig. 8, show the names of x-y
axes.

Thanks. Since these are estimators of the density, we
opted not to burden image/description with new notation.
Instead, the figure caption now reads: “Kernel density esti-
mates for cumulative evolutionary slopes, shown on the
horizontal axis, of exons (red) and introns (green).”

Reviewer reports: round 2
Response to referee Dr. Vladislav Bondarenko

Major comment: First of all, the Background section
improved notably after the first review, and we have no
more questions to it. However, there are still open
questions to the study design and methodology.However,
I concern regarding a very low sensitivity (50%) and
overall accuracy (64%) of the method. It is very limited
hope that the method may be competitive with dozen
alternative methods using in the field. Unfortunately,
the authors still ignore several general (and basic)
requirements to the methodological works, including the
reproducibility analysis and the comparison with known
methods. Many questions (including statistical tests and
significance values) are still open. It is not easy what a
benefit of the method for biological applications is.

The authors appreciate time you invested in detailed
reading and useful response. Below are our answers to
your specific concerns 1-4.

1. Methods. Equivalent classes. It remains unclear to me
why authors use a paired nucleotide notation to
introduce equivalent classes. Please explain. Is there
any difference if we use a three (for example, genetic
code) or four nucleotide notation?

Equivalence classes are determined by the invariance of
the slopes with respect to permutations of nucleotides.
In this sense, the classes can be thought as mathemat-
ical objects and they are not predesigned. It happens
that a particular class can be fully described by per-
mutations of the pairs of nucleotides. Using groups of
three nucleotides, for example, would not keep the slopes
unchanged. Although this pairing is purely mathematical,
there are some biological consequences. From the bio-
logical perspective, an equivalence class that is based on
paired nucleotide notation is more suitable over a three or
four nucleotide notation mainly because interesting clas-
sification schemes of nucleotide symbols (A, C, G, and T)
based on nucleotide characteristics occur in pairs (purine-
pyrimidine nucleotides, nucleotides with weak-strong
hydrogen bonds, keto-amino nucleotides). Therefore, in
addition to its purelymathematical generative process, the
proposed method allows such physicochemical charac-
teristics of nucleotides to be captured simultaneously. In
addition, the use of paired nucleotide notation in equiva-
lence class allows the interference of commonly found CG
dinucleotides to be eliminated. (Previous works on biolog-
ical sequence analysis often examine the correlation of GC
content and its roles in genome/gene sequence variation,
e.g., in genome/chromosome size, sequence function-
ing, gene architecture, species ecology, species evolution,
etc.)

2. Methods. Data. The authors don’t need a “completely
annotated” genome it order to analyze 376 genes on a
single chromosome. It is nonsense. Fruit fly or human
genomes are annotated much better, providing
evidences from RNA-Seq data and other sources and a
proportion of protein-coding genes with CDS data
support will be much higher than 376/1,669 (honeybee
1st chromosome).

Probably there is a misunderstanding in the terminol-
ogy use. In trying to assess the classification accuracy of
the method, the annotation would mean that we know the
ground truth. Of course, the method, once established on
the training sample, would be applicable to data where
the ground truth is not available. We selected honeybee
genome to be our illustration dataset, partly because it has
a complete genome and is considered a model organism.
Genomes of other eukaryotic species could be selected as
well, of course, but we simply did not analyze them.

3. Methods. Data. “.. Specifically, we correct the gene
direction and represent the gene sequences with their
complementary sequences.” This step confused me a lot.
Does it mean that authors take a complementary
(non-coding) strand of a gene if it is located on the
opposite strand? If so, it is most probably to be incorrect.
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Given the complementary directions of DNA string on
its double helix structure, it is sufficient to represent a
DNA molecule by the nucleotide sequence of a single
strand. Sequence databases always store DNA sequences
in the 5’ to 3’ direction and nucleotides are indexed in such
fashion (1 . . . n), regardless of the gene directions. In sum-
mary, when genes are located on the reverse strand, we
reverse its complement sequence to keep the 5’ and 3’ ends
properly oriented.

4. Results. Figures 5 and 6. I suggest it makes sense to
separate intron/exon and exon/intron boundaries in the
“combined set” of sequences, since most probably they
would have a different (reverse) patterns of regularity.

Replies to the summary previous questions of reviewer 1
Q1. What is an “overlapping section of nucleotides”
remains not mentioned in the answer.

The term “overlapping section of nucleotides” repre-
sents the spanning region of intron and exon. Our method
used a window size of 32 nucleotides to calculate a
cumulative slope. Therefore, the window that contains
nucleotides of both exon and intron regions was defined
as the “combination region”. Without defining the com-
bination regions, the slopes were getting averaged for
portions of exons and introns together which affected
the results. Our rationale of introducing the “overlap-
ping sections” was explained in the Results and discussion
section, under the subsection “Comparing regularity of
exons and introns.”

Q9. Similarly. The significance is already provided in
the main text, if I am correct.

The significant difference in cumulative evolutionary
slopes of simulated and genuine DNA arrays was men-
tioned in the main text, in the Results and discussion
section, under the subsection “Comparing regularity of
exons and introns.” The section states that both the global
and the cumulative evolutionary slopes are influenced by
the internal autocorrelations of nucleotides (sequence reg-
ularities), and unlikely by the proportional content of each
nucleotide.

Q11. The question is related to a global slope
calculation, but it looks like the authors did not
understand the question.

The global slope measures the sequence regularity in
a gene and ignores the sequence annotation (introns,
exons). We used this slope to compare the overall reg-
ularity of a given honeybee gene vs. a set of simulated
sequences (20,000 permutations). As the method of global
calculation requires the sequence length to be a power of

2, each sequence was truncated accordingly. We empir-
ically chose to truncate at the gene’s end. The average
percentage of sequence length retained for global slope
analysis across all 376 genes is 71.6% (95% confidence
interval of 70.1–73.1%). Truncation at the beginning of a
gene is also possible but we did not do so. The reviewer
commented that sequence truncation is also possible at
other locations within a gene (at the beginning of a
CDS, its end, or repeated loci). We did not examine
such scenarios since (i) it is impractical to apply such
setting to every gene in our gene set, and (ii) there is
no way to ensure how many nucleotides to be removed
per a sub-location to ensure the final gene length equals
to 2n.

Q13. At least two reviewers asked this question and it
remains unclear to me why having 6 or 8 months already
they haven’t done it on the other species (at least fly) yet,
since one of their arguments was a “time constraint.”

The aim of this paper was not to show the univer-
sal applicability of the proposed methodology to a range
of species with decoded genome. We reiterate that its
main contribution is determination of scaling exponents
in nucleotide sequences that are invariant with respect to
assignment of particular nucleotides to numbers and the
honeybee genome was used as an illustration in the con-
text of well understood phenomenon of different scaling
in exons and introns. Thus the honeybee chromosome 1
was a showcase for the methodology.

Q14. No. Looking at the Fig. 3, I cannot conclude that
the p-value is “extremely” small. It should be provided;
otherwise this figure does not make sense.

As we described in the manuscript, Fig. 3 shows the
distribution of slopes for DNA-like sequences, randomly
generated from the multinomial distribution where the
probabilities of A, C, G, and T match those of the real
exemplary strain of nucleotides from honeybee. The mes-
sage is that irregularity of the random sequence exceeds
that of the real DNA. There is no p-value here, for there
is no test. Simply the histogram is a parametric bootstrap
distribution of the slopes and the red bar is unusual for
this distribution. What one could refer to as a “p-value”
would be the Achieved Significance Level (ASL), the coun-
terpart of p-value in bootstrap computations, and for this
case the ASL is the proportion of the histogram to the left
of the red bar, that is 0.0676.
To clarify our point, the sentence in explanation of

Fig. 3:
“Comparing the actual and simulated DNA sequences,

the actual DNA sequence’s slope falls in the left tail of the
control distribution.”
is replaced by
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“Comparing the actual and simulated DNA sequences,
the actual DNA sequence’s slope falls in the left tail of the
control distribution. The achieved significance level (ASL)
for this simulation (area in the bootstrap distribution left
of the red bar) is 0.0676”.

Q15. It would be a good strategy to compare
sensitivity/specificity with the analogous methods. But
they won’t do it - most probably, it fails.

The reviewer is probably right. Looking only on spec-
tral/regularity information is likely suboptimal compared
to a battery of state-of-art machine learning techniques
for the corresponding classification. But this is not the
ultimate point here. The goal of the paper was not to
propose the most accurate classification method, but to
emphasize phenomenology of different scalings in introns
and exons captured by the proposed methodology. Even
highly cited and famous paper of Peng et al. (1992) in
Nature, that first established different scaling in exons and
introns would be inadequate if the accuracy of classifi-
cation was questioned, since its discriminatory power is
low.

Q16. This is a very weak and not direct criteria.

If we understand correctly, this reviewer is pounding
on the fact that the classifying accuracy in the illustrative
example is rather weak. We do agree. But given a bat-
tery of strong classifiers, adding an independent and weak
classifier to this battery improves overall classification
accuracy. As the machine learning community jokingly
states, adding a new and independent classifier with accu-
racy better than flipping a coin, makes a strong classifier
even stronger.

Response to referee Dr Natsuhiro Ichinose
For Comment 2, My point is what the proposed method
can do but the other methods cannot do. Since the
DNA-walk method can detect irregularity of exons, this
result cannot be the advantage even if the proposed
method can detect it. In my understanding, the
advantage is that the proposed method is the universal
detector of sequence characteristics because the scaling
measure is invariant. Therefore, I think that it is
difficult to show the advantage of the proposed method
by only a single example. At least, the authors should
show the advantageous point against the conventional
DNA-walk method (smaller window size, etc).

Thank you for your time and constructive comment.
You are right – the advantage of the proposed method
is the invariance of the discriminatory spectral slope to
the assignment of nucleotides to numbers which generates
a random walk. We are not claiming that the proposed
method is more accurate than a method that specifies the

nucleotides, say purine and pyrimidine, for the increments
of +1 or −1. If the purine/pyrimidine phenomenology is
of concern – then, of course, one should use this specific
methodology. However, it may be unsettling that different
assignments produce different Hurst exponents/slopes for
the same sequence, and the main goal of this paper is to
remove this ambiguity.
Since the selection of honeybee genome is for the illus-

tration for the methodology, we did not explore perfor-
mance on other eukaryotic species. We do agree with the
reviewer that this is an interesting question and a new
paper can be devoted to a comparative assessment of the
methodology. In such new comparative paper it would
be of interest to compare invariant assignment with spe-
cific assignments such as purine-pyrimidine nucleotides,
nucleotides with weak-strong hydrogen bonds, and keto-
amino nucleotides for variety of species.

Additional files

Additional file 1: MATLAB function for producing the cumulative
evolutionary slope for a DNA sequence. (M 1.44 kb)

Additional file 2: MATLAB function for producing plots of the
cumulative evolutionary slope with plotted averages for coding,
noncoding, and combination regions. (M 3.94 kb)

Additional file 3: Plotted results of the permutation test. The
histogram shows the permutation null distribution. The red bar is the slope
for the un-permuted DNA string (empirical p-value = 0.0638). (ESP 1.7 kb)
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