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Genome-wide association studies 
in East Asians identify new loci 
for waist-hip ratio and waist 
circumference
Wanqing Wen1,†, Norihiro Kato40,†, Joo-Yeon Hwang14,†, Xingyi Guo1,†, Yasuharu Tabara20,21,†,  
Huaixing Li3, Rajkumar Dorajoo7, Xiaobo Yang32,36, Fuu-Jen Tsai9,10,11, Shengxu Li28, 
Ying Wu46, Tangchun Wu37, Soriul Kim18, Xiuqing Guo12, Jun Liang47, Dmitry Shungin26,27, 
Linda S. Adair43, Koichi Akiyama38, Matthew Allison13, Qiuyin Cai1, Li-Ching Chang8, Chien-
Hsiun Chen8,9, Yuan-Tsong Chen8, Yoon Shin Cho14,15, Bo Youl Choi16, Yutang Gao2, Min 
Jin Go14, Dongfeng Gu31, Bok-Ghee Han14, Meian He37, James E. Hixson30, Yanling Hu32,35, 
Tao Huang39, Masato Isono40, Keum Ji Jung18, Daehee Kang17, Young Jin Kim14, 
Yoshikuni Kita25, Juyoung Lee14, Nanette R. Lee48, Jeannette Lee5, Yiqin Wang3, Jian-
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Sixty genetic loci associated with abdominal obesity, measured by waist circumference (WC) and 
waist-hip ratio (WHR), have been previously identified, primarily from studies conducted in European-
ancestry populations. We conducted a meta-analysis of associations of abdominal obesity with 
approximately 2.5 million single nucleotide polymorphisms (SNPs) among 53,052 (for WC) and 48,312 
(for WHR) individuals of Asian descent, and replicated 33 selected SNPs among 3,762 to 17,110 
additional individuals. We identified four novel loci near the EFEMP1, ADAMTSL3 , CNPY2, and GNAS 
genes that were associated with WC after adjustment for body mass index (BMI); two loci near the NID2 
and HLA-DRB5 genes associated with WHR after adjustment for BMI, and three loci near the CEP120, 
TSC22D2, and SLC22A2 genes associated with WC without adjustment for BMI. Functional enrichment 
analyses revealed enrichment of corticotropin-releasing hormone signaling, GNRH signaling, and/
or CDK5 signaling pathways for those newly-identified loci. Our study provides additional insight on 
genetic contribution to abdominal obesity.
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Abdominal obesity, typically measured by waist circumference (WC) and waist-hip ratio (WHR), is more closely 
associated with metabolic dysfunctions that are related to cardiovascular diseases than is general obesity1, which 
is generally assessed by body mass index (BMI). Previous studies have identified multiple genetic loci associated 
with WC and WHR2–13. However, the majority of these studies were conducted in populations of European ances-
try or included a limited number of East Asians9. East Asians tend to have a higher level of abdominal fat, despite 
relatively low BMI values; and experience a higher metabolic disease risk than European-ancestry individuals with 
the same BMI level14. Therefore, it is particularly important to investigate the genetic determinants of abdominal 
fat, i.e. WC and WHR, in East Asian populations.

We previously reported genetic loci for BMI using data from the Asian Genetic Epidemiology Network (AGEN) 
Consortium15,16. In this study, we conducted meta-analyses of data from genome-wide association studies (GWAS) 
of WC and WHR to identify new genetic loci and evaluate associations of previously-identified genetic loci with 
overall and abdominal obesity in our study populations.

Results
Our initial meta-analysis used two complementary but related measures of abdominal obesity, WC and WHR, as 
the outcome variables, and analyzed the association of WC and WHR with approximately 2.5 million genotyped or 
imputed SNPs as well as about 50,000 typed exome-chip variants. The total sample sizes in Stage I were 53,052 for 
WC and 48,312 for WHR. We selected 33 SNPs at 33 independent loci with P <  1.00 ×  10−6, based on the GWAS 
data that were recruited at the first round of Stage I, for a de novo replication (Stage II) of associations with WC or 
WHR. The replication genotyping was conducted at three study sites (see Supplementary Table 3 online) comprising 
3,762 to 17,110 Asian-ancestry individuals based on availability of de novo data for each SNP. Participating studies 
are described in the Supplementary Information and Supplementary Tables 1 to 3 online.

The associations of SNPs with WC or WHR were analyzed with or without adjustment for BMI (see Methods), 
following the common practice employed in published studies2–13. Thus, there were four traits included in this study: 
WC with adjustment for BMI (WCadjBMI), WHR with adjustment for BMI (WHRadjBMI), WC without adjust-
ment for BMI (WCnoBMI), and WHR without adjustment for BMI (WHRnoBMI). The results of the initial Stage 
I and Stage II for the selected 33 SNPs are presented in Supplementary Table 4 online. In Table 1 (see also Fig. 1 and 
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Supplementary Table 5), we present the newly-identified loci that were associated with WCadjBMI, WHRadjBMI, 
and WCnoBMI at a genome-wide significance level (P <  5.00 ×  10−8) based on Stage I data alone or the combined 
Stage I and Stage II data in Asian-ancestry populations. For WCadjBMI, we have identified four new loci (index 
SNPs) near these genes: EFEMP1 (rs3791679, P =  4.86 ×  10−14), ADAMTSL3 (rs8030379, P =  1.62 ×  10−9), CNPY2 
(rs3809128, P =  3.74 ×  10−9), and GNAS (rs2057291, P =  4.02 ×  10−8); for WHRadjBMI, we have identified two loci 
near the NID2 (rs1982963, P =  1.07 ×  10−14) and HLA-DRB5 (rs5020946, P =  1.30 ×  10−9) genes; for WCnoBMI, we 
have identified three loci near the CEP120 (rs10051787, P =  7.23 ×  10−12), TSC22D2 (rs1868673, P =  1.49 ×  10−8), 
and SLC22A2 (rs368123, P =  2.64 ×  10−8) genes. In addition, three SNPs near three genes (ADAMTS3, IHH, 
QSOX2) for WCadjBMI, and two SNPs near two genes (PPAP2B, PACSIN3) for WHRadjBMI were found to 
approach the genome-wide significance level (P <  7.56 ×  10−7) (see Supplementary Tables 5–7 online). We 
requested an in silico replication for the 14 SNPs described above in the Genetic Investigation of ANthropometric 
Traits (GIANT) consortium13. No data were available for rs3809128 (MAF <  0.01 in CEU) near CNPY2 in the 
GIANT data. As shown in Supplementary Table 6 online, the association directions were consistent for 12 out of 
the remaining 13 SNPs (P =  0.0034 by the binomial test), although the explained variances were generally smaller 
than those observed in East Asians (see Supplementary Table 5 online). The SNP rs2057291 near GNAS exhibited 
an opposite association direction in the GIANT data. Seven of the ten loci for WCadjBMI and WHRadjBMI were 
oppositely associated with BMI, but all three WCnoBMI loci had a consistent association direction with BMI in the 
GIANT data. In this study, we found no genetic association with WHRnoBMI at loci other than those previously 
reported (see Supplementary Table 8 online). The variation explained by each newly-identified SNP ranged from 
0.02% to 0.09% (Table 1, and Supplementary Table 5 online). There were no Stage II replication data for some of 
the loci because they were identified after the second round of Stage I GWAS data were added to the meta-analysis 
due to the expansion of the AGEN, which occurred after the original 33 replication SNPs were selected.

Additional analyses examined effect sizes for differences across sex and population. Analyses stratified by sex 
(Table 2, and Supplementary Table 5 online) revealed that association of rs3791679 near the EFEMP1 gene with 
WCadjBMI was significantly stronger among men than among women (effect size: 4.04 vs 2.43, P for homogeneity 
test =  0.04), and association of rs1982963 near the NID2 gene with WHRadjBMI was significantly weaker among 
men than among women (effect size: 2.88 vs 6.26, P for homogeneity test =  0.009). No significant heterogeneity 
across populations of Chinese, Korean, Japanese, or Filipino was found for the newly-identified loci (data not 
shown).

Supplementary Table 7 online shows the association of the newly-identified loci with different obesity-related 
traits. The three novel loci (CEP120, TSC22D2, and SLC22A2) for WCnoBMI were much less significantly asso-
ciated with WCadjBMI; the newly-identified loci for WCadjBMI or WHRadjBMI were either unassociated with 
BMI (EFEMP1, CNPY2, GNAS, and HLA-DRB5) or negatively associated with BMI (ADAMTSL3 and NID2). Of 
these 11 loci for WCadjBMI and WHRadjBMI, ten had an opposite association direction with BMI. Using the 
Wald test of whether the BMI-adjusted effect was equal to its expectation proposed by Aschard et al.17, we found 
Bonferroni-corrected significant p-values (0.05/11) for rs11103390 at QSOX2 (WCadjBMI) and rs1982963 at 
NID2 (WHRadjBMI), suggesting that the associations of these two SNPs with WCadjBMI or WHRadjBMI may 
have been influenced by their direct genetic association with BMI. The newly-identified seven loci for WCadjBMI 
were all moderately or strongly associated with height and the three novel loci for WCnoBMI were also moderately 
associated with height. None of 14 newly-identified loci were associated with diabetes at P <  0.004 (0.05/14).

Previous studies have reported about 60 genetic loci associated with abdominal obesity2–13 and about 100 genetic 
loci associated with overall obesity15,16,18, with the majority of those loci being identified in populations of European 
ancestry. In those studies, the reported associations with WHR were generally adjusted for BMI, while the reported 

Nearby gene Chr  SNP Allelesa EAFb StageIP Stage II P

Stage I & II

EV(%)eNumber β (SE)c Pd

WCadjBMI

EFEMP1 2 rs3791679 A/G 0.21 1.43E-13 3.63E-02 64454 2.87(0.38) 4.86E-14 0.03%

ADAMTSL3 15 rs8030379 A/G 0.76 1.62E-09 NA 50668 2.46(0.41)f 1.62E-09 0.02%

CNPY2 12 rs3809128 C/T 0.80 3.74E-09 NA 30368 3.69(0.63)f 3.74E-09 0.04%

GNAS 20 rs2057291 G/A 0.73 4.02E-08 NA 38613 2.52(0.46)f 4.02E-08 0.02%

WHRadjBMI

NID2 14 rs1982963 A/G 0.81 1.41E-12 1.71E-03 56208 4.82(0.62) 1.07E-14 0.07%

HLA-DRB5 6 rs5020946 T/G 0.41 4.38E-09 1.13E-01 49519 3.15(0.52) 1.30E-09 0.05%

WCnoBMI

CEP120 5 rs10051787 T/C 0.40 1.07E-09 1.40E-03 60909 3.96(0.58) 7.23E-12 0.08%

TSC22D2 3 rs1868673 C/A 0.48 1.49E-08 NA 36247 4.36(0.77)f 1.49E-08 0.09%

SLC22A2 6 rs368123 G/A 0.39 1.00E-06 7.29E-03 62430 3.16(0.57) 2.64E-08 0.05%

Table 1.  Newly identified loci associated with waist circumference (WC)/WHR variation in Asian-ancestry 
populations. aShown as: effect allele/other allele. bEffect allele frequency in Asian-ancestry populations, 
estimated from stage I studies. cPer allele effect of SNPs in percentile of standard deviation, derived from meta-
analysis. dDerived from meta-analysis. The P values for the combined data were adjusted for both study-specific 
inflation factors and the estimated inflation factor for the stage I meta-analysis statistic. eExplained variance, 
estimated from combined stage I and II data. fStage I results are shown.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:17958 | DOI: 10.1038/srep17958

associations with WC were not adjusted for BMI in most studies. Due to the close correlation (r =  0.83 based on 
data from the Shanghai genome-wide association studies (SGWAS)) between WC and BMI, there was substantial 
overlap between loci that were associated with WC and BMI. In the current study, we evaluated the associations of 
those reported loci with WCadjBMI, WHRadjBMI, WCnoBMI, and WHRnoBMI. The associations with at least one 
trait that achieved a Bonferroni-corrected significance level (P <  0.05/60 ≈ 1.0 ×  10−3) and the associations by sex 
are shown in Supplementary Tables 8 to 11 online (for WCadjBMI, WHRadjBMI, WCnoBMI, and WHRnoBMI, 
respectively). We found that 23 previously-reported loci for abdominal obesity were significantly associated with 
WCadjBMI (see Supplementary Table 11 online) and/or WHRadjBMI (see Supplementary Table 10 online) and 
18 previously-reported BMI/WC loci were significantly associated with WCnoBMI, among men or women or both 
at P <  1.0 ×  10−3 (see Supplementary Table 9 online). Of note, 17 of those 18 loci associated with WCnoBMI were 
not significantly associated with WCadjBMI. The only SNP demonstrating significant association with WCadjBMI 
was rs12229654, at our previously-identified Asian-specific BMI locus MYL2. Consistent with previous findings7,19, 
we observed that 10 out of 23 replicated genetic loci for abdominal obesity showed significant sex differences (P 

Figure 1. Regional plots for the newly-identified loci in this study. SNPs are plotted by their position on the 
chromosome against their association (−log10 P value) with the trait of interest (as shown in Table 1) using 
stage I (GWAS meta-analysis) data. Estimated recombination rates (from HapMap) are plotted in cyan to reflect 
the local LD structure. The SNPs surrounding the top SNP are color-coded (see inset) to reflect their LD with 
the top SNP (using pair-wise r2 values from HapMap CHB +  JPT data). Genes and positions of exons, as well 
as directions of transcription, are shown below the plots (using data from the UCSC Genome Browser, genome.
ucsc.edu). The arrows shown in Plots a, b, e indicate SNPs that were previously reported to be associated with 
height. Plots were generated using LocusZoom.
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for homogeneity test  <  0.05), 9 of which showed larger effects in women than men (see Supplementary Table 10 
online). In contrast, 4 replicated WCnoBMI loci revealed significant sex differences, 3 of which showed larger effects 
in men (see Supplementary Table 9 online). It is worth noting that the SNP rs12229654 at MYL2 and its related 
SNP rs671 at ALDH2 were associated with every obesity trait analyzed (WCadjBMI, WHRadjBMI, WCnoBMI, 
and WHRnoBMI), with larger effects observed in men.

We examined the modification effect of alcohol consumption on the association between the two SNPs in the 
12q24 region16 (rs12229654 and rs671) and WC/WHR using data from the SGWAS, for which we had direct access 
to individual data. We found that the effects of the SNP rs12229654 on WC and WHR, with or without adjustment 
for BMI, were mainly observed among non-drinkers (Supplementary Table 13 online). The sex-difference of rs671 
effect on WC and WHR is less evident.

We evaluated putative functional significance for each newly-identified locus using the Encyclopedia of DNA 
Elements (ENCODE) and expression quantitative trait locus (eQTL) databases20. Three of these novel SNPs, 
rs3809128 near CNPY2, rs2057291 at GNAS, and rs3791679 near EFEMP1, were predicted to be functional as 
they are located either in promoter or enhancer regions based on epigenomic data from the ENCODE project. 
The ChromHMM annotation on nine ENCODE cell lines have revealed that the SNP rs3809128 resides in an 
active promoter of the nearest gene, canopy FGF signaling regulator 2 (CNPY2). The DNase and ChIP-Seq has 
revealed that the SNP rs3809128 is present in the DNase I hypersensitive site (DHS) and in the binding regions of 
multiple transcription factors (TFs). In particular, this variant has been shown to be associated with the expres-
sion of CNYP2 based on a previous eQTL study19. The SNP rs2057291 is located in intron 2 of the gene GNAS. A 
search of RegulomeDB21 indicates that this variant is annotated to the TF SRF predicted motif. This variant was 
also observed to be present in the DHS and multiple TFs peaks. The SNP rs3791679 is located in the first intron of 
the gene EFEMP1 and resides in an enhancer region. According to RegulomeDB annotation, the SNP rs3791679 
lies in the TF POU3F2 predicted motif. In addition, the DHS and the TF STAT3 peak were found to harbor the 
variant. Other potential functional variants which are in strong linkage disequilibrium (LD)(r2 >  0.6) with the 
newly-identified SNPs are listed in Supplementary Table 12 online.

We conducted two separate functional enrichment analyses for genes located near the newly- and 
previously-identified loci for WC or WHR, one for the loci associated with WCadjBMI and/or WHRadjBMI, 
another for the loci associated with WCnoBMI. The corticotropin-releasing hormone signaling (P =  5.72 ×  10−4) 
pathway and Gonadotropin Releasing Hormone (GNRH) signaling (P =  8.63 ×  10−4) pathway, were found to be the 
most significantly enriched for the loci associated with WCadjBMI and/or WHRadjBMI; and the CDK5 signaling 
(P =  1.66 ×  10−4) and corticotropin-releasing hormone signaling (P =  2.21 ×  10−4) pathway were significantly 
enriched for the loci associated with WCnoBMI.

Discussion
Previously-reported genetic loci associated with WC, mainly from studies conducted in European-ancestry popu-
lations, were generally not adjusted for BMI. There was substantial overlapping between loci that were associated 
with WC and BMI due to high correlation between those two measurements. Three novel SNPs (rs10051787 near 
CEP120, rs1868673 near TSC22D2, and rs368123 at SLC22A2), newly identified for WCnoBMI in this study, did 
not reach the genome-wide significance level in our previous meta-analysis for BMI, and thus were not identified 
as the BMI loci. After adjustment for BMI, the association of these three SNPs with WCadjBMI was substantially 
attenuated. In addition, our study showed that previously-reported genetic loci for WC or BMI were generally 
not significantly associated with WCadjBMI (see Supplementary Table 11 online), suggesting that these two 
highly-correlated anthropometrics capture a similar biological phenotype. On the other hand, the genetic loci 
associated with WCadjBMI and/or WHRadjBMI were not typically associated with BMI or showed an opposite 
association direction (see Supplementary Table 7 and Supplementary Table 14 online). These findings reveal 

Nearby gene Chr SNP Alleles

Among men Among women
Test for 

homogeneity

Number β(SE) P Number β(SE) P P

WCadjBMI

EFEMP1 2 rs3791679 A/G 21172 4.04(0.63) 1.76E-10 42605 2.43(0.49) 6.31E-07 4.37E-02

ADAMTSL3 15 rs8030379 A/G 16135 1.41(0.72) 4.89E-02 33848 2.37(0.52) 5.70E-06 2.80E-01

CNPY 12 rs3809128 C/T 11098 2.08(1.07) 5.15E-02 18575 1.59(0.88) 7.30E-02 7.24E-01

GNAS 20 rs2057291 G/A 11626 3.10(1.01) 2.15E-03 26302 1.99(0.60) 8.70E-04 3.44E-01

WHRadjBMI

NID2 14 rs1982963 A/G 17516 2.88(1.04) 5.37E-03 33264 6.26(0.78) 8.88E-16 9.32E-03

HLA-DRB5 6 rs5020946 T/G 14055 3.17(0.97) 1.10E-03 30049 3.57(0.65) 3.54E-08 7.32E-01

WCnoBMI

CEP120 5 rs10051787 T/C 20191 4.60(1.00) 4.15E-06 40033 3.82(0.70) 4.89E-08 5.27E-01

TSC22D2 3 rs1868673 C/A 10742 5.58(1.54) 2.93E-04 24820 4.28(0.91) 2.40E-06 4.67E-01

SLC22A2 6 rs368123 G/A 21164 2.30(0.97) 1.73E-02 40581 3.64(0.70) 1.91E-07 2.61E-01

Table 2.  Newly identified loci associated with WC/WHR variation in East Asian-ancestry populations, by 
gender. Alleles: Shown as effect allele/other allele. β : Effect of SNPs per allele in percentile of standard deviation, 
derived from meta-analysis. P: Derived from meta-analysis adjusted for both study-specific inflation factors (for 
stage I, II) and the estimated inflation factor for the stage I meta-analysis statistic.
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differences in genetic predisposition to overall as opposed to abdominal obesity, as well as the genetic regulation 
of body fat distribution versus BMI.

Two newly-identified WCadjBMI-related loci (EFEMP1, ADAMTSL3) and the newly-identified 
WCnoBMI-related loci (CEP120) were previously reported to affect height as well11,22, suggesting these loci may be 
related to general body frame size. The SNP rs3791679 near EFEMP1 seems particularly relevant to WC and height. 
EFEMP1 encodes an extracellular matrix protein containing tandemly-repeated epidermal growth factor-like 
repeats, which are able to stimulate DNA synthesis and are involved in cell proliferation23. EFEMP1 knockout 
mice exhibited reduced reproductivity, and displayed an early onset of aging-associated phenotypes including 
reduced lifespan and decreased body mass24. A recent study showed that the EFEMP1 locus affected growth rate 
in children25.

Another newly-identified WCnoBMI-related SNP, rs1868673, resides near the gene TSC22D2. A recent study 
indicated that this locus was associated with circulating levels of adiponectin, a hormone produced predominantly 
by adipocytes26.

We previously reported the association of two related SNPs in the 12q24 region (rs12229654 at gene MYL2 and 
rs671 at ALDH2, r2 =  0.58)15,16, a specific polymorphic region for East Asian-ancestry populations, with BMI. This 
association was significantly stronger among men than among women. We observed similar associations of those 
SNPs with WC and WHR, with or without adjustment for BMI (Supplementary Tables 8 to 11 online). The sex 
differences of associations were more prominent for WHR. The SNPs rs12229654 and rs671 have been reported 
to be associated with HDL cholesterol27, levels of gamma glutamyl transpeptidase27, elevated blood pressure28, 
lower risk of coronary heart disease29 and alcohol consumption30 in Asian-ancestry populations. Our previous 
study16 suggested an antagonistic effect of alcohol consumption on the ALDH2-BMI association. The ALDH2*1 
BMI-increasing effect was mainly observed among non-drinkers. In this study, we found that the effects of the SNP 
rs12229654 at MYL2 on WC and WHR, with or without adjustment for BMI, were mainly seen among non-drinkers 
(Supplementary Table 13 online).

Consistent with previous reports from European populations, we found evidence for multiple loci with sig-
nificant sex differences for abdominal obesity in East Asians, with a generally more prominent effect in women, 
although larger effects in men than in women were observed for loci EFEMP1, MYL2/ALDH2, and FGFR4. 
Typically, men have more visceral fat, whereas women have more subcutaneous fat. It is well known that sex hor-
mones play an important role in the regulation of body fat distribution31, but the underlying genetic mechanisms 
remain unclear. It would be worthwhile to investigate the association between these genetic loci and sex hormone 
levels.

The corticotropin-releasing hormone signaling (P =  5.72 ×  10−4) pathway and Gonadotropin Releasing 
Hormone (GNRH) signaling (P =  8.63 ×  10−4) pathway were found to be significantly enriched for genes 
associated with WCadjBMI and/or WHRadjBMI loci in this study. The corticotropin-releasing hormone 
signaling (P =  5.72 ×  10−4) pathway was found to be related to BMI in our previous report for BMI loci16. 
Corticotrophin-releasing hormone causes release of adrenocorticotropic hormone from the pituitary gland. Its main 
role in the body is as the central driver of the stress hormone system, known as the hypothalamic-pituitary-adrenal 
axis. Gonadotrophin-releasing hormone plays a key role in coordinating the levels of hormones in the 
hypothalamic-pituitary-gonadal axis; these hormones act on the testes and ovaries to initiate and maintain their 
reproductive functions. These results provide additional evidence affirming the involvement of stress and sex 
hormones in obesity and fat distribution.

Recently, Aschard et al.17 raised a concern that adjusting for BMI may bias genetic effects on WC/WHR and 
observed enrichment of SNPs that were associated with WC/WHR and BMI in the opposite directions, as shown 
in the Heid et al. study7 and in our study (see Supplementary Table 5 online). As shown in the results section, the 
associations of SNPs rs11103390 at QSOX2 with WCadjBMI or rs1982963 at NID2 with WHRadjBMI may be 
influenced by their direct genetic association with BMI. Further studies are warranted to evaluate this influence.

Another limitation of this study is lack of replication data for some SNPs identified in the expanded Stage I 
study which will need to be confirmed in future studies.

In conclusion, our study identified at the genome-wide significance level four novel loci near the EFEMP1, 
ADAMTSL3, CNPY2, and GNAS genes that are associated with WCadjBMI, two loci near the NID2 and HLA-DRB5 
genes that were associated with WHRadjBMI, and three novel loci near the CEP120, TSC22D2, and SLC22A2 
genes that were associated with WCnoBMI. Of about 60 genetic loci previously identified for abdominal obesity 
in predominantly European populations, a similar association was found in our study for 23 in East Asians, sug-
gesting Asian- and European-ancestry individuals have both a shared and a unique genetic basis for abdominal 
obesity. Functional analyses suggest that genetic regulation for abdominal fat distribution may occur via the 
corticotropin-releasing hormone signaling, GNRH signaling, and/or CDK5 signaling pathway.

Materials and Methods
Study design. This study had two stages. Stage I was a meta-analysis of study-specific results on the associa-
tion between SNPs and WC or WHR from GWAS that participated in the Asian Genetic Epidemiology Network 
(AGEN) Consortium. Stage II conducted de novo or in silico replication analyses to further examine the associa-
tion for some promising SNPs selected from the Stage I meta-analysis. Supplementary Tables 1–3 online and the 
Supplementary Information page online summarize the basic data for all participating studies.

Stage I samples and genotyping. In stage I, the participating GWAS were recruited in two rounds 
because of the expansion of the AGEN. The first round included eight GWAS with a total 27,537 (for WC) or 
25,241 (for WHR) individuals of East Asian ancestry, and the second round included eight more GWAS with 
a total 17,072 (for WC) or 14,628 (for WHR) individuals of East Asian ancestry. In addition, Stage I analysis 
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included about 50,000 SNPs with minor allele frequency over 1% from 8,443 subjects with genotyping data by 
exome-chip. Therefore, the total sample sizes in Stage I were 53,052 for WC and 48,312 for WHR.

The sample sizes of the 16 participating GWAS in Stage I varied from 695 to 9,279, comprising a total of 44,596 
individuals. Nine studies used Affymetrix arrays, and seven studies used the Illumina platform (detailed infor-
mation is provided in the Supplementary Information online). To allow for combination of the data derived from 
different genotyping platforms and to improve coverage of the genome, genotype imputation was performed by 
each participating study using either MACH or IMPUTE with HapMap CHB+ JPT data (release #22, build 36) as 
the imputation reference panel (see Supplementary Table 2 online).

Stage I statistical analysis. A uniform statistical analysis protocol was followed by each participating 
study. To improve the normality of the WC and WHR distribution and alleviate the impact of outliers, rank-based 
inverse normal transformation (INT) was applied to WC and WHR data separately for each sex by each study. 
INT involves ranking all WC and WHR values, transforming these ranks into quantiles and, finally, converting 
the resulting quantiles into normal deviates. Associations between SNPs and the inverse normal-transformed 
WC and WHR were analyzed with a linear regression model, assuming an underlying additive genetic model and 
adjusting for age (continuous), age-squared, and sex (if applicable). Stratified analyses by sex were also performed 
for each study. To evaluate the genetic influence on body fat distribution, all the analyses were conducted using 
two separate models, one with adjustment for BMI, another without adjustment for BMI.

Next, we carried out meta-analyses using a weighted average method with inverse-variance weights. The 
meta-analyses were carried out on all data combined and also stratified by sex using the freely available METAL 
software. The presence of heterogeneity across studies and between sexes was tested with Cochran’s Q statistics32.

To correct each study for residual population stratification or cryptic relatedness, the meta-analyses were per-
formed with genomic control correction33 by adjusting for the study-specific inflation factor (λ ), which ranged 
from 1.000 to 1.078 in Stage I (see Supplementary Table 2 online). After this adjustment, the estimated inflation 
factors for the Stage I meta-analysis statistic were 1.053 (WCadjBMI), 1.042 (WHRadjBMI), 1.091 (WCnoBMI), 
and 1.054 (WHRnoBMI), which were further adjusted for when calculating the Stage I results.

Stage II replication analysis. We selected 33 SNPs at 33 independent loci with P <  1.00 ×  10−6 for the asso-
ciations with WC or WHR for a de novo replication (Stage II), based on the GWAS data that were recruited in the 
first round of Stage I. The replication genotyping was conducted at three study sites (see Supplementary Table 1 
online) comprising 3,762 to 17,110 Asian-ancestry individuals based on availability of de novo data for each SNP. 
Participating studies are described in the Supplementary Information and Supplementary Tables 1 to 3 online.

Each study individually conducted a similar analysis of the association of WC and WHR with the selected SNPs, 
using the same protocol used in Stage I. The Stage II data were combined using the same meta-analysis methods 
as in Stage I. Finally, we used meta-analysis to combine all data from both Stages I and II.
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