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Cognitive Radio SensorNetwork (CRSN), incorporating cognitive radio capability inwireless sensor networks, is a newparadigmof
the next-generation sensor network. Sensor nodes are usually battery powered and hence have strict energy constraints. As a result,
energy efficiency is also a very critical problem in the CRSN. In this paper, we focus on energy consumption because of spectrum
sensing. Furthermore, we present an adaptive spectrum sensing time interval strategy, in which SUs can adjust the next spectrum
sensing time interval according to the current spectrum sensing results (namely, channel status). In order to find an optimal
spectrum sensing time interval, we introduce theMarkovmodel.Then, we establish aMarkovmodel-basedmathematical modeling
for analyzing the relationship between spectrum sensing time interval and prior spectrum sensing results. Finally, numerical results
demonstrate that the proposed strategy with dynamic adaptive spectrum sensing time interval exceeded listen before talk (LBT)
strategy which is widely used for traditional wireless sensor networks.

1. Introduction

Wireless sensor networks (WSNs) [1] have tremendous appli-
cations in health monitoring, wildlife tracking, air pollution
monitoring, and the use of it for gully pot monitoring in
urban areas. Since it consists of resource-constrained sensor
nodes, long network lifetime is one of the fundamental
requirements in WSN. Moreover, one of the primary objec-
tives of WSNs is to transmit a large amount of data timely
and simultaneously, without using a large amount of network
resources. To deal with such problems, a new sensor net-
working paradigmwith the dynamic spectrum access scheme
is involved, in which wireless sensor nodes are equipped
with cognitive radio capability. This new sensor networking
paradigm is known as Cognitive Radio Sensor Networks
(CRSN) [2]. The main design principles and features of
CRSNs are discussed openly in the literature [3–5]. There are
many advantages of CRSN, such as efficient spectrum usage,
good radio propagation, and flexible deployment property.
However, similar to the traditional WSN, a CRSN consists
of a large number of low-cost, low-power sensor nodes

(namely, secondary user) that operate on limited battery
energy. Furthermore, comparing to traditional WSN, the
spectrum sensing process will cause more energy consump-
tion. Above all, energy efficiency is an urgent problem in
CRSN.

There are some studies which have started research-
ing this issue. Hareesh and Singh proposed a new hybrid
cooperative spectrum sensing technique which associates
energy and eigenvalue based detectors to improve the energy
efficiency of CRSN in [6]. In [7], Phuong and Kim proposed
an intelligent power control scheme to address the com-
munication requirement based on the interference model of
cumulative interference from the entire cognitive industrial
sensor networks. Liu et al. proposed a fast differential evo-
lution algorithm to optimize the energy consumption and
spectrum sensing performance jointly in [8]. In [9], Maleki
et al. proposed a combined sleeping and censoring scheme as
an energy-efficient spectrum sensing technique for CRSNs.
However, all of these studiesoverlooked a fact that spectrum
sensing time also brings tremendous influence on energy
consumption in CRSN. References [10–15] have focused on
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the throughput maximization rather than energy efficiency
of CRSN, although they consider spectrum sensing time.
References [16–19] also consider a fixed spectrum sensing
time interval, although they focus on energy efficiency issues.

Different from previous studies, in this paper, we focus
on a dynamic spectrum sensing strategy which the next
spectrum sensing time is adaptive and based on current
spectrum sensing results. That is, spectrum sensing time
interval is not fixed, according to the current sensing results.
However, in practice, sensing resultsmay be inaccurate due to
imperfect sensing inCRSN.Hence, we adopt aMarkovmodel
to describe the state change of channel. And then, we have
formulated the energy-efficient problem as that of estimating
the state of the Markov model. Finally, utilizing Markov
model-based state prediction, we derive thresholds on the
spectrum sensing time interval for the action policy, which
specifies the optimal action achieving minimum energy
consumption.

The remainder of the paper is organized as follows. In
Section 2, we give a description of the system. Section 3
analyzes the problem from the mathematical aspect and
derives the mathematical formulated to solve the problem.
Simulation results are given in Section 4 and finally we draw
a conclusion in Section 5.

2. System Model

2.1. Network Architecture. We consider a CRSN, in which
sensors with cognitive capacity work with the ISM frequency
channel. In addition, we assume that PUs are TV bands and
SU is a pair set of SU transmitter (SU

𝑡𝑥
) and SU receiver

(SU
𝑟𝑥
). SUs can access TV bands when they detect the TV

bands which are not used by PUs; on the contrary, SUs work
with the ISM frequency channel. We also assume that SUs
can access a set of𝑀 licensed frequency channels which are
mutually independent [20]. The set of channels is indexed
as {1, 2, . . . , 𝑚}, and each of them is assumed to occupy a
bandwidth 𝐵

𝑐
.

2.2. Channel State Model. Similar to [21], a Markov chain
model is applied to model the state of each channel which
is shown in Figure 1. 𝑆

𝑚
(𝑡) is the state of the channel𝑚 in the

slot 𝑡, where 𝑆
𝑚
(𝑡) ∈ {1(idle), 0(busy)}. 𝑃𝑚

01
and 𝑃

𝑚

11
are the

probability of channel 𝑚 to transmit busy state to idle state
and keep idle state, respectively. They are denoted as follows:

𝑃
𝑚

01
= Pr {𝑆

𝑚
(𝑡) = 1 | 𝑆

𝑚
(𝑡 − 1) = 0} ,

𝑃
𝑚

11
= Pr {𝑆

𝑚
(𝑡) = 1 | 𝑆

𝑚
(𝑡 − 1) = 1} .

(1)

2.3. Cognitive Radio User Operating Model. In our Model,
time-slotted decentralized medium access control mecha-
nism is adopted. Each time slot can be split up to three
main subslots shown in Figure 2. At the beginning of each
time slot, sensing period 𝜏

𝑠
is reserved for identification of

the available channel (idle channel). With respect to sensing
result, an SU decides which channel to operate in switching
period 𝜏handoff . If the channel is already used by an SU on
the previous slot which is identified as the available channel,

0
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1
(idle)P00

P01

P10

P11

Figure 1: Channel state transition model.
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Figure 2: General Dynamic Spectrum Access Scheme for CRSN.

the SU does not change its operating frequency and continues
its transmission. Otherwise, an SU determines a new channel
which must be defined as a spectrum hole at spectrum
sensing time period. The actual transmission time of SU
appears in the transmission period 𝜏tr. Furthermore, the
SUs adopt the listen before talk strategy that SUs detect the
channel of primary user in simple energy detection before
they transmit the data; if the channel is sensed to be idle (state
1), the SUs transmit data. Otherwise, the channel is sensed to
be busy (state 0), and the SUs must stop data transmission to
keep waiting for the next result of next detection.

It has been shown that a sufficient statistic for optimal
decision-making is given by the conditional probability that
each channel is in state idle given all past decisions and obser-
vations [22]. The conditional idle state probability of each
channel is denoted byΩ(𝑡) ≜ [𝜔

1
(𝑡), 𝜔
2
(𝑡), . . . , 𝜔

𝑐
(𝑡)], namely,

referred to as the belief vector, where𝜔
𝑐
(𝑡) = Pr{𝑆

𝑐
(𝑡) | 𝐻

𝑐
(𝑡)}

and 𝐻
𝑐
(𝑡) is all past decisions and observations in slot 𝑡.

Therefore, the belief vector for slot 𝑡 + 1 can be obtained as
given in

𝜔
𝑐
(𝑡 + 1)

=

{{{{

{{{{

{

𝑃
11

𝑎 (𝑡) = 𝑐, 𝑆
𝑎(𝑡)

(𝑡) = 1

𝑃
01

𝑎 (𝑡) = 𝑐, 𝑆
𝑎(𝑡)

(𝑡) = 0

𝜔
𝑐
(𝑡) 𝑃
11
+ (1 − 𝜔

𝑐
(𝑡)) 𝑃
01

𝑎 (𝑡) ̸= 𝑐,

(2)
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where 𝑎(𝑡) is given the sensing action denoted as 𝑎(𝑡) ∈

{1, 2, . . . , 𝐶} which shows selecting one channel 𝑐 by SUs.
Due to the imperfect sensing, the main indicators to

measure the performance of spectrum sensing are detecting
probability 𝑃

𝑑
, false alarm probability 𝑃

𝑓
. 𝑃
𝑓
determines

the percentage of the idle channel that is misclassified as
occupied. When 𝑃

𝑓
increase, it means that there is less

opportunistic spectrum access. We adopt simple energy
detection as the underlying detection scheme here. 𝑃

𝑑
and 𝑃
𝑓

are defined as follows:

𝑃
𝑑
(𝜆, 𝜏
𝑠
) = Pr {𝑂 (𝜏

𝑠
) = 0 | 𝑆

𝑐
(𝜏
𝑠
) = 0} ,

𝑃
𝑓
(𝜆, 𝜏
𝑠
) = Pr {𝑂 (𝜏

𝑠
) = 0 | 𝑆

𝑐
(𝜏
𝑠
) = 1} ,

(3)

where 𝜆 denotes the sensing threshold of energy detector. In
order to reduce interference to the primary user, 𝑃

𝑑
is less

than object detects probability 𝑃∗
𝑑
. According to [23], 𝑃

𝑓
may

be expressed as 𝑃
𝑓
= 𝑄(√2𝛾 + 1𝑄

−1
(𝑃
∗

𝑑
) + √𝜏

𝑠
𝑓
𝑠
𝛾), where

𝑄(𝑥) is the Gaussian tail probability with inverse 𝑄−1(⋅); 𝛾 is
the average received signal-to-noise rate (SNR) of PU’s signal
on each channel; 𝑓

𝑠
represents the sampling frequency in

hertz. Combining (2) and (3), we can obtain

𝜔
𝑐
(𝑡 + 1) = Pr {𝑆

𝑐
(𝑡 + 1) | Ω (𝑡) , 𝑎 (𝑡) , 𝑆

𝑎(𝑡)
}

=

{{{{{{

{{{{{{

{

𝑃
𝑐

11
𝑎 (𝑡) = 𝑐, 𝑆

𝑎(𝑡)
= 1

𝑃
𝑓
𝜔
𝑐
(𝑡) 𝑃
𝑐

11
+ (1 − 𝜔

𝑐
(𝑡)) 𝑃
𝑐

01

𝑃
𝑓
𝜔
𝑐
(𝑡) + (1 − 𝜔

𝑐
(𝑡))

𝑎 (𝑡) = 𝑐, 𝑆
𝑎(𝑡)

= 0

𝑃
𝑐

01
+ (𝑃
𝑐

11
− 𝑃
𝑐

01
) 𝜔
𝑖
(𝑡) 𝑎 (𝑡) ̸= 𝑐.

(4)

3. Energy Consumption Analysis of System

3.1. Energy Consumption Model. Energy dissipation by a
sensor node can be attributed to transmitting and receiving
data. When a transmitter transmits a unit of message to a
receiver and the distance of them is denoted by 𝑑, so the
energy consumption at the transmitter can be calculated as
[24]. One has

𝐸
𝑡𝑥
= 𝐸
𝑟𝑥,min

(4𝜋𝑑)
𝜃

𝑔
𝑡𝑥
𝑔
𝑟𝑥
𝛼2
𝑓
2
, (5)

where 𝐸
𝑟𝑥,min is the minimum energy of receiving bit per

until packet at the receiver with given modulated mode and
error rate; 𝑔

𝑡𝑥
and 𝑔

𝑟𝑥
denote antenna gain of sender and

receiver, respectively. Due to mostly sensor node with the
omnidirectional antenna, values 𝑔

𝑡𝑥
and 𝑔

𝑟𝑥
are generally 1;

𝛼 is the speed of propagation light; 𝑓 denotes the frequency
of the carrier; the propagation loss factor 𝜃 typically varies
between 2 and 4.

3.2. Energy Consumption of SU. In our system model, as
mentioned above, the SUs are probably in two states: without
spectrum sensing and with spectrum sensing. The former
means that the SUs can transmit data with enough spectrum
resource (namely, ISM frequency) so that they need not sense

idle spectrum unused by PUs; the latter means that SUs have
not enough spectrum resource so that they need to sense idle
spectrum unused by PUs to transmit data. Hence, we analyze
two cases of energy consumption for SUs as follows.

3.2.1. The Energy Consumption of SU Node without Spec-
trum Sensing. If the SUs have enough spectrum resource
to transmit data, so they need not sense spectrum. In this
case, the energy consumption of CRSN like common WSN
occurs in SUs transmitting phase, SUs receiving phase, and
transmitting data with ISM frequency channel phase. Hence,
we can obtain that the total energy consumption of 𝜅 bits data
transmission can be expressed as

𝐸
1
= 𝜅 (𝐸SU

𝑡𝑥

+ 𝐸ISM) + 𝜅𝐸SU
𝑟𝑥

, (6)

where 𝐸ISM is the energy consumption of 1 bit data trans-
mitted by ISM channel. 𝐸SU

𝑡𝑥

and 𝐸SU
𝑟𝑥

denote the energy
consumption of SU transmitter and receiver when 1 bit data
are transferred between them.

3.2.2. The Energy Consumption of SU Node with Spectrum
Sensing. If the SUs have not enough spectrum resource, they
need to perform spectrum sensing and have an opportunity
to use the idle channel without PUs. In this case, the data
transmission between SU sender and SU receiver includes
sensing phase, decision phase, switching phase, transmission
phase, and receiving phase. If a channel is busy by sensing, SUs
need not switch current ISM frequency channel to another
channel. In this case, comparing the without spectrum
sensing cases, more energy is only consumed in spectrum
sensing and decision phase. Hence, the energy consumption
of 𝜅 bits packet transmission can be expressed as

𝐸busy = 𝐸sp + 𝐸𝑑 + 𝜅 (𝐸SU
𝑡𝑥

+ 𝐸ISM) + 𝜅𝐸SU
𝑟𝑥

, (7)

where 𝐸sp denotes energy consumption of spectrum sensing
and 𝐸

𝑑
denotes energy consumption by making a decision

by the SU. On the other hand, the channel is sensed idle;
the SU will switch to such channel for transmitting data.
Hence, extra energy consumption occurs in switching phase.
The energy consumption of 𝜅 bits data transmission can be
rewritten as

𝐸idle = 𝐸sp + 𝐸𝑑 + 𝐸ℎ + 𝜅 (𝐸SU
𝑡𝑥

+ 𝐸sc) + 𝜅𝐸SU
𝑟𝑥

, (8)

where 𝐸
ℎ
denotes energy consumption of SU switching from

the ISM channel to sensing channel in the ideal state. 𝐸sc is
the energy consumption of data transmitted by the available
sensing channel.

As above, the average of energy consumption of SU that
accesses channel 𝑐 can be expressed as

𝐸
𝑐

ave = 𝐸
𝑐

idle
𝑃
𝑐

01

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)
+ 𝐸
𝑐

busy
1 − 𝑃
𝑐

11

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)
. (9)
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Substituting (4) into (9), we can obtain (9) which is rewritten
as follows:

𝐸
𝑐

ave = 𝐸
𝑐

idle
(𝑃
𝑓
𝜔
𝑐
(𝑡) 𝑃
𝑐

11
+ (1 − 𝜔

𝑐
(𝑡)) 𝑃
𝑐

01
) / (𝑃
𝑓
𝜔
𝑐
(𝑡) + (1 − 𝜔

𝑐
(𝑡)))

(𝑃
𝑓
𝜔
𝑐
(𝑡) 𝑃
𝑐

11
+ (1 − 𝜔

𝑐
(𝑡)) 𝑃
𝑐

01
) / (𝑃
𝑓
𝜔
𝑐
(𝑡) + (1 − 𝜔

𝑐
(𝑡))) + (1 − 𝑃

𝑐

11
)

+ 𝐸
𝑐

busy
1 − 𝑃
𝑐

11

(𝑃
𝑓
𝜔
𝑐
(𝑡) 𝑃
𝑐

11
+ (1 − 𝜔

𝑐
(𝑡)) 𝑃
𝑐

01
) / (𝑃
𝑓
𝜔
𝑐
(𝑡) + (1 − 𝜔

𝑐
(𝑡))) + (1 − 𝑃

𝑐

11
)

.

(10)

To simply formula, we use𝑋, 𝑌, and 𝛽 which denote 𝑃𝑐
01
, 𝑃𝑐
11
,

and 𝜔
𝑐
(𝑡), respectively. So we obtain (9) which can be shown

as

𝐸
𝑐

ave = 𝐸
𝑐

idle
𝑌 ⋅ [𝑃

𝑓
⋅ 𝛽 + (1 − 𝛽)]

𝑃
𝑓
⋅ 𝛽 + (1 + 𝑋 − 𝑌) ⋅ (1 − 𝛽)

+ 𝐸
𝑐

busy
(1 − 𝑌) ⋅ [𝑃

𝑓
⋅ 𝛽 + (1 − 𝛽)]

𝑃
𝑓
⋅ 𝛽 + (1 + 𝑋 − 𝑌) ⋅ (1 − 𝛽)

.

(11)

3.3. Energy Efficiency Based on Markov Model. We assume
that 𝜏

0
is an interval of next spectrum sensing when current

sensing result is busy. Hence, the total energy consumption of
𝜏
0
is shown as

𝐸
𝜏
0

= 𝐸busy + 𝜏0𝐸1. (12)
We assume that 𝜏

1
is an interval of next spectrum sensing

when current sensing result is idle.The total energy consump-
tion between current idle state and next spectrum sensing
starting is shown as

𝐸
𝜏
1

= 𝐸idle + 𝜏1𝐸1. (13)
We assume that𝐴 is transition probabilitiesmetric, which can
be denoted by

𝐴 = (𝑎
𝑖𝑗
)
𝐾×𝐾

,

𝑎
𝑖𝑗
= Pr (𝑋

𝜏
𝑠
+1
= 𝑠
𝑗
| 𝑋
𝜏
𝑠

= 𝑠
𝑖
) , 𝑖, 𝑗 = 1, . . . , 𝐾,

(14)

where 𝑎
𝑖𝑗
is the transition probability of the current state 𝑠

𝑖
to

the next state 𝑠
𝑗
𝑇
𝑠
= 1, 2, 3, . . . , 𝑇 which is spectrum sensing

time, 𝐾 is the number of states (𝐾 = 2 in this paper), and
𝑋
𝜏
𝑠

∈ {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝐾
}, {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝐾
} is hidden state space.

Hence, the transition probability matrixes 𝐴 and (𝐴)𝑛 can be
written as, respectively,

𝐴 = (

𝑎
00

𝑎
01

𝑎
10

𝑎
11

) = (

𝑃
00

𝑃
01

𝑃
10

𝑃
11

) ,

(𝐴)
𝑛
= (

𝑎
00
(𝑛) 𝑎

01
(𝑛)

𝑎
10
(𝑛) 𝑎

11
(𝑛)

) = (

𝑎
00

𝑎
01

𝑎
10

𝑎
11

)

𝑛

=
1

𝑃
01
+ 𝑃
11

(

𝑃
11

𝑃
01

𝑃
11

𝑃
01

)

+
(1 − 𝑃

01
− 𝑃
11
)
𝑛

𝑃
01
+ 𝑃
11

(

𝑃
01

−𝑃
01

−𝑃
11

𝑃
11

) ,

(15)

where 𝑎
𝑖𝑗
(𝑛) (𝑖, 𝑗 ∈ 0, 1)means that starting in state 𝑠

𝑖
will be

in state 𝑠
𝑗
after 𝑛 steps.

We assume that 𝑃busy(𝜏0, 𝜏1) and 𝑃idle(𝜏0, 𝜏1) are the
probability of sensing result, busy and idle, respectively. We
can also come to a conclusion based on queuing theory:

𝑃busy (𝜏0, 𝜏1) =
𝑎
10
(𝜏
1
)

𝑎
10
(𝜏
1
) + 𝑎
01
(𝜏
1
)

=
𝑃
10
(𝜏
1
)

𝑃
10
(𝜏
1
) + 𝑃
01
(𝜏
1
)
,

𝑃idle (𝜏0, 𝜏1) =
𝑎
01
(𝜏
0
)

𝑎
01
(𝜏
0
) + 𝑎
10
(𝜏
1
)

=
𝑃
01
(𝜏
0
)

𝑃
01
(𝜏
0
) + 𝑃
10
(𝜏
1
)
.

(16)

Combining (12) and (15), we can obtain total energy con-
sumption as shown as follows:

𝐸tot = 𝑃busy (𝜏0, 𝜏1) 𝐸𝜏
0

+ 𝑃idle (𝜏0, 𝜏1) 𝐸𝜏
1

=
𝑃
10
(𝜏
1
)

𝑃
10
(𝜏
1
) + 𝑃
01
(𝜏
0
)
𝐸
𝜏
0

+
𝑃
01
(𝜏
0
)

𝑃
01
(𝜏
0
) + 𝑃
10
(𝜏
1
)
𝐸
𝜏
1

.

(17)

The average of the total consumed energy in unit slot can be
written as

𝐸ave =
𝐸tot
𝑇

󳨐⇒ 𝐸
𝑐

ave =
𝐸
𝑐

tot
𝑇

. (18)

Hence, the problem of exchange to the optimization problem
is written as follows:

min
𝜏
0
,𝜏
1

𝐸
𝑐

ave

s.t. 𝜏
0
, 𝜏
1
∈ 𝑍
+
.

(19)

Equation (19) can be rewritten as (20), and the derivation
process is shown in the appendix. One has

min
𝜏
0
,𝜏
1

𝐸ave

s.t. 𝜏
0
∈ [1, 𝜏

0max] , 𝜏1 ∈ [1, 𝜏1max] .

(20)

According to the above-mentioned, when the optimal solu-
tion is (𝜏

0max, 𝜏1max), the CRS stop sensing. Otherwise,
according to (𝜏

0opt, 𝜏1opt), the sensing result is busy (idle),
waiting for 𝜏

0opt(𝜏1opt) and then sensing again.
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Figure 3: Average energy consumption of different time interval in a unit slot.
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0
, 𝜏
1
) with different (𝑃

01
, 𝑃
10
).

4. Simulation

In this section, we run Monte-Carlo simulations to find
optimal next spectrum interval based on current spectrum
results. In all simulations, we assume the parameters 𝑃

01
=

0.1, 𝑃
10
= 0.5, 𝐸

𝑏
= 1 pJ/bit, 𝑑 = 50m, 𝑟 = 2, 𝑓 = 200MHz,

𝑓ISM = 2.4GHz, 𝜅 = 1000 bit, 𝐸SU
𝑡𝑥

= 50 nJ/bit, 𝐸SU
𝑟𝑥

=

50 nJ/bit, 𝐸
ℎ
= 1mJ, and 𝐸sc = 20mJ.

Figure 3 demonstrates average energy consumption of
𝜏
0
(𝜏
1
) in a unit slot. From Figure 3 we can find that there is an

optimal solution with a certain time interval, such that 𝜏
0
(𝜏
1
)

value is 3. It is also verifying our idea of reduction of energy

consumption through spectrum sensing with a certain time
interval.

Figure 4 shows an optimal interval of combination (𝜏
0
, 𝜏
1
)

with different (𝑃
01
, 𝑃
10
). It demonstrates that the optimal

interval can be found in small probability space. That is,
searching optimal interval is available in limited space.
However, interval 𝜏

0
approaches infinite when 𝑃

10
increase

because 𝑃
10

increase means the channel in busy state with
high probability. That means it is more energy-efficient
without spectrum sensing.

Figure 5 shows average consumption in a unit slot with
a different combination of (𝜏

0
, 𝜏
1
). The simulation is nearly
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Figure 6: Comparison between “listen before talk” approach and
without spectrum sensing approach.

identical to the theoretical value and also demonstrates the
validity of (20).

The comparison between our proposed approach, “lis-
ten before talk” approach, and without spectrum sensing
approach is shown in Figure 6. From Figure 6, we can find
that comparing “listen before talk” and no spectrum sensing,
our proposed approach is more efficient. Particularly, sensing
time interval achieves an optimal value.

Figure 7 shows that our proposed approach is better than
the approach referred to in [16]. From Figure 7, we can find
in our proposed approach that the sensing time is longer
and the energy efficiency is more effective, since our pro-
posed approach can adapt sensing time starting according to

Proposed approach
Approach in [16]
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/J)
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Sensing time (ms)

Figure 7: Comparison between proposed approach and approach
in [16].

the prior sensing results.That is, our proposed approach does
not perform spectrum sensing if the channel is busy and then
reduces spectrum sensing energy consumption and improves
the energy efficiency.

5. Conclusion

We proposed a study using Markov model with state pre-
diction for spectrum sensing in CRSN. There is an opti-
mal spectrum sensing interval which reduces total energy
consumption. Simulation results show that, due to nonfixed
sensing time interval, the prediction scheme may reduce
energy consumption. This suggests that using the precision
scheme to obtain an optimal spectrum sensing time interval
can alleviate the energy consumption to improve the energy
efficiency of CRSN.

Appendix

The Derivation Process of (19)

We rewrite (19) as follows:

󵄨󵄨󵄨󵄨𝐸
𝑐

ave
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
𝑐

tot
𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(A.1)

because 0 ≺ 𝑃
10
≺ 1, 0 ≺ 𝑃

01
≺ 1 and based on (16) and (8),

|𝐸
𝑐

ave| is computed as follows:

󵄨󵄨󵄨󵄨𝐸
𝑐

ave
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐸busy − 𝐸𝜏
1

) + (𝐸idle − 𝐸𝜏
1

)

𝑃
10
(𝜏
1
) 𝜏
0
+ 𝑃
01
(𝜏
0
) 𝜏
1

+ 𝐸
𝜏
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (A.2)
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We can rewrite this inequality as follows:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
𝑐

idle
𝑃
𝑐

01

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)
+ 𝐸
𝑐

busy
1 − 𝑃
𝑐

11

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐸busy − 𝐸𝜏
1

) + (𝐸idle − 𝐸𝜏
1

)

𝑃
10
(𝜏
1
) 𝜏
0
+ 𝑃
01
(𝜏
0
) 𝜏
1

+ 𝐸
𝜏
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.3)

And we further rewrite this inequality as follows:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
𝑐

idle
𝑃
𝑐

01

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)
+ 𝐸
𝑐

busy
1 − 𝑃
𝑐

11

𝑃
𝑐

01
+ (1 − 𝑃

𝑐

11
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨
𝐸busy − 𝐸𝜏

1

󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨
𝐸
𝜏
1
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󵄨󵄨󵄨󵄨󵄨

𝑃
01
(𝜏
0
) 𝜏
1

+ 𝐸
𝜏
1

≤

󵄨󵄨󵄨󵄨󵄨
𝐸busy − 𝐸𝜏

1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
𝜏
1

− 𝐸idle
󵄨󵄨󵄨󵄨󵄨

𝑃
01
min 𝜏
1

+ 𝐸
𝜏
1

,

(A.4)

where 𝑃
0min = min((𝑃

01
(𝜏
0
)), 𝜏
0
∈ [1,∞]), |𝐸ave| ≻ 0. Hence,

we can denote 𝜏
1max = (𝐸busy − 𝐸idle)/𝑃0min𝜇𝐸𝜏

1

, where 𝜇 is
correction parameter.

Similarly, we can denote 𝑃
1min = min((𝑃

10
(𝜏
1
)), 𝜏
1

∈

[1,∞]) and 𝜏
0max = (𝐸busy − 𝐸idle)/𝑃1min𝜇𝐸𝜏

1

.
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