
INTRODUCTION

Why use oxytocin for autism spectrum disorder treatment?

After Leo Kanner published on children exhibiting “autistic 
disturbances of  affective contact” in 1943 [1], pervasive 
developmental disorder was registered in the DSM-III in 1980 

[2]. Although the terminology was changed to autism spectrum 
disorder (ASD) in the DSM-5 in 2013 [3], the representative 
symptoms still remain as ‘restricted and repetitive patterns 
of behavior, interests or activities,’ along with ‘abnormalities 
of individuals to engage in reciprocal social interactions and 
communication’ [4, 5]. Treatment of  autism is focused on 
improving behavioral problems and promoting sociability. We 
currently lack a clearly identified pathogenesis of ASD and various 
treatments are based on mechanisms assumed to be related to the 
symptoms. Though Risperidone and Aripiprazole has approved 
by United States Food and Drug Administration (FDA) for 
autism, but it was only for the treatment of irritability. There are 
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no approved drugs for the treatment of core symptoms of ASD 
[6]. Since treatments are not based on any precise pathogenesis, 
treatments are developed through repeated trial and error. 
Nevertheless, some parents of children with ASD strive to help 
their kids even with not-evidence-based materials or medicine [7].

Since the early 1990s, naltrexone administration has been 
considered a promising treatment for ASD, based on the 
hypothesis that autism is related to hypersecretion of brain opioids 
[8] and on evidence that naltrexone decreases self-mutilating 
behavior in patients with autism [9]. Elchaar et al. reported 
that naltrexone was effective against self-injurious behavior 
[10]; however, other studies reported that it was ineffective for 
reducing self-injurious behavior and for other autism symptoms 
[11-13]. Following a systematic review, Roy et al. concluded that 
naltrexone was effective for treating hyperactivity and restlessness 
in autism, but there was no significant evidence supporting its 
treatment effects on the core features of autism [14]. In 1998, 
a promising report stated that cognitive and communicative 
symptoms in three children with ASD were ameliorated via 
intravenous secretin injection during endoscopic evaluation 
for gastrointestinal problems [15]. Data from pursuant research 
suggested that these effects were mediated by secretin activating 
the metabolic turnover of dopamine in the central nervous system 
via tetrahydrobiopterin, resulting in the improvement of ASD 
symptoms [16]. However, a recent meta-analysis concluded that 
there was no evidence that intravenous secretin improved the 
main symptoms in ASD [17]. Therefore, currently, secretin should 
not be recommended as a treatment for ASD.

In 1979, Pedersen and Prange first identified that intracerebro
ventricular oxytocin administration to nulliparous, ovariectomized 
female rats primed with estradiol benzoate induced the onset 
of maternal behavior [18]. Insel et al. proposed that oxytocin 
influences the infant response to maternal separation, based 
on evidence demonstrating that a rat pup, after receiving an 
intracerebroventricular oxytocin injection, emitted fewer 
ultrasonic vocalizations, which generate maternal retrieval [19]. 
In other words, the study emphasized that exogenous oxytocin 
has prosocial effects, and endogenous oxytocin is crucial for 
social interaction [18]. The administration of central oxytocin 
antagonists produced socio-sexual contact avoidance, and the 
development of an autism or schizoid personality model in 
humans through oxytocin blockade became a possibility [20, 21]. 
Aberrant regulation of oxytocin signaling has been shown to play 
a role in the development of high-functioning ASD [20, 21]. Since 
oxytocin has been linked to infant-mother attachment, maternal 
care, and pair bond formation in animal studies with rats and 
sheep, interest in the relationship between oxytocin and ASD has 

been greatly amplified [22-24]. Even in genetic linkage studies, 
the oxytocin signaling pathway has been found to be related to 
the etiology of autism [25]. Clinical trials for oxytocin’s beneficial 
effects on ASD have been increasing and oxytocin treatment for 
particular aspects of ASD have proven to be effective [26, 27]. 

Although there have been an increasing number of studies 
supporting the theory that the oxytocin signaling pathway is 
related to the pathogenesis and treatment of ASD, they have not 
been able to fully explain the heterogeneity and multifactorial 
nature of ASD. Some propose that finding groups of patients with 
ASD having oxytocin receptor sequences in response to oxytocin 
treatment must precede recommendation of oxytocin treatment 
or diagnosis of ASD, because oxytocin receptor genotype strongly 
associate with social cognition but not ASD diagnosis [28]. There 
were numerous reports of promising ASD treatment substances to 
turn out to be not effective in the end. In order to avoid such trials 
and errors, we reviewed the possibility of oxytocin as an etiological 
treatment for ASD in various perspectives. 

NEUROSCIENTIFIC BACKGROUND OF SOCIALITY IN ANIMALS 
AND HUMANS

Prairie voles develop long-term monogamous relationships 
with their mates and both sexes provide parental care [29]. 
These characteristics make the prairie vole a useful model for 
studying affiliative behavior, especially pair bonding. On the other 
hand, montane voles exhibit polygamy, and are appropriate for 
comparison studies with prairie voles. In a study comparing prairie 
voles and montane voles, there was no significant difference in the 
expression of oxytocin between the species. However, there was a 
difference in the distribution of regional oxytocin receptors, which 
has been suggested to mediate pair bond formation [29]. In prairie 
voles, oxytocin receptors are highly expressed in the nucleus 
accumbens, prelimbic cortex, lateral amygdala, and midline 
thalamic nuclei. In contrast, oxytocin receptors in montane 
voles are expressed in the lateral septum and cortical nucleus of 
amygdala. Although gaps in knowledge remain, it is assumed that 
oxytocin is released in prairie voles during mating and it acts on 
the limbic sites, producing selective reinforcement of the mate.  
Furthermore, infusion of oxytocin into the cerebral ventricles 
facilitates partner preference in female prairie voles [30]. Though 
partner preference may differ from the complicated process 
of pair bonding, formation of a preference may be one of the 
earliest behavioral events in selective, enduring attachment. The 
formation of partner preference is blocked in the mating female 
prairie vole by infusion of oxytocin receptor antagonist into the 
prelimbic cortex and nucleus accumbens [30, 31]. This result 
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suggests that these brain regions may be important for pair bond 
formation, although as yet, no common physiological mechanisms 
for pair bond formation have been identified between animals 
and humans. Pair bond formation is also a necessary component 
of human sexuality. In a healthy human population, nipple 
stimulation facilitates oxytocin release [32] and plasma oxytocin 
levels are increased during orgasm in both women and men [33, 
34]. If oxytocin induces social attachment, sexual activity may 
reinforce sexual bonding [35]. In an experiment with healthy male 
students who had demonstrated insecure attachment patterns, 
administration of intranasal oxytocin produced an increase in 
secure attachment experience [36]. 

Evidence indicates that oxytocin is not only associated with 
pair bond formation, but also with social cognition. Since rats 
are born functionally blind and deaf, nipple attachment by 
olfactory learning and response to maternal odor is important 
for survival [37]. Endogenous oxytocin promotes associative 
learning of maternal odor in young rats. On the other hand, if the 
rats are pretreated with oxytocin antagonists, the odor-mother 
conditioning is blocked. This suggests that oxytocin is an important 
neuropeptide for young rats to form associations, especially 
with their mothers. In adult rats, onset of maternal behavior was 
facilitated with intracerebroventricular administration of oxytocin 
[38]. Onset of maternal behavior in rats includes overcoming 
natural avoidance of neonates, which can be induced by neonatal 
odors. It appears, therefore, that in rats, oxytocin induces maternal 
care by blunting olfactory processing in associated brain areas 
[39]. Oxytocin released during birth seems to reduce the firing 
rate of the mitral and granule cells in the olfactory bulb, and thus 
may facilitate approach behavior [40]. Oxytocin knockout mice 
suffer deficits in social recognition memory, despite normal 
olfactory bulb function and spatial learning abilities [41]. Social 
recognition was restored following intraventricular oxytocin 
administration to the medial nucleus of the amygdala [42]. 
This suggests that oxytocin receptor activation in the medial 
amygdala is necessary for social recognition in mouse. Adult 
oxytocin receptor knockout mice demonstrate deficits in social 
discrimination and exhibit more aggressive behavior than wild 
type mice [43]. Oxytocin receptor gene null mutant mice have 
two additional characteristics: ‘resistance to change in a learned 
pattern of behavior,’ corresponding to ASD’s ‘restricted interests 
and repetitive behavior’; ‘increased susceptibility to seizures’, 
which is frequently comorbid with ASD. However, administering 
intracerebroventricular oxytocin restores social exploration and 
social recognition, along with aggressive behavior [43]. There is an 
increasing body of literature on humans suggesting that oxytocin 
reinforces social memory by playing an important role selectively 

in facial processing and social communication. Through primarily 
employing intranasal administration, the following effects were 
reported: improvements in mental status inference ability [44]; 
increase in eye gaze number and duration for neutral human faces 
[45]; improvements in recognition memory for faces [46]. While 
a few authors reported enhancements in recognition of prosocial 
facial expression [47, 48], other studies reported enhancement of 
neutral, angry, and fearful face recognitions [49-51].

In studies employing peripheral oxytocin injection in rats, 
prosocial behaviors such as increased adjacent lying (side-by-side 
contact) and decreased anogenital sniffing were observed [52]. 
Two specific mouse strains (BALB/cByJ, C58/J) with deficits in 
sociability showed an increase in social approach activities after 
intraperitoneal administration of oxytocin, based on performance 
in the three-chambered choice test [53]. The amygdala has 
been highlighted as one of the core areas thought to mediate the 
prosocial effects of exogenous oxytocin. In a double blind study 
with 15 men, each performed visual matching tasks for different 
fear-inducing visual stimuli after intranasal administration 
of oxytocin (27 IU) or placebo. Comparing the activity of the 
amygdala before and after the task with functional magnetic 
resonance imaging (fMRI), the authors observed reduced activity 
of the amygdala during viewing of aversive, fear-inducing visual 
stimuli along with decreased functional coupling of the amygdala 
regions mediating autonomic and behavioral aspects of fear and 
the brain stem [54]. These findings suggest that the prosocial effect 
of oxytocin is the result of an anxiolytic effect, which may include 
an adjustment in amygdala responsivity. Additionally, some 
groups have reported attenuation of aversive conditioning of fear-
conditioned face stimuli following intranasal oxytocin (32 IU) 
administration [55]. These results were interpreted as resulting 
from decreased activity in the right amygdala and right fusiform 
face area during aversive conditioning. In a recent high-resolution 
fMRI study, subjects who received intranasal oxytocin (24 IU) 
frequently gazed at the eye region despite instructions to gaze at 
the mouth region [56]. Such fixation changes are correlated with 
increased right posterior amygdala activity and are coupled with 
increased activity of the superior colliculi. Intranasal oxytocin 
administration attenuated activity in the lateral and dorsal regions 
of the anterior amygdala in response to fearful faces, and increased 
activity in response to happy faces. 

GENETIC BACKGROUND IN ANIMALS AND HUMANS

Based on the fact that children with autism have lower average 
levels of blood oxytocin [57] and higher oxytocin precursor 
levels [58] in comparison with typically developing age-matched 
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children, early genetic studies were designed to attempt to find 
genetic evidence for such differences. However, correlation 
between peripheral oxytocin levels and ASD psychopathology 
is uncertain [59]. Although single nucleotide polymorphism 
(SNP) correlation studies on behavioral problems and oxytocin 
are in progress, results vary across research groups. Yrigollen et al. 
reported a correlation between rs2740204 of the oxytocin genes 
and stereotyped behaviors [60], and Ebstein et al. reported a 
correlation between rs6133010 and ASD [61]. However, Hovey et 
al. could not replicate such correlations [62]. 

In addition to blood oxytocin concentration, there is also 
increasing evidence that oxytocin receptor genotype is strongly 
associated with ASD, more with social cognition than with ASD 
diagnosis itself [63] (Table 1). Since the physiological effect of 
oxytocin is mediated by the oxytocin receptor, many studies have 
identified the oxytocin receptor as the modifier of social cognition 
and behavior. Several studies indicated an association between 

genetic variations in the oxytocin receptor gene and ASD or related 
phenotypes in the Caucasian population [64-66]: a nominal 
association between SNP rs237880 in the oxytocin receptor gene 
and autistic traits [67]; a significant association between SNP 
rs2268493 in the oxytocin receptor gene and Asperger syndrome 
[64]; an association between rs2268493 and affiliative behavior in 
ASD [60]. Campbell et al. [68] identified three SNPs (rs2268493, 
rs1042778, rs7632287) nominally associated with autism. Several 
studies have indicated linkages in Asian populations: two SNPs 
(rs2254298, rs53576) in the Chinese Han populations [66] and in 
the Japanese populations [69]. In a recent meta-analysis, 4 SNPs, 
rs7632287, rs237887, rs2268491, rs2254298, were correlated with 
ASD, and there was a significant correlation between the oxytocin 
receptor gene and ASD in gene-based tests for association [63]. 

Methylation of the oxytocin receptor gene, which decreases its 
expression, has been proposed as one of the etiologies of autism 
[70]. Postmortem analysis of a separate subgroup of brains of 

Table 1. Promising genes for investigating the mechanism of autism spectrum disorder

Genes SNPs Results References

Oxytocin
 
 

rs2740204
 
 

Significant association with stereotypic behavior 
Did not replicate the association between rs2740204 and stereotypic behaviors presented 

by Yrigollen et al. 

Yrigollen et al., 2008 [60]
Hovey et al., 2014 [62]
 

 
 
 

rs6133010
 
 

Significant association with ASD
Did not find an association between Autism like traits (ALTs) and rs6133010 presented by 

Ebstein et al. 

Ebstein et al., 2009 [61]
Hovey et al., 2014 [62]
 

Oxytocin 
receptor 

rs237880 Significant association with Autistic Quotient in healthy population Chakrabarti et al., 2009 [67]

rs2268493 Significant association with Asperger’s syndrome 
Significant association with stereotyped behaviors and clinical diagnosis 
Significant association with ASD 

Di Napoli et al., 2014 [64]
Yrigollen et al., 2008 [60]
Campbell et al., 2011 [68]

rs1042778 Significant association with ASD Campbell et al., 2011 [68]

rs7632287 Significant association with ASD 
Significant association with ASD

Campbell et al., 2011 [68]
LoParo et al., 2015 [63]

rs2254298 Significant association with ASD in the Chinese Han population
Significant association with ASD in the Japanese population
Significant association with ASD

Wu et al., 2005 [66]
Liu et al., 2010 [69]
LoParo et al., 2015 [63]

rs53576 Significant association with ASD in the Chinese Han population
Associated with ASD in the Japanese population, not statistically significant 

Wu et al., 2005 [66]
Liu et al., 2010 [69]

rs237887 Significant association with ASD LoParo et al., 2015 [63]

rs2268491 Significant association with ASD LoParo et al., 2015 [63]

CD38 rs3796863 Probability of the rs3796863A as a protective allele, and the rs3796863C as a risk allele in 
American HFA cases 

Looking preferences of infants homozygous C allele of rs3796863 were affected by 
breastfeeding experience

Munesue et al., 2010 [74]
 
Krol et al., 2015 [76].
 

rs1800561 Cause of low levels of oxytocin in the brain or plasma by lowering the expression or 
enzymatic activity of CD38.

Munesue et al., 2010 [74]

rs6449182 Association between the presence of G allele in rs6449182 and reduced expression of 
CD38 mRNA in the lymphoblastoid cells derived from the parents of patients with ASD. 

Riebold et al., 2011 [75]

ASD: autism spectrum disorder; HFA: high functioning autism; SNP: single nucleotide polymorphism.
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individuals with autism revealed that the oxytocin receptor gene 
was significantly methylated and oxytocin mRNA was reduced 
in some samples when compared with that in the control brain 
samples in the temporal cortex [70]. These findings suggest that 
the decrease of the oxytocin receptor gene expression is related to 
some subgroups of ASD. The methylation of the oxytocin receptor 
gene was reported to increase the activity in the temporal parietal 
junction, which is known to participate in social perception [71]. 
In other words, methylation of the oxytocin receptor gene affects 
brain activity, and thus, may affect the social perception of an 
individual. 

CD38 is a transmembrane antigen that has been studied as a 
negative prognostic marker for chronic lymphocytic leukemia 
[72]. CD38 participates in the oxytocin secretion in the brain 
and affects maternal nurturing and social behavior [73]. Plasma 
levels of oxytocin are strongly reduced in CD38 knockout mice 
(CD38-/-mice) and subcutaneous oxytocin injection or lentiviral-
vector-mediated delivery of human CD38 into the hypothalamus 
rescued social memory and maternal care in these mice [73]. 
In an association study on humans in the U.S., rs6449197 and 
rs3796863, which are SNPs of CD38, were correlated with high 
functioning autism (Table 1) [74]. ASD probands, with a mutant 
allele (W140) of rs1800561 SNP (R140W), had significantly lower 
plasma oxytocin levels than those without the mutant allele [74]. 
CD38 expression in lymphoblastoid cells derived from patients 
with ASD was reduced [75]. Transition of rs6449182 SNP was 
correlated with CD38 mRNA expression levels, which were in 
turn significantly correlated with social skill, and communication 
subscores on the Vineland Adaptive Behavior Scales in patients 
with ASD [75]. According to the attention capacity to emotional 
information conveyed by the eyes, the attention of human 
babies to angry and happy eyes varies as a function of exclusive 
breastfeeding experience and genetic variation in CD38 [76]. 
Extended duration of breastfeeding resulted in enhanced looking 
preference to happy eyes and decreased looking preference to 
angry eyes. While looking preferences of infants with CA/AA 
genotype were not influenced by breastfeeding exposure, infants 
who were homozygous for the C allele of rs3796863 were affected 
by feeding experience [76]. 

PSYCHOPHARMACOLOGIC BACKGROUND OF SIGNIFICANT 
AND NEGATIVE HUMAN STUDIES

Application route of oxytocin

In clinical trials with oxytocin administration targeting a 
diversity of psychiatric disorders (including ASD), the routes of 
oxytocin administration are oral, intravenous, and intranasal [77] 

(Table 2). Oral administration is not suitable due to the extensive 
metabolism of oxytocin by the liver and gastrointestinal tract. 
Through intravenous administration, only a small amount is able 
to pass the blood-brain barrier, and there is a latent possibility of 
uterus contraction side effects in females [77]. Moreover, since 
it is an invasive method, applications for community treatment 
are limited. The intranasal route has several advantages, such as 
bypassing the bloodstream and directly accessing the cerebrospinal 
fluid (CSF) within 30 min, achieving effective concentrations of 
neuropeptides in the brain without systemic side effects [78], no 
requirement for specific skill, and ease of application at home [79]. 

Studies using oxytocin with clinical significance

As studies of animal behavior imply that oxytocin is related 
to one of autism’s core features, ‘repetitive behavior’ [80]. Similar 
results were replicated in humans. In the first human study on 
oxytocin infusion effects on autism core behavior, 15 patients with 
autism and Asperger’s syndrome were administered intravenous 
oxytocin and showed significantly decreased repetitive behavior 
(Table 2) [80]. In another study by the same authors, intravenous 
injection of oxytocin for 4 h promoted social learning in patients 
with ASD [81]. In the first study on adolescent subjects with ASD, 
16 participants showed significant improvement in the ‘Reading 
the Mind in the Eyes’ task after administration of intranasal 
oxytocin (24 IU) [82]. Later results from the same research group 
indicated that, although there was no significant difference 
between groups, oxytocin nasal spray may improve emotion 
recognition, in which impairment is one of the core features of 
ASD [83]. In a study on children with autism and Asperger’s 
syndrome, the subjects were administered intranasal oxytocin 
twice a day (0.4 IU/kg/dose) for 12 weeks. The results showed 
improvement in not only repetitive behavior, but also facial 
recognition and social cognition [84]. In a study on 20 men with 
ASD, a single-dose of intranasal oxytocin (24 IU) improved the 
‘deficit in inferring others’ social emotion’ and restored decreases 
in right anterior insula activity [27]. In a study on 40 high-
functioning men with ASD, a single-dose intranasal administration 
of oxytocin (24 IU) improved the frequency and response time 
of nonverbal information-based judgments and also restored 
activity levels of the medial prefrontal cortex, [26]. To investigate 
the long-term effect of oxytocin administration, Watanabe et al. 
[85] performed a randomized controlled trial (RCT), including 6 
weeks of intranasal administration of oxytocin (48 IU/day), to 20 
high-functioning adult men with ASD. The trial showed improved 
social reciprocity and enhanced task-independent resting-state 
functional connectivity between the anterior cingulate cortex and 
the dorso-medial prefrontal cortex [85]. Unlike previous short-
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Table 2. Results of randomized placebo controlled trials with oxytocin in autism spectrum disorder grouped by administration route

Route Study
Subjects

(age: years)
Dose of oxytocin

Duration of 
treatment

Results Adverse effects

Intravenous Hollander et 
al., 2003 
[80]

n=15
Males=14
Mean age: 32.9
Autism (n=6), 

AS (n=9)

Continuous infusion 
over 4 h of 10 IU/mL 
synthetic oxytocin or 
placebo

Crossover design
Oxytocin or placebo 

challenges were 
separated by 2~3 
weeks.

There was a greater 
reduction in repetitive 
behaviors over 
time with oxytocin 
compared with 
placebo.

Mild adverse effects: 
drowsiness, anxiety, 
depression, headache, 
tingling, backache, 
trembling, restlessness, 
stomach cramps, and 
enuresis.

Hollander et 
al., 2007 
[81]

n=15
Males=14
Mean age: 32.9
Autism (n=6), 

AS (n=9)

Continuous infusion 
over 4 h of 10 IU/mL 
synthetic oxytocin or 
placebo

Crossover design
Oxytocin or placebo 

challenges were 
separated by 1 week 
minimum.

Comprehension of 
affective speech 
was improved 
after oxytocin trial 
compared with 
placebo.

Unreported

Intra-nasal 
positive 
effects

Watanabe et 
al., 2014 
[26]

n=33 
All males 
Mean age: 28.5
ASD 

a single dose of 
oxytocin (24 IU) 
or placebo 40 min 
before the scanning.

Crossover design 
1-week interval in a 

pseudorandom order 

Oxytocin enabled 
the participants to 
make nonverbal 
information-based 
judgments more 
frequently with 
shorter response time 
and restored brain 
activity in the medial 
prefrontal cortex.

No adverse side effects 
were observed

Watanabe et 
al., 2015 
[85]

n=20
All males
Mean age: 35.1 

(oxytocin 
group), 29.3 
(placebo 
group)

ASD

24 IU in the morning 
and afternoon over 
6 consecutive weeks 
(48 IU/day).

Double-blind, placebo-
controlled, crossover 
trial.

Twice-daily, 6 weeks 
of either 24 IU or 
placebo.

Oxytocin improved 
social reciprocity 
and increased the 
resting state functional 
connectivity between 
the anterior cingulate 
cortex and dorso-
medial prefrontal 
cortex.

No major adverse effects 
were observed, except 
mild nose irritation, 
diarrhea.

Aoki et al., 
2015 [27]

n=20
All males
Mean age: 30.8 

HFA (n=19),
AS (n=1)

A single-dose of 
oxytocin (24 IU) 
or placebo, in a 
randomized fashion.

Crossover design,
individuals in oxytocin 

group received both 
oxytocin and placebo 
with an interval of 1 
week.

Oxytocin significantly 
increased the correct 
rate in inferring others’ 
social emotions. At 
the neural level, the 
peptide significantly 
enhanced the 
originally-diminished 
brain activity in the 
right anterior insula 
during inferring 
others’ social 
emotions.

No adverse side effects 
were observed.

Tachibana et 
al., 2013 
[86]

n=8
All males
Mean age: 11.9
ASD

Stepwise increased 
dosage (8, 16, 24 IU/
dose) for about 7 
months.

Open-label study
Oxytocin administration 

was performed in a 
stepwise increased 
dosage manner. A 
placebo period (1~2 
weeks) was inserted 
before each step

Six of 8 participants 
showed improved 
scores on the social 
interaction and 
communication 
domains of the 
Autism Diagnosis 
Observation 
Schedule-Generic. 

No adverse side effects 
were observed.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Watanabe T%5BAuthor%5D&cauthor=true&cauthor_uid=24352377
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term studies, Tachibana et al. administrated intranasal oxytocin 
for 7 months to 8 adolescent boys with outcomes presenting 
improvement in communication and social interaction [86]. 
Considering that poor social interaction and repetitive behaviors 
are core symptom domains of autism, the study results imply that 
oxytocin may be a potential treatment option for ASD. 

Studies using oxytocin with negative findings

Sometimes studies fail to reproduce treatment effects of oxytocin 
reported in previous work. In a study on 19 adult patients with 
ASD, intranasal oxytocin (24 IU) was administered for 6 weeks, 
and although social cognition and low order repetitive behaviors 
(stereotype, self-injury) improved, there was no effect on higher 

order repetitive behaviors (ritualistic, sameness) [87]. This study 
is of significant importance as it is the first study on the daily 
administration of oxytocin. However, its implications may be 
limited by the small number of subjects and the short duration 
of administration [87]. In a study on 38 male youth patients, 
nasal administration (24 or 12 IU) was done for 5 days but results 
showed no difference from the placebo group in terms of emotion 
recognition and social interaction skills, among others [88]. The 
authors suggested that there might be patient subgroups that may 
not benefit from exogenous oxytocin and that further research is 
needed. In a RCT of 50 adolescent men with autistic or Asperger’s 
syndrome receiving oxytocin nasal spray (18 or 24 IU) twice-
daily for 8 weeks, the oxytocin group did not show improvements 

Table 2. Continued

Route Study
Subjects

(age: years)
Dose of oxytocin

Duration of 
treatment

Results Adverse effects

Intra-nasal 
negative 
effects

Anagnostou 
et al., 2012 
[87]

n=19
Males=16
Mean age: 33.2
ASD

24 IU (six puffs) 
oxytocin (n=10) or 
placebo (n=9)

Double-blind, placebo-
controlled trial

Twice-daily, 6 weeks of 
either oxytocin 24 IU 
or placebo. 

No significant 
differences between 
the oxytocin and the 
placebo groups on 
the primary outcome 
measures.

Oxytocin improved 
performance on the 
‘Reading the Mind in 
the Eyes test’

Increased irritability 
of mild to moderate 
severity (n=2), and 
increased allergy 
symptoms (n=2). 

Mild fatigue, headache, 
leg shaking, and 
increased energy. 

Dadds et al., 
2014 [88]

n=38 
All males
Mean age: 11.2
ASD

Once-daily either 12 or 
24 IU (two/four puffs, 
depending upon 
weight) oxytocin 
(n=19) or placebo 
(n=19)

30~45 min before 
experimental 
procedures (always in 
the morning)

Double-blind, placebo- 
controlled trial

Once-daily 4 days of 
either oxytocin or 
placebo.

In both groups, child 
social interaction 
skills, accuracy on the 
emotion recognition 
task, and perceived 
diagnostic severity 
improved over 
time, with no main 
effect attributable to 
oxytocin treatment.

Participants reported 
minimal side-effects 
throughout the study.

Both groups reported 
decreased side effects 
from pre- to post 
treatment.

Guastella et 
al., 2015 
[83]

n=50
All males
Mean age: 

13.92
Autistic or AS

Aged 16~18 years 
(oxytocin n=5, 
placebo n=5) 
received 24 IU, 

aged 12~15 years 
(oxytocin n=21, 
placebo n=19) 
received 75% of the 
adult dose; 18 IU

Double-blind, placebo-
controlled trial

Twice-daily for 8 weeks 
of either oxytocin or 
placebo nasal sprays 
(either 18 or 24 IU) 

Oxytocin showed no 
benefit following 
treatment on 
Social Responsive 
Scale, Clinical 
Global Impression. 
However, caregivers 
who believed their 
children received 
oxytocin reported 
greater improvements 
compared to 
caregivers who 
believed their children 
received placebo

No evidence of increased 
side effects 

AS: Asperger’s syndrome; ASD: autism spectrum disorder; HFA: high functioning autism.
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in social cognition following treatment as rated by caregivers 
and clinicians [83]. While the results did not suggest any benefits 
of oxytocin for autistic symptoms, further research is needed to 
explore earlier age interventions and package program involving 
a combination of pharmacological treatment and social-learning 
exercises.

Safety of oxytocin treatment

There is some evidence that very young animals may show long-
lasting negative consequences in social behavior following direct 
intraperitoneal injection of large doses of oxytocin [89]. Chronic 
or repeated intranasal oxytocin treatment in humans might also 
result in undesired counter-regulatory consequences [90]. A 
55-year old patient with obsessive compulsive disorder showed 
clear improvement in symptoms following intranasal oxytocin 
treatment for 4 weeks, but concurrently developed severe memory 
impairments [91]. This case lends support for the amnestic 
properties of the peptide. When administrating intravenous 
oxytocin for labor induction or abortion, adverse effects such 
as reflex tachycardia, seizures, headache, memory impairment, 
hyponatremia, a syndrome of inappropriate antidiuretic hormone 
secretion, and anaphylaxis have been reported [92]. Large cohort 
studies have suggested a very small but significant risk for the 
future development of autism later in life following augmented 
childbirth with oxytocin [93]. Although side effects such as 
irritability, nasal congestion, fatigue, and headache were reported 
in human studies following intranasal oxytocin administration, 
there were no statistically significant differences from the placebo 
group [94]. In a recent report on children with ASD administered 
long-term nasal oxytocin for more than 6 months, six of eight 
participants reported positive effects on the quality of reciprocal 
communication and showed excellent compliance with no side 
effects [86]. According to the review of previous human data, 
there are no serious adverse effects with short-term application of 
oxytocin with 18~40 IU [94], but human data on the outcomes 
following extended treatment, especially in young children with 
ASD, are required.

OXYTOCIN-RELATED CANDIDATE AGENTS FOR FUTURE ASD 
RESEARCH

Since the atypical antipsychotics, risperidone and aripiprazole, 
are the only FDA-approved medications for ASD, research for 
new therapeutics based on specific mechanisms and pathways 
involving etiological factors is urgently necessary [95]. Apart 
from intranasal oxytocin, molecules or pathways related to 
oxytocin release can be candidates for such novel research. In 

animal studies, vasopressin increased prosocial behavior [52], and 
decreased social interaction was observed in arginine vasopressin 
receptor 1A (V1aR) knockout mice [96]. In a human study [97], 
blood measures of arginine vasopressin (AVP) concentrations 
represented CSF AVP activity in human and were used as a 
predictor of social functioning in children with ASD. Although 
AVP has received less attention than oxytocin for a possible role 
in ASD, AVP levels can be used as a biomarker of ASD, and AVP 
physiology maybe a promising therapeutic target to improve 
social cognition in individuals with ASD [97].

Several peptides have been identified that affect endogenous 
oxytocin levels. Each peptide affects oxytocin release through 
a different mechanism. Orexin is a peptide produced in the 
lateral hypothalamus [98]. Adrenaline, noradrenaline, serotonin, 
and dopamine are known to increase oxytocin levels. After 
preincubation of rat neurohypophyseal cell cultures with orexin, 
adrenaline-, histamine- and serotonin-induced increases in 
oxytocin levels were attenuated. These results indicate that changes 
in oxytocin secretion induced by the monoaminergic system can 
be directly influenced by the orexin system [98]. The serotonin 
system is also involved in oxytocin release [99]. Serotonergic fibers 
and receptors are located in the oxytocinergic supraoptic nucleus 
and paraventricular nuclei of the hypothalamus. Serotonergic 
receptor agonists, including 8-hydroxy-2-(dipropylamino) 
tetralin (8-OH-DPAT), 1-(2,5-dimethoxy 4-iodophenyl)-2-
amino propane hydrochloride (DOI), and buspirone, cause 
increased release of oxytocin [99]. In addition to increasing 
levels of oxytocin, buspirone can promote prosocial behaviors. 
Galanin is a neuropeptide involved in feeding behavior, memory, 
cognition, gut secretion, and motility [100]. Galanin works on the 
hypothalamo-neurohypophyseal system and has a modulatory 
role in oxytocin release. 

CD38 transcription is highly sensitive to cytokines and vitamins, 
including all-trans retinoic acid (ATRA), a known inducer of 
CD38 [75]. In a study on lymphoblastoid cell lines in patients 
with ASD and their parents, ATRA exhibited an upmodulatory 
potential on CD38 mRNA [75]. Although there have been almost 
no followup studies on ATRA and ASD treatment, there is a 
possibility that substances affecting CD38 expression, such as 
ATRA, may be potential therapeutic candidates. 

Stimulation of melanocortin 4 receptors (MC4R) on supraoptic 
neurons activates oxytocinergic neurons and induces central, but 
not peripheral release of oxytocin in mice [99]. A selective MC4R 
agonist, Ro27-3225, administered to Cntnap2 knockout mouse 
restores social behavior [101]. Administration of MC4R agonist, 
melanotan II (MTII), promotes partner preference development 
and activates hypothalamic oxytocin neurons [102]. These studies 
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suggest that MC4R agonists may be a possible treatment option to 
improve social function in individuals with ASD.

CONCLUSION

Considering the complex characteristics of  ASD, which 
are a combination of biologic heterogeneity and phenotypic 
heterogeneity, developing a single form of medication is extremely 
difficult. Characteristics of ASD, such as early onset, are one 
of the inherent challenges limiting clinical research. Since 
oxytocin is responsible for not only maternal behavior but also 
core symptom domains of ASD, such as social interaction and 
repetitive behaviors, association with the pathogenesis of ASD 
is highly possible. Various animal and human studies are in 
progress regarding the potential disruption of oxytocin function 
or secretion leading to the etiology of ASD. Along with studies 
on oxytocin-related genes, numerous research studies on the 
oxytocin receptor gene and CD38 gene are being conducted. 
Through clinical trials applying oxytocin in patients with ASD, 
future clinical applications are promising. Various studies on novel 
substances and pathways that affect oxytocin secretion and related 
gene translation are also in progress. For oxytocin treatment 
in patients with ASD, standardization of administration route, 
dosage, and duration of treatment need to be optimized in long-
term, large sample-size studies. Even though there are evidences 
that support the effect of oxytocin on promoting prosocial 
behaviors, but some results suggest negative findings and also 
oxytocin is not effective in all core symptom domains of ASD. 
Therefore, further research about which subgroup is responsive to 
oxytocin should be carried out.
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