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A compression technique for still digital images is proposed with deep neural networks (DNNs) employing rectified linear units
(ReLUs). We tend to exploit the DNNs capabilities to find a reasonable estimate of the underlying compression/decompression
relationships. We aim for a DNN for image compression purpose that has better generalization property and reduced training time
and support real time operation. The use of ReLUs which map more plausibly to biological neurons, makes the training of our DNN
significantly faster, shortens the encoding/decoding time, and improves its generalization ability. The introduction of the ReLUs
establishes an efficient gradient propagation, induces sparsity in the proposed network, and is efficient in terms of computations
making these networks suitable for real time compression systems. Experiments performed on standard real world images show
that using ReLUs instead of logistic sigmoid units speeds up the training of the DNN by converging markedly faster. The evaluation
of objective and subjective quality of reconstructed images also proves that our DNN achieves better generalization as most of the

images are never seen by the network before.

1. Introduction

Digital image compression plays an extremely important role
in the transmission and storage of digital image data. Usually
the amount of data associated with visual information is
so large that its storage requires enormous memory and its
transmission requires high bandwidths. Image compression
is the process of effectively coding digital images to reduce
the number of bits required to represent an image. This com-
pression allows transmission of image at very low bandwidths
and minimizes the space requirement for storage of this data.
As consecutive frames of still images constitute the video
data, algorithms designed for 2D still image compression can
be effectively extended to compress video data. The image
compression algorithms can be broadly classified into lossless
and lossy compression algorithms. A lossless compression
algorithm reproduces the original image exactly without any
loss of information. These methods are used in applications
where data loss is unacceptable, for example, text data and
medical images. In this paper we are going to target the lossy

compression where the reproduced image is not an exact
replica of the original image. Some information is lost in the
coding process. These algorithms provide a way of tradeoft
between the image quality and the degree of compression. The
goal is to achieve higher degree of compression without much
degradation in image quality.

Artificial neural networks (ANNG) [1-3] get their inspira-
tion from the manner in which human brain performs calcu-
lations and makes decisions. In fact ANNSs tend to imitate the
functionality of human brain, that is, the biological neuron
system. An ANN achieves this abstraction and modeling of
the information processing capabilities of human brain by
interconnecting a large number of simple processing ele-
ments called the artificial neurons. An artificial neuron is an
electronically modeled biological neuron. The complexity of
a real biological neuron is highly abstracted while modeling
an artificial neuron. The theme is to mimic the working
of human nervous system with the help of these artificial
neurons. In order to achieve this each artificial neuron is



equipped with some computational strength similar to that
possessed by a biological neuron. An artificial neuron like
a biological neuron can take many input signals and then
based on an internal weighting system produces a single
output signal that is typically sent as input to another neuron.
Figure 1 shows a representation of an artificial neuron.

Here X, X, ..., X, are the ninput signals to the artificial
neuron. Each of these input signals is multiplied by a connec-
tion weight. These weights are represented by W, W,,..., W,,
respectively. All of these products are summed and fed
to an activation function to generate an output for the
artificial neuron. An ANN is set up by creating connections
between these artificial neurons analogous to the connection
between biological neurons in a human nervous system as
shown in Figure 2. Recent developments in the processing
capabilities of the CPU and advancement in the architecture
of neural networks have attracted many researchers from
various scientific disciplines to investigate these networks as
a possible solution to solve various problems encountered
in the fields of pattern recognition, prediction, optimization,
function approximation, clustering, categorizing, and many
more. ANNs are also being researched and developed to
address the problem of compression of still images and
video data [4-11] besides the conventional algorithms [12].
The target is to achieve high compression ratios, maximize
the quality of reproduced images, and design systems that
utilize minimum computational resources and support real
time applications. In this work we attempt for these goals
by a deep neural network [13], that is, an artificial neural
network having multiple hidden layers of neurons between
the input and output layers. These DNNs can model complex
nonlinear relationships more efficiently. The extra layers
of the DNNs enable the network to capture the highly
variant features of the input and learn more higher abstract
representations of the data. The common issues for the DNNs
are that its training is time consuming and is computationally
very expensive. In this work we propose a DNN for still
image compression that has much reduced training time
and is computationally efficient. Our DNN achieves this
speed-up in training time and reduction in complexity by
employing rectified linear units [14]. This arrangement also
leads to better generalization of the network and reduces the
real compression-decompression time. The network meets
the targets guaranteed for a good compression system; it
converges fast, does not have a vanishing gradient problem,
and has a sparse representation (only part of the network
is active for a given input). These characteristics make the
proposed network suitable for real time compression systems.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the literature concerning image
compression via ANNs and states the preliminaries. Section 3
introduces the proposed DNN. Section 4 reports the experi-
mental results. Section 5 provides the conclusion to the paper.

2. Background and Preliminaries

Several studies have been proposed to address the problem
of digital image compression via artificial neural networks.
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The most elemental and simple network, that is, the single
structured neural network, is described in [4]. This network
uses a 3-layer network with logistic transfer function to
achieve image compression. Parallel architectures for neural
networks for image compression are proposed in [5-7]. The
idea is to compress different part of an image (i.e., according
to some complexity) by different neural networks in parallel
in order to increase the compression ratio and quality of
reconstructed images. In [8] the authors propose the use of
novel normalization function along with the single structured
neural network to improve the compression quality. An
ANN for calculating the discrete cosine transform for image
compression is described in [9]. The authors in [10, 11]
provide a summary of different neural network models and
techniques such as vector quantization that neural networks
can be complemented with to improve the compression
results.

The process of image compression can be formulated as
designing a compressor and decompressor module as shown
in Figure 3, where I is the original image, I is the compressed
data, and I' is the reconstructed image. The number of
bits in the compressed data is much less than the number
of bits required to represent the original image. Usually
these modules are realized by heavy complex algorithms
with a lot of complicated calculations involved. As described
before many researches are carried out to approximate the
image compression/decompression modules with the help of
ANN by generating an internal data representation. These
networks are trained on several training images (input-
output pairs), the task being to approximate the correspond-
ing compression-decompression algorithm compactly and
model it so it can be generalized to a large set of test data.
This is achieved by rigorously training the network with
the help of learning algorithms. This training process is
characterized by the use of a given output that is compared
to the predicted output and by adaption of all parameters
according to this comparison. The parameters of a neural
network are its weights. This paper uses the back propagation
for training the ANN. The back propagation [15] is a super-
vised learning algorithm and is especially suitable for feed-
forward networks. The feed-forward neural networks refer
to multilayer perceptron network in which the outputs from
all the neurons go to following but not the preceding layers,
so there are no feedback loops and the information flows in
only one direction. The term back propagation is abbreviated
for “backward prorogation of errors” and it implies that the
errors (and therefore the learning) propagate backwards from
the output nodes to the inner nodes. Hence back propagation
is used to calculate the gradient of the error with respect
to the network’s modifiable weights. This gradient is then
used in a simple gradient descent algorithm to find weights
that minimize the error. The term back propagation refers to
the entire procedure encompassing both the calculation of
gradient and its use in gradient descent. Back propagation
requires that the transfer function used by the artificial
neurons (or “nodes”) to be differentiable. Figure 2 shows a
generalized architecture for an ANN. The neurons are tightly
interconnected and organized into different layers. The input
layer receives the input; the output layer produces the final
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output. Usually one or more hidden layers are sandwiched in
between the two.

3. Proposed Deep Neural Network for
Image Compression

In this paper digital image compression is achieved by a deep
neural network that employs rectified linear units. The mul-
tiple hidden layers of the DNN are advantageous in realizing
more efficient internal data representations of the underlying
compression-decompression function. Researchers conclude
that the biological neurons can be better approximated and
modeled by the ReLUs. As these ReLUs are more biologically
plausible they can be engaged as better activation functions
than the widely used logistic sigmoid and hyperbolic tangent
functions. The ReLU is given by

rectifier (x) = max (0, x), (1)

where x is the input to the neuron. The function behaves
linearly for a favorably excitatory input pattern and “0”
otherwise. As can be seen the function is one sided; it does
not possess the property of sign symmetry or antisymmetry.
The function is not differentiable at “0” and its derivative,
whenever it exists, can take only two values, “0” or “I”
Although the ReLUs are not entirely differentiable, nor
symmetric and possess hard linearity they can outperform
the sigmoid and hyperbolic tangent neurons. Experiments
show that the ReLUs are worth the tradeoff with these much
sophisticated counter parts. They allow fast convergence and
better generalization of the DNN. These ReLUs are compu-
tationally much cheaper. The efficient computations required
for both its value and its partial derivatives enable much larger
network implementations. Engaging ReLUs induces sparsity
in the network; that is, only a subset of neurons are active in
the hidden layers. This leads to faster computation and better
learning. Other advantages of sparsity are discussed in [14].
The DNN with ReLUs used for still image compression is
shown in Figure 2. The network consists of an input layer,
n number of hidden layers, and an output layer. As this
network is targeting image compression/decompression it
must have equal number of input and output neurons, N (an
N dimensional input is mapped to an N dimensional output).
The number of neurons in the input layer or the output layer
corresponds to the size of image block to be compressed.
Compression can be achieved by allowing the number of
neurons at the last hidden layer, K, to be less than that of the
neurons at both the input and the output layers (K < N). The
number of hidden layers and hidden neurons is determined
by the number of input and output neurons as well as desired
compression ratio. The compression ratio of this DNN is the
ratio of input neurons to the number of neurons in the last
hidden layers.

The training of the DNN is carried out with a set of
images selected from the training set. The training images
are divided into nonoverlapping blocks of size W by W
pixels. The pixels in each of these blocks are normalized by
a normalizing function f, usually from a grey scale value
between 0 and 255 to a range of values between 0 and 1. These
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normalized blocks are fed into the input layer of the DNN
at random; each neuron in the input layer corresponds to
one pixel; that is, N = W x W. As in case of supervised
learning the desired output for the network is known in
advance, which in case of image compression purpose is
the same as the input to the network. We tend to resolve
the network to produce at the output what it sees at the
input. As we use back propagation for training the DNN,
the difference between the actual output and desired output
is calculated and the error is propelled backwards to adjust
the parameters of the network accordingly. With the new
weights the output is again calculated and compared with
the desired one, errors are repropagated, the parameters are
readjusted, and the process continues in an iterative fashion.
In our implementation of DNN the training is stopped when
the iterations reach their maximum limit or when the average
mean square error drops below a certain threshold. Once the
training of the network is completed, the parameters of the
network are saved. With these finalized weights we utilize
this DNN to compress and decompress the test images. The
test image to be compressed is divided into nonoverlapping
blocks. Each block is fed into the input of the network after
normalization. The input layer and the » hidden layers act
as the compressor module and perform a nonlinear and
nonorthogonal transformation S. The compressed data is
found at the output of the last hidden layer. The output
layer acts as the decompressor module and reconstructs
the normalized input data block by performing a second
transformation T. The decompressed image block can be
found at the output neurons of the output layer. The dynamic
range of the reconstructed data block is restored by applying
the inverse normalization function f~'. The transformations
S and T are optimized by training the network on several
training images.

4. Experimental Results

Experiments were performed on test images taken from the
standard set of images: Lena, baboon, cameraman, pepper,
and boats. The size of the test images was 512 by 512. The
number of neurons in the input layer, output layer, and the last
hidden layer was adjusted to achieve different compression
ratios, that is, 4:1, 8:1, and 16:1. The epoch versus mean
square error (mse) curves for the DNN employing the
rectified linear neurons and the logistic sigmoid neurons were
plotted for different compression ratios (CRs) and are shown
in Figures 4-6.

A comparison of these plots shows that the DNN with
ReLUs converges several orders of magnitude faster than the
one with logistic sigmoid units. This fact is illustrated in
Figure 7 which shows that to reduce the mse to 0.0019 the
DNN with sigmoid neurons takes 500 epochs while the same
mse is achieved by the DNN with ReLUs after 50 epochs for
a CR of 4:1. Similarly it takes 500 epochs for the sigmoid
neurons to reduce the mse to 0.0039 at a CR of 8 : 1 while the
same is achieved after 35 epochs by employing ReLUs. This
high convergence rate validates the fact that the network with
ReLUs trains much faster than their logistic counterparts.
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FIGURE 4: Comparison of epoch versus mse for rectified linear
neurons and logistic sigmoid neurons ata CR of 8:1.
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FIGURE 5: Comparison of epoch versus mse for rectified linear
neurons and logistic sigmoid neurons ata CR of 4:1.

The performance of the network is measured by the peak
signal to noise ratio (PSNR) of image reconstructed at the
output layer and is defined as

PSNR = 10log,, ( )

MAX;?
MSE )’

where MAX; is the maximum possible pixel value of the
image and MSE is the mean square error given by

m—1n-1
MSE=—Y ¥ [l ) - L) @)
mn % =

where m and n represent the size of the image in the
horizontal and vertical dimensions, respectively, I, is the
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FiGure 6: Comparison of epoch versus mse for rectified linear
neurons and logistic sigmoid neurons at a CR of 16 : 1.
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F1GURE 7: Epochs required to reduce the mean square error of the
DNN using sigmoid neurons and rectified linear neurons at different
CRs.

original image, and Iy is the reconstructed image. Tables 1-3
show the PSNR achieved by the set of five standard real world
images compressed at different compression ratios by (i) the
rectified linear DNN and (ii) the logistic sigmoid DNN. The
DNNs were trained using the same data set and by the back
propagation algorithm. There is a significant improvement
in the PSNR of the reconstructed images for rectified linear
units compared to the logistic units. This result proves better
generalization ability of our network with ReLUs as none of
the sequences in Tables 1-3 were used for the training of the
DNN.

To evaluate the subjective quality of the decompressed
images Figures 8-10 show some of the original images and
their reconstructed counterparts.
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FIGURE 8: (a) Original image, (b) image reconstructed by rectified deep neural network at a CR of 8:1, and (c) image reconstructed by deep

neural network employing sigmoid transfer function ata CR of 8: 1.

FIGURE 9: (a) Original Image, (b) image reconstructed by rectified deep neural network at a CR of 4: 1, and (c) image reconstructed by deep

neural network employing sigmoid transfer function ata CR of 4: 1.

FIGURE 10: (a) Original image, (b) image reconstructed by rectified deep neural network at a CR of 16 : 1, and (c) image reconstructed by deep

neural network employing sigmoid transfer function ata CR of 16 : 1.

TABLE 1: PSNR of the reconstructed images at a CR of 8:1.

TaBLE 2: PSNR of the reconstructed images ata CR of 4: 1.

Compression scheme

Compression scheme

Sequence Sequence

ReLU Sigmoid ReLU Sigmoid
Lena 26.20 24.37 Lena 30.48 2730
Baboon 22.56 20.59 Baboon 23.70 23.95
Cameraman 24.47 23.24 Cameraman 28.02 27.07
Peppers 24.02 25.54 Peppers 28.40 28.46
Boats 26.31 24.54 Boats 26.68 26.13

5. Conclusions

In this paper we use a deep neural architecture for the purpose
of still image compression. The proposed DNN learns the
compression/decompression function very well. We advocate
the use of ReLUs in this DNN as these units can be realized

by very simple functions. They greatly accelerate the con-
vergence of the network, are computationally inexpensive,
and have better learning characteristic. It has been shown
experimentally that these networks train faster and generalize
better; hence we argue that this network can be realized into
real time compression systems. Future work on this study will
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TABLE 3: PSNR of the reconstructed images at a CR of 16: 1.

Compression scheme

Sequence

ReLU Sigmoid
Lena 25.19 22.78
Baboon 21.25 20.06
Cameraman 24.54 21.53
Peppers 23.25 22.70
Boats 24.11 22.44

leverage implementing these DNNs on specialized hardware
like GPUs and also extending this idea to the compression of
video data.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by the MSIP (Ministry of
Science, ICT and Future Planning), Republic of Korea,
under the project for technical development of information
communication and broadcasting (2014-044-057-001).

References

[1] S.O.Haykin, Neural Networks and Learning Machines, Prentice
Hall, 3rd edition, 2008.

[2] Y. S. Abu-Mostafa, M. M. Ismail, and H.-T. Lin, Learning from
Data, AMLBook, 2012.

[3] P. H. Sydenham and R. Thorn, Handbook of Measuring System
Design, vol. 3, John Wiley & Sons, Chichester, UK, 2005.

[4] G. L. Sicuranza, G. Ramponi, and S. Marsi, “Artificial neural
network for image compression,” Electronics Letters, vol. 26, no.
3, pp. 477-479,1990.

[5] S. Carrato and S. Marsi, “Parallel structure based on neural
networks for image compression,” Electronics Letters, vol. 28, no.
12, pp. 1152-1153, 1992.

[6] G. Qiu, M. R. Varley, and T. J. Terrell, “Image compression by
edge pattern learning using multilayer perceptions,” Electronics
Letters, vol. 29, no. 7, pp. 601-603, 1993.

[7] A.Namphol, S. H. Chin, and M. Arozullah, “Image compression
with a hierarchical neural network, IEEE Transactions on
Aerospace and Electronic Systems, vol. 32, no. 1, pp. 326-338,
1996.

[8] Y. Benbenisti, D. Kornreich, H. B. Mitchell, and P. A. Schae-
fer, “A high performance single-structure image compression
neural network,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 33, no. 3, pp. 1060-1063, 1997.

[9] K.S.Ngand L. M. Cheng, “Artificial neural network for discrete
cosine transform and image compression,” in Proceedings of
the 4th International Conference on Documents Analysis and

Recognition, vol. 2, pp. 675-678, August 1997.

[10] C.Cramer, “Neural networks for image and video compression:
areview; European Journal of Operational Research, vol. 108, no.
2, pp. 266-282,1998.

[11] J. Jiang, “Image compression with neural networks—a survey;”
Signal Processing: Image Communication, vol. 14, no. 9, pp. 737-
760, 1999.

[12] M. Rabbani and P. W. Jones, Digital Image Compression Tech-
niques, SPIE Publications, 1991.

(13] G. Hinton, L. Deng, D. Yu et al., “Deep neural networks for
acoustic modeling in speech recognition: the shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82-97, 2012.

[14] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neu-
ral network,” in Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics (AISTATS ’11), vol. 15 of
JMLR: We»CP, pp. 315-323, Fort Lauderdale, Fla, USA, 2011.

(15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” in Neurocomput-
ing: Foundations of Research, MIT Press, Cambridge, Mass,

USA, 1988.



International Journal of

Rotating
Machinery

International Journal of

The SCientiﬁC Journal of DiStribUted
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Journal of ‘ Electrical and Computer
Robotics Engineering

Advances in
Modelling & International Journal of
rrenaion ot o Simulatio Aerospace
ston in Engineering Engineering

Observation

e

/!
| Journal of

International Journal of Antennas and Active and Passive e
Chemical Engineering Propagation Electronic Components Shock and Vibration



