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Abstract
Structural MR image (MRI) and 18F-Fluorodeoxyglucose-positron emission tomography

(FDG-PET) have been widely employed in diagnosis of both Alzheimer’s disease (AD) and

mild cognitive impairment (MCI) pathology, which has led to the development of methods

to distinguish AD and MCI from normal controls (NC). Synaptic dysfunction leads to a re-

duction in the rate of metabolism of glucose in the brain and is thought to represent AD pro-

gression. FDG-PET has the unique ability to estimate glucose metabolism, providing

information on the distribution of hypometabolism. In addition, patients with AD exhibit sig-

nificant neuronal loss in cerebral regions, and previous AD research has shown that struc-

tural MRI can be used to sensitively measure cortical atrophy. In this paper, we introduced

a new method to discriminate AD from NC based on complementary information obtained

by FDG and MRI. For accurate classification, surface-based features were employed and

12 predefined regions were selected from previous studies based on both MRI and FDG-

PET. Partial least square linear discriminant analysis was employed for making diagnoses.

We obtained 93.6% classification accuracy, 90.1% sensitivity, and 96.5% specificity in dis-

criminating AD from NC. The classification scheme had an accuracy of 76.5% and sensitiv-

ity and specificity of 46.5% and 89.6%, respectively, for discriminating MCI from AD. Our

method exhibited a superior classification performance compared with single modal ap-

proaches and yielded parallel accuracy to previous multimodal classification studies using

MRI and FDG-PET.

Introduction
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a gradually
progressive degenerative neurological disorder characterized by increased cognitive im-
pairment, neurofibrillary tangles, characteristic degenerative pathology, and synaptic loss com-
pared with normal aging, while mild cognitive impairment (MCI) represents an intermediate
period between normal aging and clinically probable AD [1–6]. An early diagnosis of AD and
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distinguishing MCI from NC is important because effective intervention at the earlier stages of
AD may delay or reduce the prevalence of disease onset [7, 8]. While many neuroimaging mo-
dalities have been studied to detect structural and functional changes in the brain due to AD
pathology, T1-weighted volume structural magnetic resonance imaging (MRI) and 18F-Fluoro-
deoxyglucose-positron emission tomography (FDG-PET) are widely used in the early diagnosis
of AD because they capture many of the important structural and functional changes that
occur as part of the pathology of AD. Decline in synaptic number, which coincides with accu-
mulation of neurofibrillary tangles and is associated with abnormal cytoarchitecture, may ap-
pear as cortical atrophy in structural MRI [9, 10]. Indeed, many studies have used structural
MRI to detect AD-induced cerebral atrophy and changes in shape [11–19]. In addition, de-
creased glucose metabolism, also known as hypometabolism, is thought to result from a reduc-
tion in neuronal activity caused by neuronal death and synaptic dysfunction, and can be
detected as a lower intensity by FDG-PET [20–26]. Many studies have employed FDG-PET to
diagnose AD based on hypometabolism [22, 27–30]. Since structural MRI and FDG-PET de-
tect different aspects of neuronal changes, their complementary sensitivity to the disease might
be beneficial to the early diagnosis of AD. Indeed, it has already been reported that utilizing
specific combinations of MRI and FDG-PET features can enhance classification performance
compared with single-modal image features [31–35].

It is necessary to extract and select suitable features that clearly represent AD characteristics
and are robust with respect to technical limitations for accurate classification. Voxel- and re-
gion of interest (ROI)-based approaches for volume spaces have been widely used in discrimi-
nating AD and MCI from normal controls (NCs) using MRI [11–15] and PET [27–30]. Voxel
intensity, however, tends to be influenced by the partial volume effect (PVE) from the different
brain tissues because of limited voxel resolution. Furthermore, the insufficient biological theory
of spatial normalization causes poor correspondence [36, 37], especially in individuals with
anatomical abnormalities. Surface-based approaches have been suggested as a way to overcome
the limitations of voxel- and volumetric ROI-based approaches because cortical surfaces gener-
ally provide better accuracy and correspondence [37–39]. Many studies using MRI have ex-
tracted cortical thickness as a surface-based feature in the classification of AD and MCI. For
example, Oliveira, Nitrini (16), Querbes, Aubry (17) and Lerch, Pruessner (19) used mean cor-
tical thickness of neuroanatomical ROIs as diagnostic features to classify AD patients. Since
surface-based features are generally limited to capturing the changes of cerebral cortex and it is
known that subcortical structures such as that hippocampus are significantly vulnerable during
the early stages of AD, Desikan, Cabral (18) combined the volume of subcortcial ROIs includ-
ing the amygdala and hippocampus with mean cortical thickness.

FDG-PET is also associated with PVE issues that lead to misestimation of hypometabolism
according to cortical atrophy [40]. Thus, partial volume correction (PVC) is required to identi-
fy changes in true radiopharmaceutical uptake by removing the atrophy effect from glucose
metabolism [41–43]. Park, Lee (44) proposed surface-based statistical parametric mapping of
PET intensity, and showed that surface-based FDG uptake is more precise and robust than
voxel-based measurements with respect to PVC and spatial normalization. However, despite
the advantages of cortical surface-based FDG-PET analysis, this approach has not been pro-
posed in the classification of AD to the best of our knowledge.

The high dimensionality of features in classification studies can be a challenge because an
extremely high number of features exceeding the number of samples significantly complicates
evaluation of classifier robustness [45, 46]. Therefore, dimension reduction of features is
considered as a necessary step for classification studies, to which two distinct approaches,
data-driven and prior knowledge, are generally applied. The data-driven approach consists of
region selection and dimension reduction. The selection of discriminant regions from group
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comparisons that selects significant voxels (i.e. opting for high ranked voxels or ROIs from
statistical results) has been suggested [18, 30, 47, 48]. Another method for feature selection,
dimension reduction can be applied prior to a training classifier. For example, manifold har-
monic transform has been used to represent vertex-wise cortical thickness data as spatial fre-
quency components [49] and unsupervised machine learning algorithms have been used for
locally linear embedding to transform regional features to a lower dimensional space [50]. Al-
though data-driven approaches can achieve high classification accuracy, the results might be
sensitive to a specific training dataset rather than a biologically relevant AD pathology. On the
contrary, defining and using features pertaining to neurodegenerative pathology that are inde-
pendent from the dataset could be supportive of a diagnosis and clinical relationships in multi-
modal image classification instead of employing methods that have the potential to extract
data-driven features. Indeed, previous studies mentioned that the use of prior knowledge al-
lows for better accuracy or class of diagnostic function than data-driven feature selection meth-
ods [51, 52].

The objective of this paper was to combine multimodal neuroimaging features including
structural MRI and FDG-PET to discriminate between AD, MCI, and NC. Avoiding PVE is-
sues in imaging space, the surface-based features were extracted from both structural MRI and
FDG-PET instead of volumetric features. To effectively reduce the high dimensionality of fea-
ture space, we selected 12 anatomic areas which were frequently reported in previous neuroim-
aging studies as AD associated regions. We then tested discrimination power of the each
selected regions. Finally, we validated the diagnostic accuracy of ours and compared with the
results of previous classification studies.

Methods and Materials

Ethics statement
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuro-
imaging Initiative (ADNI) database (http://adni.loni.usc.edu/) from over 50 sites. The institu-
tional review board at all participating sites approved the study and written consent was
obtained from all participants and the data were anonymized before being shared. More infor-
mation can be found at http://www.adni-info.org/scientists/doc/ADNI_Protocol_Extension_
A2_091908.pdf.

Data
We used the baseline imaging data of 319 subjects (71 AD, 163 MCI and 85 NC) from the
ADNI database (http://adni.loni.usc.edu/) (Table 1). The datasets included standard T1-weight-
ed images and FDG-PET images. T1-weighted images were acquired using a repeated volumet-
ric three-dimensional (3D) magnetization-prepared rapid acquisition gradient echo (MPRAGE)
with varying resolution (typically 0.94×0.94 mm in-plane spatial resolution and 1.2 mm thick

Table 1. Clinical and demographic characteristics of the ADNI subjects evaluated in this study.

NC (n = 85) MCI (n = 163) AD (n = 71)

Age 75.75 ±4.5 (62–87) 74.71 ±7.2 (55–89) 75.15 ±7.0 (55–88)

Gender 54 males, 31 females 110 males, 53 females 41 males, 30 females

MMSE score 28.9 ±1.1 (25–30) 27.2 ±1.7 (24–30) 23.3 ±2.2 (18–27)

Subjects who had both baseline MRI and FDG-PET were included.

Data for age and mini—mental state examination (MMSE) score: mean ± SD (range).

doi:10.1371/journal.pone.0129250.t001
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sagittal slices). We co-registered the corresponding repeated 3DMPRAGE image to obtain an
increased signal to noise ratio (SNR). Only images obtained using 1.5T scanners were used in
this study. FDG-PET images were acquired using Siemens, GE, or Philips PET scanners accord-
ing to the ADNI protocol (http://adni.loni.usc.edu/) with multiple frames (six frame scan for 30
minutes) of 3D data, starting approximately 30 minutes after injection of FDG (for all subjects:
197±47 MBq). The Dynamic scans were reconstructed using scanner-specific algorithms, co-
registered to the first frame, and averaged to create a single image.

Image processing
Cortical thickness measurement. Structural MRIs were registered to the ICBM 152 aver-

age template using a linear transformation, corrected for intensity nonuniformity artifacts, and
discretely classified into white matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and
background using an advanced neural network classifier [53, 54]. Hemispheric cortical surfaces
were automatically extracted from each T1-weighted image using the Constrained Laplacian-
based Automated Segmentation with Proximities (CLASP) algorithm, which reconstructs the
inner cortical surface by deforming a spherical mesh onto the WM/GM boundary and then ex-
panding the deformable model to the GM/CSF boundary [39, 55]. Cortical thickness was de-
fined using the t-link method, which captures the Euclidean distance between linked vertices
[39, 56]. Each individual thickness map was transformed to a surface group template using a
two-dimensional (2D) surface-based registration [37] and the mean cortical thickness of 39 re-
gions using a surface-based automated anatomical labeling (AAL) template [57].

Surface-based FDG uptake. We aligned FDG-PET images to the corresponding structural
MRI using a rigid body transformation, segmented the cerebellum [58] where glucose utiliza-
tion is relatively preserved [59], and extracted the distribution volume ratio (DVR) image for
intensity normalization. The three partial volume estimation maps of GM, WM and CSF indi-
cating the portion of tissues within each voxel were calculated fromMRI scans, and a weighted
partial volume estimation map (wPVE) was calculated by the weighted sum of three partial vol-
ume estimation maps under the assumption that CSF is a non-uptake region andWM uptake
is approximately one fourth that of GM [60]. The wPVE was smoothed with a 6 mm full width
at half maximum (FWHM) Gaussian filter to consider the resolution of the FDG-PET image
[40, 44]. The intensity profile of the wPVE along the linked vertices between GM/CSF and
WM/GM boundaries was derived from the volume image, and 5 equal proportions were linear-
ly interpolated. A wPVE surface map (swPVE) was obtained by averaging the values of 6 inter-
mediate vertices including vertices of the GM/CSF and WM/GM boundaries (Fig 1). In a
similar way, the intensity profile of the DVR image along the linked vertices between GM/CSF
andWM/GM boundaries was derived from the volume image and 5 equal proportions were
linearly interpolated. FDG-PET surface maps (sFDGs) were obtained by averaging the values
of 6 intermediate vertices including vertices of GM/CSF and WM/GM boundaries (Fig 1). The
partial volume corrected sFDG (csFDG) was obtained by dividing sFDG by swPVE after diffu-
sion smoothing with a 20 mm FWHM filter. Each csFDG was transformed to the surface tem-
plate utilizing sphere-to-sphere warping surface registration and 39 regional uptake values
were obtained using the AAL template [37, 57].

Hippocampal volume and its FDG uptake. Hippocampus segmentation was performed
separately using an automated method based on the graph-cuts algorithm [61] combined with
atlas-based segmentation and morphological opening [62]. A priori information combining
atlas-based segmentation with estimation of partial volume probabilities at each voxel was ap-
plied to define the initial hippocampal region for the graph-cuts algorithm in this framework.
Morphological opening was applied to reduce errors in the graph-cuts results. The segmented
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hippocampal volume was normalized by the individual intracranial volume to account for dif-
ferences in brain size [63]. PVC was performed by dividing the DVR image by the wPVE map
of the segmented hippocampus.

Volume-based features. Automatic whole-brain segmentation into 58 regions was per-
formed in the native space of each MRI using the AAL template [57]. We computed the vol-
umes of 39 GM regions in the cortex and obtained their FDG uptakes using the masked
segmentation of the aligned DVR image. The native MRI was used for comparison purposes,
and the results were interpreted using the surface-based AAL template. Volume normalization
and PVC on all the regions were performed in the same way described in section of “Hippo-
campal volume and its FDG uptake”.

Feature selection
We selected 12 regions from a total of 40 regions consisting of 39 surface-based regions and
the hippocampus to reduce the over fitting problem with high dimensionality and the bias of
any one dataset. The 12 selected regions have been consistently shown to be related to AD pa-
thology in previous MRI and FDG-PET studies [24, 31, 64–71] (Fig 2): angular gyrus, inferior
frontal gyrus, inferior occipital gyrus, medial occipital gyrus, middle temporal gyrus, parahip-
pocampal gyrus, posterior cingulate gyrus, precuneus, rectus gyrus, superior occipital gyrus,
supramarginal gyrus and hippocampus.

We also performed two-sample t-tests in 40 regions between the AD and NC groups and se-
lected the top 12 regions based on the absolute t-values as a data-driven method as a way to
compare the results with our feature selection method.

Partial least squares—linear discriminant analysis (PLS-LDA)
classification
Latent variable values were derived using the regression coefficients of the partial least squares
(PLS) model, which is typically used to reduce data dimensionality [72, 73]. The PLS model

Fig 1. Mapping on FDG uptake and wPVE to the cortical surface. The intensity profile (green line) is derived for each pair of corresponding vertices and
divided into five equal proportions to make intermediate vertices (red points). FDG uptake (black curve) and wPVE values (gray curve) of intermediate
vertices are interpolated from neighborhood voxels (orange points).

doi:10.1371/journal.pone.0129250.g001
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finds the orthogonal linear combinations of the data matrix X and class vector Y that explain
covariance between X and Y. In the present study, X was formed as an N×dmatrix (N: the
number of subjects in pairs of diagnostic groups, d: the number of features) and Y was coded as
either 0 or 1 according to the specific group in this study. The PLS model can be written as:

X ¼ TPT þ E ; Y ¼ UQT þ F

where E and F are residual error terms and P andQ are the associating normalized loading ma-
trices in the form of an N×Amatrix, where A is the number of PLS latent components. The
inner relationship of the maximal covariance between values for each latent component is
given by:

ua ¼ bata ; a ¼ 1; . . . ;A

where the vectors ta and ua are the values of the a-th PLS latent component for X and Y, and
βa is the regression coefficient for the a-th latent component. The optimal number of latent
components (K) was determined by the prediction residual sum of squares algorithm [74, 75].

Linear discriminant analysis (LDA) was used to generate the classification system. LDA ei-
ther maximizes the between-classes variance or minimizes the within-class variance for each
group and then maps the resulting data onto the axes in order to maximally separate the groups
in the dataset. A simple description of the LDA classifier is given as follows [76]. Suppose K is
the optimal number of latent components and the vector T = (t1 . . . tk)

T is the latent variable
assumed to have a normal distribution within class g = 0,1 (like class vector Y) with a mean μg
and covariance matrix Ʃg. In the LDA classifier, Ʃg is assumed to be the same for all classes for

all g,Ʃg = Ʃ. Using estimates m̂g and Ŝ in place of u and S, the discriminant rule assigns the i-th

new observation Tnew,i to the class

dðTnew;iÞ ¼ argmax
g

ðTnew;i � m̂gÞ��1ðTnew;i � m̂gÞT

where δ(Tnew,i) is a linear function of the vector Tnew,i. Finally, the new observation is trans-
formed by the latent components of PLS and classified to the class of g.

Fig 2. The eleven selected regions on the surface-based AAL template known as neurodegenerative regions. The names of these regions are as
follows: angular gyrus, inferior frontal gyrus, inferior occipital gyrus, medial occipital gyrus, middle temporal gyrus, parahippocampal gyrus, posterior
cingulate gyrus, precuneus, rectus gyrus, superior occipital gyrus, and supramarginal gyrus.

doi:10.1371/journal.pone.0129250.g002
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Validation
We used a leave-one-out cross-validation (LOOCV) strategy to determine classification perfor-
mance (accuracy, sensitivity and specificity) [77]. The accuracy of a classifier was defined as
the ratio of true results in the test outcomes, sensitivity was defined as the true positive fraction,
and specificity was defined as the proportion of true negatives calculated by LOOCV. Specifi-
cally, all subjects except one were used as a training dataset to generate the classifier and the
‘left’ was classified based on the classifier. Since LOOCV was performed exactly once for each
subject per comparison, there was no bias at the subject level. The predicted values of ‘left one’
mapped onto LDA axes were used to build a receiver operating characteristic (ROC) curve,
which provides an overall measure of classifier performance. Several simple logistic regression
models were applied to identify the discriminant power of each of the selected regions between
AD and NC subjects. No covariate was included, and the statistical P-value and area under the
ROC curve (AU-ROC) was computed for each logistic regression model.

Results

Classification with multi-modal imaging features
The performance of the classification method based on the 24 selected multi-modal features
(SMFs) was assessed among three clinically relevant pairs of diagnostic groups (AD/NC, AD/
MCI, and MCI/NC). Table 2 shows the results of the LOOCV of PLS-LDA in terms of accura-
cy, sensitivity, and specificity. With respect to the diagnosis of AD from NC, we achieved a
93.6% classification accuracy, 90.1% sensitivity, and 96.5% specificity for the SMF set. On the
contrary, the best accuracy of the 24 selected single-modal features (SSF) was 87.8% when only
FDG uptake was used. The ROC curves for the predicted values based on SMF or SSF are dis-
played in Fig 3. The AU-ROC of the SMF was 0.951, indicating an excellent diagnostic power
that was better than that of the SSF. These results indicated that classification with SMF exhib-
ited an improved performance compared with any other procedure using SSF alone, which
also held true for the results of other diagnostic groups except for FDG uptake between MCI
and AD (see Table 2 and Fig 3).

With respect to distinguishing MCI from NC, we obtained a classification accuracy of
69.0% (AU-ROC: 0.721) for the SMF while each classifier of the SSF achieved a classification
accuracy of 66.5% (AU-ROC: 0.697) by MRI and 68.6% (AU-ROC: 0.698) by FDG PET. There

Table 2. Comparison of classification performance among SSF and SMF. Classification accuracy (acc.), sensitivity (sens.), specificity (spec.), and area
under the receiver operating characteristic curve (AU-ROC) are shown.

MRI FDG Combined

AD/NC Acc. (%) 84.6 87.8 93.6

Sens. (%) 77.5 83.1 90.1

Spec. (%) 90.6 91.8 96.5

AU-ROC 0.913 0.943 0.951

AD/MCI Acc. (%) 75.6 76.5 76.5

Sens. (%) 33.8 38.3 46.5

Spec. (%) 93.9 93.3 89.6

AU-ROC 0.729 0.753 0.799

MCI/NC Acc. (%) 66.5 68.6 69.0

Sens. (%) 87.1 86.5 82.2

Spec. (%) 27.1 34.1 43.5

AU-ROC 0.697 0.698 0.721

doi:10.1371/journal.pone.0129250.t002
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was similar accuracy among SMF and SSFs, but ROC curves showed obvious difference in their
values. On the other hand, the classification accuracy of the SMF between MCI and AD was
76.5%, which was higher than the 75.6% accuracy achieved with MRI alone. Although the clas-
sification accuracy of the SSF for AD fromMCI using FDG-PET alone was the same as that of
the SMF, a clear disparity was noted in that SMF was superior to SSF in AU-ROC (SMF: 0.799
and SSF: 0.753).

The classification performance of the 24 data-driven features with the 12 selected regions
determined with a two sample t-test, 24 volume-based features from the same regions as SMF,
and 80 whole brain features from 40 regions consisting of 39 regions on surface-based AAL
template and hippocampus are shown in Table 3. While data-driven features and volume-
based features exhibited a worse accuracy, whole brain features showed a better accuracy and
slightly higher performance (78.2% in AD/MCI classification and 70.2% in MCI/NC classifica-
tion) than SMF (76.5% and 69.0%).

Regional features
Simple logistic regression models were applied to each selected regional feature (p< 0.001, see
Table 4). All of the features from structural MRI showed high beta coefficients and significant
differences. However, four regions of FDG uptake, (in inferior occipital, parahippocampal, rec-
tus, and supramarginal gyri) showed no significant distinction between AD and NC (p> 0.05),
indicating their lack of discriminant power as single features. Interestingly, this result was in
disagreement with previous studies indicating that these four regions are related to neurode-
generative pathology.

Discussion
In this paper, we propose a method for classifying AD and MCI based on cortical surface-
based features obtained from structural MRI and FDG-PET. Furthermore, we used predefined
regions to prevent bias related to the number of features and data-driven feature selection
method. Our method achieved a better diagnostic accuracy than single-modal, voxel-based,
and data-driven features. Specifically, we achieved a 93.6% classification accuracy, 90.1% sensi-
tivity, and 96.5% specificity for the diagnosis of AD from NC.

Surface-based multi-modal imaging features
When multi-modal imaging features such as structural MRI and CSF [78], FDG-PET and CSF
[79], and MRI, FDG-PET, and CSF [31–35] are used together in the classification of AD and

Fig 3. ROC curve results. ROC curves are plots of sensitivity and specificity of SMF and SSF for distinguishing AD/NC (left), AD/MCI (middle), and MCI/AD
(right). The AU-ROC is included in the figure legend. In every case, SMF (blue) exhibited higher performance than SSF (FDG: red and MRI: green).

doi:10.1371/journal.pone.0129250.g003
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MCI, better performance is generally achieved compared with the use of single modal features.
This observation is consistent with previous studies reporting that our multi-modal classifica-
tion combining structural MRI and FDG-PET is more accurate than single-modal classifica-
tion for all pairs of diagnostic groups regardless of the method of feature selection (see Tables
2 and 3).

In the present study, we employed surface-based features in our classification scheme in
order to improve spatial normalization, smoothing, and PVC issues associated with voxel-
based analysis. Surface-based registration seems to be a more robust method for analyzing

Table 3. Classification performance among different features.

MRI FDG Combined

Volume-based features AD/NC Acc. (%) 83.3 78.2 89.1

Sens. (%) 78.9 73.2 84.5

Spec. (%) 87.1 82.4 92.9

AU-ROC 0.898 0.857 0.934

AD/MCI Acc. (%) 72.7 72.7 74.4

Sens. (%) 33.8 28.2 36.6

Spec. (%) 89.6 92.0 90.8

AU-ROC 0.714 0.693 0.749

MCI/NC Acc. (%) 65.7 66.5 67.7

Sens. (%) 89.6 96.3 82.8

Spec. (%) 20.0 9.4 38.8

AU-ROC 0.646 60.3 0.705

Data-driven features AD/NC Acc. (%) 82.1 77.6 90.4

Sens. (%) 76.1 70.4 84.5

Spec. (%) 87.1 83.5 95.3

AU-ROC 0.885 0.840 0.948

AD/MCI Acc. (%) 76.1 72.6 76.5

Sens. (%) 36.6 26.8 39.4

Spec. (%) 93.3 92.6 92.6

AU-ROC 0.772 0.685 0.793

MCI/NC Acc. (%) 66.1 66.5 66.9

Sens. (%) 91.4 84.1 82.8

Spec. (%) 17.7 32.9 36.5

AU-ROC 0.601 0.682 0.722

All features AD/NC Acc. (%) 81.4 82.7 88.5

Sens. (%) 77.5 77.5 83.1

Spec. (%) 84.7 87.1 92.9

AU-ROC 0.862 0.869 0.925

AD/MCI Acc. (%) 76.1 77.9 78.2

Sens. (%) 43.7 47.9 53.5

Spec. (%) 90.2 90.8 89.0

AU-ROC 0.761 0.800 0.798

MCI/NC Acc. (%) 66.1 68.6 70.2

Sens. (%) 82.8 87.1 79.1

Spec. (%) 34.1 32.9 52.9

AU-ROC 0.637 0.653 0.721

This table uses the same conventions as Table 2.

doi:10.1371/journal.pone.0129250.t003
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abnormal brains [36, 37]. Moreover, three-dimensional Gaussian smoothing for increasing
SNR in volume space cannot be adapted to the complicated gyral pattern of human brain archi-
tecture. Because of the complicated sulcal/gyral morphology, surface smoothing across the cor-
tical surface can be a reliable method [80]. Likewise, surface-base PVC methods have the
advantage of not only eliminating PVE from cortical atrophy, but also achieving high spatial
accuracy due to spatial normalization and smoothing [44]. The advantages of surface-based
analysis included a higher diagnostic performance than voxel-based methods, and we com-
pared the classification accuracies of the proposed methods with voxel-based features to show
that the surface-based features did indeed yield better performance under all conditions (Ta-
bles 2 and 3). Several previous studies have used multi-modal features similar to our study (see
Table 5). However, due to discrepancies in datasets as well as feature extraction methods, the
number of modalities and classifiers, it may be improper to directly compare our results with
these studies in terms of the advantages of surface-based features and predefined regions. Our
dataset was, therefore, applied to other classifiers such as support vector machine (SVM) which
is most often classifier used in previous discriminant studies [81] and multi-modal imaging
and multi-level characteristics with multi-classifier (M3) incorporating features from multi-
modal imaging data through weighted voting [82]. While higher classification results were
shown in AD/MCI and MCI/NC classification using M3 method, it is still notable that our clas-
sification method achieved higher accuracy between NC and AD as shown in S1 Table.

Table 4. Logistic regression analysis results of 12 selected regions (11 surface-based regions and hippocampus) for distinguishing AD from NC.

Region Beta S.E. P value

FDG Angular gyrus -12.99 2.27 0.000

Hippocampus -9.41 2.37 0.000

Inferior Frontal gyrus -10.32 2.11 0.000

Inferior Occipital gyrus -3.03 1.63 0.06

Medial Occipital gyrus -4.64 1.78 0.009

Middle Temporal gyrus -9.8 2.32 0.000

Parahippocampal gyrus -4.19 2.28 0.065

Posterior Cingulate gyrus -13.59 2.33 0.000

Precuneus -13.3 2.55 0.000

Rectus gyrus -2.99 1.56 0.056

Superior Occipital gyrus -4.39 1.6 0.006

Supramarginal gyrus -2.09 1.83 0.253

MRI Angular gyrus -12.62 2.72 0.000

Hippocampus -9.03 1.5 0.000

Inferior Frontal gyrus -11.44 2.62 0.000

Inferior Occipital gyrus -13.72 3.14 0.000

Medial Occipital gyrus -12.53 2.76 0.000

Middle Temporal gyrus -27.64 4.63 0.000

Parahippocampal gyrus -25.18 4.04 0.000

Posterior Cingulate gyrus -15.06 3.03 0.000

Precuneus -10.8 2.83 0.000

Rectus gyrus -11.62 2.91 0.000

Superior Occipital gyrus -10.8 2.76 0.000

Supramarginal gyrus -18.49 3.46 0.000

S.E.: Standard Error, 0.000: P < 0.001

doi:10.1371/journal.pone.0129250.t004
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Feature selection based on AD pathology
Feature selection is required to select effective features and obtain optimal accuracy in classifi-
cation studies [45, 46]. Proper feature selection methods can improve diagnostic performances,
especially with prior knowledge of the disease [51, 52]. In this study, we selected features with
12 predefined regions associated with neurodegeneration based on prior knowledge (Table 4);
the diagnostic accuracy with this approach was better than that of data-driven and no feature
selection results (see Tables 2 and 3).

The 12 predefined regions selected in this study are widely known to be related to neurode-
generative pathology. Neuronal damage of the orbitofrontal cortex has been examined from
the viewpoint of neurofibrillary tangles, which are masses of hyper-phosphorylated tau pro-
teins observed postmortem [83]. Some neuroimaging studies with FDG and MRI have shown
that the characteristics of orbitofrontal cortex including superior/inferior/medial orbital and
rectal gyri are definitely separable from NC [66, 69, 84–86]. As it plays a central role in memo-
ry, the temporal lobe which contains the hippocampus, parahippocampal, and middle tempo-
ral gyri exhibits the most distinctive functional and structurally distinctive patterns in AD and
MCI patients [22, 24, 65, 70, 87–89]. In particular, the hippocampus and parahippocampal
gyrus exhibit a strong correlation with the posterior cingulate cortex [90–92]. In addition, pre-
vious AD pathology studies have demonstrated hypometabolism and cortical atrophy in the
posterior cingulate cortex based on this correlation [23, 64, 66, 68, 70, 93–95].

Along with the posterior cingulate cortex, the precuneus is the earliest functionally changed
region in FDG studies [68, 70, 96], and there are also significant differences in atrophy in AD
patients [67, 71]. This is especially important due to the clinical importance of language func-
tion impairment in AD patients, in which there is synaptic loss and dysfunction in the parieto-
temporal cortex involving the angular gyrus, supramarginal gyrus, inferior parietal lobule [64,
66, 69, 70, 86, 95]. Based on these findings, we selected these regions for diagnosing AD, MCI,
and NC.

Some FDG features have a lower discriminant power than others, although there are suffi-
cient previous findings of biological meaning (Table 4). There are two possible explanations for
the lower diagnostic performance in the four FDG regional features: inferior occipital, parahip-
pocampal, rectus, and supramarginal gyri. First, FDG uptake appears to provide largely redun-
dant information compared with structural features in classification methods that use multi-
modal imaging features [31, 97]. Second, it is possible that characteristics of the dataset may
influence the classification performance of each individual feature. In future work, we hope
that using different datasets for diagnosis will clarify whether such supposition of features is
unnecessary.

Table 5. Classification performance of previousmultimodal studies

Study Modalities Acc. (%) Sens. (%) Spec. (%)

Zhang et al., (2011) MRI+FDG+CSF 93.2 93.0 93.3

Gray et al., (2013) MRI+FDG+CSF+GI 89.0 87.9 90.0

Hinrichs et al., (2011) MRI+FDG+CSF+GI+CS 92.4 86.7 96.6

Liu et al., (2014) MRI+FDG 94.4 94.7 94.0

Each of these studies used the ADNI dataset and thus represent patient populations similar to that of the present study. Both volumetric imaging features

and non-imaging features were used by these studies.

GI: genetic information, CS: cognitive score. This table uses the same conventions as Table 2.

doi:10.1371/journal.pone.0129250.t005
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Methodological issues of surface-based FDG-PET
Our cortical surface-based FDG-PET analysis had several distinct features compared with
Park, Lee (44). First, the virtual glucose uptake image, referred to as iPVE in Park, Lee (44), was
generated by smoothing the segmented GM andWM regions, which can represent the intensi-
ty reduction of FDG uptake due to PVE but does not precisely quantify the mixed tissues. Be-
cause iPVEs are generated from binary categorized images consisting of GM, WM and CSF,
the PVE may remain iPVE. Moreover, the selection of the maximum value of the intensity pro-
file to vertices on the surface may result in inexact mapping. The locations of the maximum
FDG uptake and PVE are likely to be different, which might create a less accurate PVC (see
right side in Fig 1). To overcome this issue, we used the mean intensity instead of maximum
value. Due to the disadvantages described above, it may make more sense to use swPVE for
PVC rather than iPVE. The comparison between iPVE and swPVE using correlation with cor-
tical thickness is shown in Fig 4. Indeed, the correlation coefficient shows that swPVE
(r = 0.792) is more reliable than that of iPVE(r = 0.785) with respect to PVE estimation.

Fig 4. Plot representing the correlation between whole brain mean value of PVEmaps and cortical thickness. Both PVE maps were significantly
correlated with cortical thickness. swPVE exhibited a higher correlation (r = 0.792) than that of iPVE (r = 0.785).

doi:10.1371/journal.pone.0129250.g004
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Limitations
The results for MCI classification were not as good as for AD classification because of the na-
ture of the MCI cohort, which has generally heterogeneous characteristics [98]. Therefore,
some studies have divided MCI subjects into subtypes, i.e. stable vs. progressive or converter
vs. non-converter, based on changes in disease status [27, 79, 99]. While classification for dis-
tinct MCI subtypes might show better results, we did not divide the MCI group in this study
because of a lack of longitudinal information for disease status in some subjects.

Supporting Information
S1 Table. Classification performance using other classifiers.
(DOCX)
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