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Investigation of actuator debonding
effects on active control in smart
composite laminates

Bin Huang1, Heung Soo Kim1 and Gil Ho Yoon2

Abstract
This article presents a numerical study of active vibration control of smart composite laminates in the presence of actua-
tor debonding failures. A comparison between the smart composite laminates with healthy actuator and various partially
debonded actuator cases is performed to investigate the debonding effects on the vibration suppression. The improved
layerwise theory with Heaviside’s unit step function is adopted to model the displacement field with actuator debonding
failure. The higher order electric potential field is adopted to describe the potential variation through the thickness. The
finite element method–based formulations are derived using the plate element, taking into consideration the electro-
mechanical coupling effect. The reduced-order model is represented by the state-space form and further for the vibra-
tion suppression using a simple constant gain velocity feedback control strategy. For the purpose of demonstration, a
16-layer cross-ply substrate laminate ([0/90]4s) is employed for the numerical study. The results show that the actuator
debonding affects the closed-loop frequencies, active damping ratios, and efficiency of vibration suppression.
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Introduction

Vibration suppression of flexible smart structures by
piezoelectric actuators and sensors has been compre-
hensively studied during the past decades.1,2 As one of
the most commonly used smart materials, the piezo-
electric materials are usually bonded on the surface or
embedded into the host structures, working as actua-
tors and sensors. The host structure, such as a lami-
nated plate, with distributed actuators and sensors can
be used in controlling precision instruments, vibration
suppression, and so on. However, the debonding fail-
ures between the piezoelectric elements and the host
structures may occur during the service life, due to high
peeling stress concentrating at the bonding edge. As a
result of debonding, the dynamic behaviors of struc-
tures and the actuation and sensing capabilities will be

weakened. Moreover, the closed-loop system may also
be affected and even destabilized. Therefore, it is of
vital importance to investigate the debonding effects on
the active control of smart structures.

Numerous modeling methods have been developed
for smart composite laminated structures with piezo-
electric layers or distributed actuators and sensors in
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the presence of delamination failures.3,4 Delamination
detection5,6 in smart composite structures has also
attracted a lot of attentions in structural health moni-
toring. However, there are less works on modeling and
active control of smart composite laminated structures
with partially debonded actuators. In the late 1990s,
Seeley and colleagues7,8 developed the finite element
(FE) modeling of adaptive composites including the
debonding using a penalty approach and examined the
debonding effect on the mode shapes and frequencies.
A sublaminate technique was developed by Raja et al.9

for composite beams and plates with debonding fail-
ures. It was implemented by imposing the strain-based
multipoint constraints to satisfy the continuity condi-
tion of displacement across the delaminated edge. The
interfacial debonding effects on the dynamic behaviors
of surface-bonded piezoelectric actuators were investi-
gated by Jin et al.,10 taking into consideration the
debonded adhesive layers. Sun et al.11 studied the
actuator and sensor debonding effects on active control
of beam structures for both the collocated and non-
collocated control schemes. They found that the
debonding location at the middle had very little effect
on the active control performance. Kumar et al.12

investigated the optimal control of smart plates with
partially debonded actuator, and they found that the
debonding influenced both the active damping and the
active stiffening effects. From these works, the debond-
ing effects on the system responses have been inspected
in both static and dynamic aspects, and it has been
found that the presence of debonding failures reduces
the control capabilities of the active structures besides
changing the dynamic characteristics.

The focus of this article is to evaluate the actuator
debonding effect on the active control performance of
a laminated plate. Among the feedback control algo-
rithms, the constant gain velocity feedback (CGVF)
control,13–15 the constant amplitude velocity feedback
(CAVF) control,14,16 and the linear quadratic regulator
(LQR) optimal control17–20 are the most widely used
control strategies for active control of smart composite
laminated structures. To better understand the actuator
debonding effect, active control of a smart composite
laminate with distributed actuator and sensor including
the actuator debonding failure is studied in this article,
using an improved layerwise theory. The improved
layerwise theory was first developed by Kim and col-
leagues21–24 for delamination failures in composite
laminates, using the Heaviside unit step function to
address the discontinuity of displacement field. This
theory is also possible to address the discontinuous dis-
placement caused by actuator debonding. Considering
the electro-mechanical coupling,25–27 the higher order
electric potential field is adopted to describe the poten-
tial variation through the thickness. For the plate with
piezoelectric patches, the general FE method can be

used to derive the governing equation with plate ele-
ment. The governing equation can be further expressed
into the state-space form using the reduced-order
model. The classical CGVF control strategy is applied
to investigate the active vibration control of a smart
composite laminate with actuator debonding failure.
Numerical studies with a 16-layer cross-ply ([0/90]4s)
substrate plate are performed with various debonding
sizes to investigate the actuator debonding effects on
the closed-loop frequencies, system damping ratios,
and control efficiency.

Improved layerwise theory for smart
composite laminate

The improved layerwise theory developed by Kim et
al.23 for smart composite laminate is adopted to model
the actuator debonding failure. For the geometry given
in Figure 1, one piezoelectric actuator and one piezo-
electric sensor are surface bonded on the top surface of
a substrate plate. The actuator and sensor are bonded
close to the clamped root to achieve good actuation
and sensing performance. Thus, for a system with
piezoelectric elements, the linear constitutive relations
considering the electro-mechanical coupling behavior
can be expressed in the matrix form as follows

fDg= ½d�Tfeg+ ½b�fEg, fsg= ½Q�feg � ½d�fEg ð1Þ

where fDg is the dielectric displacement vector; feg,
fsg, and fQg are the strain vector, the stress vector,
and the elastic stiffness matrix, respectively. The piezo-
electric constant matrix and the permittivity matrix are
denoted by ½d� and ½b�, respectively. The electric field
vector is denoted by fEg.

To model the actuator debonding failure in smart
composite laminate, the kinematics is modeled using
the improved layerwise theory23 which is based on the
following displacement field

Uk
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ð2Þ

where k denotes the kth layer of the laminate. The
quantities Uk

1 and Uk
2 denote the in-plane displace-

ments, and Uk
3 denotes the transverse deflection. The

quantities u1, u2, and w denote the displacements of
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each reference plane; f1 and f2 are the rotations of the
normal to the reference plane. The Heaviside unit step
function H can address the discontinuity of the displa-
cement field, and with the coefficients �uj

1, �uj
2, and �wj, it

can account for the sliding of the in-plane displace-
ments and possible jump of the out-of-plane displace-
ment quantitatively. The delaminated interface is
denoted by zj, and the layerwise coefficients Ak

i , Bk
i , Ck

i ,
Dk

i ,
�Ej

i, and �Fj
i (i = 1, 2) are expressed in terms of the

geometric and material properties.4

In equation (1), the debonding can be simulated by
the value of Heaviside unit step function through con-
trolling the interface zj. While for the perfectly bonded
interface, the coefficients are simply set to be0. To fur-
ther obtain the kinematic relation for elastic strain, the
strain–displacement relation is used

ek
ij =

1

2
(U k

i, j +U k
j, i), (i, j= 1, 2, 3) ð3Þ

The electric potential function fj is assumed to be a
cubic distribution in the jth piezoelectric layer and zero
in the rest of layers. The potential function is given as

fj(x, y, z, t)= (1� 4�z2)f
j
0(x, y, t)

+ (4�z3 � �z)hjEj
z(x, y, t)+ 4�z3f

j
(x, y, t)

ð4Þ

where �z=(z� z
j
0)=hj, and the quantities z

j
0 and hj repre-

sent the mid-plane position and the thickness of jth piezo-
electric layer, respectively. The quantities f

j
0, Ej

z, and f
j

are the mid-plane electric potential, the electric field, and

the potential difference between the top and bottom elec-
trodes of the jth piezoelectric layer, respectively.

The electric field fEg is defined by the partial deriva-
tive of the scalar potential function f as shown in equa-
tion (5)

fEg= � ∂f

∂x

∂f

∂y

∂f

∂z

� �T

ð5Þ

The smart composite plate is discretized by four-
node rectangular element, with eight structural degrees
of freedom (u1, u2,f1,f2, �u

j
1, �u

j
2,w, �wj) for each node.

The piezoelectric elements contain two more electrical
degrees of freedom (fj

0,Ej
z). To implement the FE

method, the linear Lagrange function is adopted to
interpolate the in-plane structural unknowns
(u1, u2,f1,f2, �u

j
1, �u

j
2) and electrical unknowns (fj

0,E
j
z).

The out-of-plane structural unknowns (w, �wj) are inter-
polated by the Hermite cubic function. Those structural
and electrical unknowns can be expressed in terms of
nodal values and interpolation functions as follows
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Figure 1. Geometric configuration of smart composite laminate with surface-bonded piezoelectric actuator and sensor.
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where Nm is the Lagrange interpolation function
and Hm, Hxm, and Hym are the Hermite interpolation
functions, and n is the number of node in one element.

The detail formulations can be found in the estab-
lished FE method.24,28 Then, the governing equations
can be obtained by the extended Hamilton’s principle
as follows

dp =

ðt
t0

ð
v

(r€uidui +sijdeij + j _uidui � Didf, i)dV

8<
:
�
ð
S

(tidui � qedf)dS

9=
;dt= 0 ð7Þ

where r and j denote the mass density and material
damping constant, respectively. The components of
traction force vector and applied surface charge density
are denoted by ti and qe, respectively.

By integration by part and the variational principle,
equation (7) can be simplified and the governing equa-
tion can be obtained and written in the matrix form as
follows

Muu 0

0 0

� � €du

0

( )
+

Cuu 0

0 0

� � _du

0

( )

+
Kuu Kuf

Kfu Kff

� �
du

df

� �
=

Fu

Ff

� � ð8Þ

where Muu, Cuu, and Kuu are the mass, damping, and
stiffness matrices, respectively; Kff is the dielectric stiff-
ness matrix; and Kuf and Kfu are the coupling stiffness
matrices. The nodal displacement and nodal electrical
variables are denoted by du and df. The vectors Fu and
Ff denote the mechanical force and electrical field vec-
tors, respectively.

The proportional viscous damping is adopted which
is the simplest damping case and easy to be implemen-
ted in the linear vibration analysis

Cuu =aMuu +bKuu ð9Þ

where a and b are the proportional damping ratios.
By the matrix condensation, the governing equation

becomes the following form in the presence of both
mechanical and electric inputs

Muu
€du +Cuu

_du +Kdu =F ð10Þ

where

K =Kuu � KufK�1
ffKfu, F =Fu � KufK�1

ffFf ð11Þ

Active controller design

Modal form

The FE discretization leads to a large number of degrees
of freedom; therefore, it requires the use of reduced-
order model, where it only employs m lower modes that
dominate the global response of the system. In the gen-
eral modal reduction method, the undamped free vibra-
tion equation results in the following eigenvalue problem

K½ � � v2 Muu½ �
� 	

fFg= f0g ð12Þ

where v2 is the eigenvalue and fFg is the eigenvector.
The square roots of the eigenvalues are the natural fre-
quencies and the eigenvectors are the truncated modal
matrix or the mode shapes.

Assuming that the system response is governed by
the first m modes, the following modal coordinate
transformation can be introduced using the modal vec-
tor matrix

fdug= ½F�fhg ð13Þ

where fhg is the modal coordinate.
Substituting equation (13) into equation (10) and left

multiplying ½F�T , the governing equation is transformed
into the modal coordinate

½ �M �f€hg+ ½�C�f _hg+ ½�K�fhg= ½�Fu� � ½�Ff� ð14Þ

where

½ �M �= ½F�T ½M �½F�= ½I �
�C½ �= F½ �T Cuu½ � F½ �= diag 2j1v1 2j2v2 . . . 2jnvn½ �
�K½ �= F½ �T K½ � F½ �= diag v2

1 v2
2 . . . v2

n

� �
�Fu½ �= F½ �T Fu½ �, �Ff

� �
= F½ �T KufK�1

ff

h i
Ff

� �
ð15Þ

Because of the orthogonality of the mode shapes,
½ �M �, ½�C�, and ½�K� become the diagonal matrices. And ½I �
is the identity matrix, ji is the modal damping ratio,
and vi is the natural frequency of ith mode.

State-space representation

The model control theories require the system in the
state-space representation, in which the second-order
multi-degrees-of-freedom system is described by a first-
order matrix differential equation. The reduced-order
governing equation, equation (14), can be expressed in
the state-space form as follows

_X =AX +Buuu +Bfuf ð16Þ
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where X is the state vector and A is the system matrix.
The matrices Bu and Bf represent the mechanical and
electrical input influence matrices, respectively; uu and
uf are the mechanical disturbance and electric control
input vectors, respectively. These matrices are given by

X =
h

_h

� �
, A=

0 I

��K ��C

� �
,

Bu =
0

FT

� �
, Bf =

0

�FT KufK�1
ff

" #
ð17Þ

The output equation, only considering the sensor
output Yf and its derivative Yf1, can be expressed as

Y =
Yf

Yf1

� �
=

Cf 0

0 Cf1

� �
X =CX ð18Þ

where

C =
�K�1

ffKfuF 0

0 �K�1
ffKfuF

� �
ð19Þ

Note that the voltage output can be measured by the
relation between the structural output and the coupling
stiffness matrix, which is condensed in the FE model.

Feedback control law

After defining the system in the state-space form, a
direct output feedback control algorithm is employed in
this study to investigate the control efficiency of smart
composite laminate when there is actuator debonding
failure. In the direct output feedback control, a CGVF
control is utilized which is one of the most widely used
control strategy in the vibration suppression of smart
laminated structures. It attenuates the vibration ampli-
tude by enhancing the system damping, known as the
active damping. The control input voltage is defined as

uf = � GYf1 ð20Þ

where G is the velocity control gain.
Substituting equation (20) into equation (16) and

with the help of equation (18), it yields

_X =AX +Buuu � BfGYf1 = �AX +Buuu ð21Þ

where �A=(A� BfGCf1) is the closed-loop system
matrix.

In the above closed-loop system, the choice of con-
trol gain G determines the poles of the system through
changing the active damping. The gain selection and
control system design can be done using root-locus
method or Nyquist method. However, it is worth not-
ing that the control voltage applied on the actuator

should not exceed the depoling voltage. Exceeding the
maximum allowable voltage of the actuator may cause
the depolarization of the piezoelectric materials. Thus,
the maximum amplitude of the response should be
examined to estimate the range of control gain before
implementing the active control. When the estimated
control voltage exceeds the maximum allowable vol-
tage, the design should be repeated using a new control
gain.

Results and discussion

The active vibration control is studied in this section
for the smart composite laminate using the material
properties given in Table 1. The piezoelectric actuator
and sensor possess the same mechanical and electric
properties. A 16-layer cross-ply plate ([0/90]4s), with
the dimension size 30 cm 3 6 cm, is discretized into
60 3 12 elements in length and width direction. The
structural damping ratios are chosen as 0.0001 for both
a and b. As the aim is to investigate the effect of actua-
tor debonding failure on active control, the actuator is
pre-assumed to be partially debonded at the right edge,
with the debonding area 10%, 20%, 30%, 40%, and
50%, as shown in Figure 2. Since the actuator debond-
ing causes the reduction in actuation force, it is
expected that the control efficiency will be influenced.
For the modal reduction, only first six modes are trun-
cated. The open-loop system natural frequencies are
shown in Table 2 and their corresponding mode shapes
are also examined for the healthy laminate and five
debonding cases. From the table, it is found that the
existence of debonding failure decreases the natural fre-
quencies, and increasing the debonding size, the open-
loop natural frequencies decrease for all six modes.

Vibration control with healthy actuator

In this subsection, a CGVF control algorithm is
applied to the control of smart composite laminate with
healthy actuator. When determining the control gain,
as described earlier, it should not exceed the maximum

Table 1. Material properties of composite laminate and
piezoelectric material.

Composite laminate Piezoelectric material (PZT-5H)

E1 = 372 GPa E = 69 GPa
E2 = E3 = 4.12 GPa n = 0.31
G12 = G13 = 3.99 GPa r2 = 7700 kg/m3

G23 = 3.6 GPa d31 = d32 = 179 e212C/N
n12 = n13 = 0.275 eT = 1800
n23 = 0.42
r1 = 1788.5 kg/m3

Huang et al. 5



allowable voltage of the actuator. With G = 0.05 and
0.1, the poles of open-loop system and closed-loop sys-
tem are shown in Figure 3. It is observed that only the
closed-loop system poles of the first, third, and fifth
modes (bending modes) are changed and the poles of
the second, fourth, and sixth modes (twisting modes)
remain the same. This is because the bending modes
dominate the system response and the twisting modes
are negligible for the given geometry. It is also observed
that for the three bending modes, only the closed-loop
poles of the first mode move to the left side of its open-
loop poles in the complex plane, and the poles of the
third and the fifth modes move to the right side of their
open-loop poles, since we know that in the left side of
the complex plane, if the poles locate far from the y-
axis, the system converges fast. While the poles locate
close to the y-axis, the system converges slowly. This

indicates that the first mode is well controlled, while
the third and the fifth modes are enhanced. The closed-
loop frequencies and active damping ratios with
G = 0.05 and G = 0.1 are computed using the trun-
cated model and shown in Table 3. It is observed that
the first and the fifth natural frequencies decrease, and
the third natural frequency increases compared with
the open-loop natural frequencies, when applying the
feedback control. The damping ratios have positive val-
ues for all modes, ensuring the stability of the closed-
loop system. It has to be noted that when the gain is
increased from 0.05 to 0.1, the active damping of the
first mode increases from 3.61% to 5.95%. While for
the third mode and the fifth mode, the damping ratios
decrease which implies that the control performance is
reduced for these two modes.

Table 2. First six natural frequencies (Hz) of the open-loop system.

Mode 1 2 3 4 5 6
Type Bending Twisting Bending Twisting Bending Twisting

Healthy 40.94 112.50 250.11 394.64 682.77 766.40
10% 40.87 111.91 250.09 393.21 682.41 764.62
20% 40.80 111.35 250.05 391.756 682.20 763.20
30% 40.73 110.84 249.99 390.33 682.09 762.07
40% 40.65 110.38 249.91 388.96 682.04 760.86
50% 40.57 109.97 249.77 387.68 682.02 759.55

5 cm

4 
cm

undamaged 10% debonding 20% debonding

30% debonding

0.5 cm 1 cm

1.5 cm 2 cm 2.5 cm

50% debonding40% debonding

Figure 2. Actuator debonding location and sizes.

Table 3. Three bending frequencies and active damping ratios of the closed-loop system for healthy laminate.

Gain
G

First mode Third mode Fifth mode

fi (Hz) ji (%) fi (Hz) ji (%) fi (Hz) ji (%)

0.05 40.93 3.61 250.40 5.44 682.19 16.66
0.1 40.89 5.95 251.28 3.01 680.45 11.89
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Figure 3. System poles of open-loop system and closed-loop
system with control G = 0.05 and 0.1 for healthy laminate.
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The healthy composite laminate is subjected to 1 N
mechanical impulse load at the tip center for the time
period of 10 ms to investigate the control efficiency.
The open-loop and the closed-loop responses of the tip
displacement are shown in Figure 4(a). It is found that
with the control gain G = 0.05 and G = 0.1, the sys-
tem responses are well controlled for both cases. The
settling times are 0.5 s for the G = 0.05 case and 0.3 s
for the G = 0.1 case, which indicates that the large
gain case shows the faster vibration suppression perfor-
mance. The frequency responses for the tip displace-
ment are further calculated by performing the fast
Fourier transform (FFT) on the time responses, as
shown in Figure 4(b). The frequency response curves
present three peaks, representing three bending modes.
From the graph, it is observed that the amplitudes of
the controlled responses are significantly attenuated in
the first mode, but they increase in both the third and
the fifth modes. The time response and frequency

response curves of the sensor output are shown in
Figure 5(a) and (b). Since the sensor output is based on
the induced strain, the output voltage follows the ten-
dency of the displacement and the amplitude is depen-
dent on the vibration intensity. It can also be concluded
that the voltage output converges very fast when apply-
ing the feedback control, and the G = 0.1 case con-
verges faster than the G = 0.05 case. From the
frequency aspect, similar conclusion can be obtained.
The first mode is well suppressed, while the third and
the fifth modes are enhanced. However, since the first
mode dominates the vibration of the plate and pos-
sesses the largest vibration energy in this case, the con-
trol performance is very well by attenuating the first
mode only. The control voltage signals are shown in
Figure 6 for two control gains. In the velocity feedback,
the control input is representative of the strain rate.
Thus, the control voltage shows large value at the
beginning and decreases as the vibration velocity
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Figure 4. (a) Uncontrolled and controlled tip displacement for
healthy smart composite laminate subjected to 1 N impulse load
at the tip center. (b) Frequency response of tip displacement for
healthy smart composite laminate subjected to 1 N impulse load
at the tip center.
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decays. The peak values of the control voltage are 45.2
and 100.3 V for G = 0.05 and G = 0.1 cases,
respectively.

Vibration control with actuator debonding failures

To investigate the actuator debonding effects on the
control capability, the CGVF control algorithm is
applied to the smart composite laminates with partially
debonded piezoelectric actuator. The debonding size
and location are defined as shown in Figure 2. To inves-
tigate the debonding effect, the debonding is assumed
to occur at the right edge of the actuator only since the
debonding location at the middle has very little effect
on the active control and the closed-loop frequencies.11

The open-loop system responses of the tip displace-
ment and sensor output are shown in Figures 7 and 8
for the healthy laminate, and five debonding cases sub-
jected to 1 N mechanical impulse load at the tip center.
Both the two graphs show that there is no significant
difference in the magnitudes between the healthy lami-
nate and debonded laminates. This is because the
debonding slightly affects the structural stiffness and
the laminate is excited by mechanical force only. The
frequency shift can also be observed which is in accor-
dance with that listed in Table 2. The closed-loop fre-
quencies and active damping are shown in Tables 4 and
5 for the debonding cases with G = 0.05 and G = 0.1.
From the tables, it is found that the closed-loop fre-
quencies are also changed due to the existence of
debonding failure. For the active damping ratios, first,
they increase with the increase in control gain for the
first mode, but they decrease for the third and fifth
modes. Second, the active damping ratios decrease with
the increase in the debonding size for the first and the
fifth modes, but they increase for the third mode. Since

previously we have already found that the first mode
dominates the vibration, it can be inferred that with
larger control gain and smaller debonding size, the first
mode can be suppressed more efficiently and the con-
trol performance is better.

The closed-loop system responses are shown in
Figures 9 and 10 with the control gain G = 0.1. First,
the vibration is suppressed well for both the tip displa-
cement output and sensor output. But it presents differ-
ent control performance for various debonding cases.
The settling times with respect to various debonding
sizes are shown in Figure 11. The settling time is
denoted when the amplitude is less than 1% of the
maximum peak value. It is found that the settling time
increases with the increase in the debonding length.
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Figure 8. Effect of actuator debonding size on the sensor
output of the open-loop system response subjected to 1 N
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The healthy laminate reaches the stable state in the
shortest time, while the 50% debonding case takes the
longest time to reach the stable state. This result also
correctly reflects that the debonding causes the reduc-
tion in control capability of piezoelectric actuator. The
control voltage is also investigated and shown in
Figure 12. Since the same control gain is used and the
structural response differences at the beginning are
quite small, the peak values of the control input are
similar. The amplitude of the control input also follows
the tendency of the system response and the input vol-
tage settles along with the displacement.

Conclusion

Active vibration control of smart composite laminates
with actuator debonding failures has been performed
using the CGVF control strategy. An FE model based
on the improved layerwise theory which fully incorpo-
rates the electro-mechanical coupling effect has been
developed to obtain the dynamic response of the struc-
ture. The reduced-order model has been developed and
further transferred into the state-space form for the
controller design. A CGVF controller has been
designed to suppress the vibration of smart composite
laminates with and without actuator debonding fail-
ures. The control gain effects on the closed-loop fre-
quencies and active damping ratios of healthy laminate
and damaged laminates have been investigated. The
actuator debonding effects on the open-loop system
and closed-loop system have also been investigated.
With the existence of actuator debonding failure, it has
been found that the settling time increases significantly
with the increase in the debonding length, which indi-
cates that the control efficiency is reduced dramatically.
The proposed modeling and control algorithm reveal
the actuator debonding effect on the active control effi-
ciently and accurately. However, in practice, the system
is very sensitive to the control gain value and the con-
trol input voltage is in proportion to the gain value,
leading to the difficulties of choosing a proper gain
value. Thus, in the future, it is necessary to design the
controller for investigating the actuator debonding
effect on active control using optimal control strategies
to make a comparison.

Table 4. Three bending frequencies and active damping ratios of the closed-loop system with debonding failures, G = 0.05.

First mode Third mode Fifth mode

fi (Hz) ji (%) fi (Hz) ji (%) fi (Hz) ji (%)

10% 40.86 3.38 250.45 5.52 681.64 14.93
20% 40.79 3.15 250.46 5.62 681.30 13.54
30% 40.72 2.92 250.42 5.74 681.13 12.59
40% 40.64 2.69 250.31 5.91 681.11 12.12
50% 40.57 2.46 250.13 6.11 681.18 12.19

Table 5. Three bending frequencies and active damping ratios of the closed-loop system with debonding failures, G = 0.1.

First mode Third mode Fifth mode

fi (Hz) ji (%) fi (Hz) ji (%) fi (Hz) ji (%)

10% 40.82 5.49 251.55 3.19 679.33 8.43
20% 40.75 5.03 251.70 3.37 678.59 5.65
30% 40.68 4.57 251.70 3.63 678.25 3.74
40% 40.61 4.11 251.54 3.96 678.29 2.8
50% 40.54 3.65 251.20 4.37 678.67 2.94
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Figure 9. Effect of actuator debonding size on the tip
displacement of the closed-loop system response subjected to
1 N impulse load at the tip center, G = 0.1.
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