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Abstract
Structure-based virtual screening is one of the most important and common computational

methods for the identification of predicted hit at the beginning of drug discovery. Pocket rec-

ognition and definition is frequently a prerequisite of structure-based virtual screening, re-

ducing the search space of the predicted protein-ligand complex. In this paper, we present

an optimal ligand shape descriptor for a pocket recognition algorithm based on the beta-

shape, which is a derivative structure of the Voronoi diagram of atoms. We investigate six

candidates for a shape descriptor for a ligand using statistical analysis: the minimum enclos-

ing sphere, three measures from the principal component analysis of atoms, the van der

Waals volume, and the beta-shape volume. Among them, the van der Waals volume of a li-

gand is the optimal shape descriptor for pocket recognition and best tunes the pocket recog-

nition algorithm based on the beta-shape for efficient virtual screening. The performance of

the proposed algorithm is verified by a benchmark test.

Introduction
Drug discovery is a time consuming, costly process. One of the most critical processes in drug-
discovery is identification of predicted hit where virtual screening as an in silicomethod screens
a chemical library against a target protein [1–3]. For this purpose, the pharmacophore of a
pocket can be used for virtual screening [4, 5]. Based on its effectiveness and the rapid accumu-
lation of three-dimensional molecular structures, structure-based virtual screening is becoming
more widespread. Over 100,000 experimentally determined biomolecular structures are cata-
loged in the Protein Data Bank (PDB) [6], and millions of rational biomolecular models are
cataloged in the MODBASE [7], the SWISS-MODEL [8] and the PMDB [9]. Successful cases of
structure-based virtual screening include Gleevec targeting a tyrosine kinase [10], Agenerase
and Viracept for HIV protease [11]. Other successful cases are reviewed in [11–13].

A common approach in structure-based virtual screening is docking simulation which at-
tempts to find the best binding of a ligand to a receptor by solving the energy minimization
problem where the search space is exponential, making it hard to solve [14, 15]. In order to
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reduce computation, docking algorithms usually predict a potential binding site called a pocket,
which is the concave region on the molecular boundary, to place an initial ligand for the energy
minimization process [16–19].

There are three approaches in pocket recognition. The grid-based approach defines the lat-
tice of the space occupied by a receptor, infers the relations among the grid points in the lattice
to extract the exterior boundary of the molecule, and recognizes the depressed regions on the
boundary [20–23]. A sphere-coating approach places a set of artificial spherical probes around
the receptor and infers the relations among the probes for a pocket [24–26]. However, both ap-
proaches are rather heuristic and do not guarantee a quality solution in spite of heavy compu-
tational requirement. The computational geometry approach is based on the formal
computational geometry theory of the proximity among atoms to recognize the receptor
boundary and the shape of a pocket. The (weighted) alpha-shape based method [27, 28] and
the beta-shape based method [29] belong to this category.

Most previous pocket recognition studies regarded the largest concave region on the recep-
tor boundary as a pocket, ignoring the ligand characteristics. However, different ligands may
bind to different sites on the boundary of an identical receptor. For example, c-Myc protein,
which is overexpressed in the majority of human cancers, is known to have three independent
binding sites corresponding to three different types of ligands: Ligands 10074-G5, 10074A4,
and 10058-F4 [30] bind to 366–375, 375–385, and the 402–409 residues of c-Myc, respectively
[31]. If the biggest pocket is only considered for virtual screening, drug candidates correspond-
ing to the other two binding sites cannot be found. Hence, it is desirable to reflect the ligand
characteristics during the pocket recognition process as its shape is the most important ligand
characteristic. Reports for other cases are also available [32–34].

In this paper, we propose optimization of a ligand shape descriptor for pocket recognition
based on the beta-shape so that the recognized pocket can be better used for virtual screening.
We first present the formalization of our earlier pocket recognition algorithm [29] in the con-
text of the beta-shape. We avoid the (weighted) alpha-shape due to the following reason. The
alpha-shape was originally defined for points using the ordinary Voronoi diagram of points
[35] and was used for reasoning the spatial properties of point clouds or molecular structures
assuming that all atoms were of an identical size. However, poly-sized atomic model (i.e., dif-
ferent atom types had different radii) was more realistic for analyzing molecular structure. To
reflect the size difference among different atom types, the weighted alpha-shape, which was
based on the power diagram of the poly-sized atomic model, replaced the alpha-shape [36].
However, it turned out that the power diagram, and thus the weighted alpha-shape as well, was
not based on the Euclidean distance but on the power distance which could be interpreted as
the tangential distance from the boundary of spherical atoms. Due to this property, the topolo-
gy structure of the weighted alpha-shape can be incorrect for reasoning the proximity between
non-intersecting atoms and is not necessarily offset-invariant. The lack of offset-invariance
causes the limitation of the weighted alpha-shape for many important applications of
molecular structure.

Then, we present the optimal shape descriptor of a ligand for pocket recognition. This is
based on an efficient algorithm to extract the molecular boundary using the beta-shape, a struc-
ture derived from the Voronoi diagram of the molecule [37]. Using the beta-shape and the op-
timized shape descriptor, effective pockets can be efficiently recognized and used for the
docking algorithm called the BetaDock [38, 39]. The molecular graphics in this paper were cre-
ated using BetaMol, a molecular modeling, visualization, and analysis program freely available
from http://voronoi.hanyang.ac.kr/software.htm [40].
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Approach

Pocket recognition using the beta-shape
For the proximity among the atoms on the molecular boundary, the concept of the beta-shape
has been proposed [37]. Fig. 1(a) shows a two-dimensional molecule. Fig. 1(b) shows the Con-
nolly surface (green curve) corresponding to the red circular probe where the radius is β. Sup-
pose that the Connolly surface is straightened by substituting the straight edges for the circular
arcs and the planar triangles for the spherical triangles where their vertices are the centers of
the related atoms. The straightened object bounded by the planar facets is the beta-shape of the
molecule. Fig. 1(c) shows the beta-shape of a molecule corresponding to the red circular probe
in Fig. 1(b). The beta-shape concisely provides the precise proximity among the atoms on the
molecular boundary with respect to the probe. Fig. 1(d), (e), and (f) show the van der Waals
model of a protein (PDB id 1oq5), its Connolly surface for water molecule with 1.4Å radius,
and the corresponding beta-shape. We note here that the beta-shape is efficiently computed
from the quasi triangulation which is the dual structure of the Voronoi diagram of atoms. The
details are reported in [37, 41–43] and readers are recommended to download the BetaCon-
cept program from VDRC (http://voronoi.hanyang.ac.kr) to explore the properties of the
beta-shape.

Fig 1. A schematic diagram of a molecule and its beta-shape. Figure drawn by using the BetaConcept[44] and BetaMol program freely available
from VDRC. (a) A two-dimensional molecule, (b) A two-dimensional molecule and its Connolly surface corresponding to the red circular probe, and (c) the
beta-shape corresponding to the probe, (d) the van der Waals model of a protein (PDB id 1oq5), (e) the Connolly surface for water molecule (with 1.4Å
radius), and (f) the corresponding beta-shape.

doi:10.1371/journal.pone.0122787.g001
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Fig. 2 shows a two-dimensional schematic diagram showing the idea of pocket recognition
using the beta-shape. Suppose that the figure depicts a subset of the beta-shape corresponding
to the probe of water. Consider that the small circle σ or s� is an atom on the molecular bound-
ary and the shaded region is the molecular interior. The atoms on the slanted wall in the left
are numbered σ1 through σ6, and those on the vertical wall are numbered s�

1 through s�
4. There

are four dotted circles β1, β2, β3 and β4 in Fig. 2(a) where each is in contact with the boundary
of the three atoms. For convenience, suppose that β1, β2, β3 and β4 also denote the radii of the
corresponding circles where 0� β1 < β2 < β3< β4. Let π be a spherical open probe with the ra-
dius βπ.

In Fig. 2(a), the smallest circle β1 is in contact with σ1, σ2 and s�
1. Consider a probe π smaller

than β1 (i.e., βπ � β1). Then, π can touch the boundary of all atoms implying that all atoms are
exposed to π. However, if βπ is greater than β1, π can no longer touch σ1 and σ1 is not exposed
to π. Hence, σ1 is exposed when 0� βπ � β1, and the interval [0,β1] is called the exposure inter-
val for σ1. Consider β2, which is in contact with the three atoms σ2, σ3 and s�

2. Then, σ2 is simi-
larly exposed when 0� β� β2. The exposure interval of σ3 is [0,β3]. A similar observation
holds for the other atoms. Therefore, each boundary atom is associated with an
exposure interval.

Fig. 2(b) and (c) illustrate how to use the exposure interval in pocket recognition. Let βθ be
the threshold value to recognize a pocket. Suppose that β2 < βθ � β3. This implies that the
atoms σ1 and σ2 (s�

1 and s
�
2 as well) are not exposed to π when βπ = βθ. Then, the boundary of

the beta-shape corresponding to π = βθ is shown as the solid polyline in Fig. 2(b). Hence, the
boundary no longer includes the three atoms σ1, σ2 and s�

1 and the depressed, buried region
consisting of σ1, σ2 and s�

1 can be regarded as a pocket. Therefore, the atoms that constitute a
pocket can be easily identified by checking the exposure interval of each atom. Fig. 2(c) shows
a larger pocket. A lager βθ tends to define a larger pocket and a smaller βθ tends to define a
smaller pocket. As different βθ values define different pockets, it is important to find the opti-
mal value of βθ. The threshold βθ is essential for the shape and size of the pockets. For details,
see [45].

Fig 2. The idea of pocket recognition using the beta-shape. (a) Empty tangent balls defining the exposure intervals of each atom on the boundary. (b) The
pocket {σ1, σ2, s�

1} where β2< βθ� β3. (c) The pocket {σ1, σ2, σ3, s�
1, s

�
2, s

�
3} where β3< βθ� β4.

doi:10.1371/journal.pone.0122787.g002
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L-descriptor: descriptor of the ligand shape
Drug-like ligands ordinarily consist of 20 to 70 atoms [46] where each can have various confor-
mations [47]. The conformation of a ligand instance affects the binding between the ligand and
its receptor, and the primary factor of the binding is the ligand shape. Therefore, an appropri-
ate consideration of the ligand shape is necessary. There are algorithms for computing the pos-
sible ligand conformations so that each conformation can be treated as a ligand instance in
virtual screening [48]. The pocket recognition algorithm above uses the threshold βθ whose op-
timal value for a given pair of ligands and receptors should be inferred to form the measure of
the ligand shape. We call this measure the L-descriptor.

We examine six types of L-descriptor for a ligand: βθ_mes, βθ_PC1, βθ_PC2, βθ_PC3,
βθ_vdW and βθ_beta. The βθ_mes is the radius of the minimum enclosing sphere (mes), which
is the smallest sphere that contains all the ligand atoms (Fig. 3(a)). The values of βθ_PC1,
βθ_PC2 and βθ_PC3 are obtained from the bounding box of a ligand that is computed by the
principal component analysis (PCA) [49]. Let PC1 be the first principal component denoting
the greatest variance of the data set. Similarly, let PC2 and PC3 be the second and the third
principal components denoting the second and third greatest variance, respectively. Then, the
length of each edge of the PCA-induced bounding-box is used as βθ_PC1, βθ_PC2, or βθ_PC3.
See Fig. 3(b) for examples of βθ_PC1 and βθ_PC2 in the plane. Two volume measures are also
investigated. Let Vol(vdW) be the volume of the vdW-model of a ligand. Consider a sphere
whose volume is also Vol(vdW). Then, the radius of the sphere is βθ_vdW (Fig. 3(c)). For com-
putation of Vol(vdW), refer to [50]. Let Vol(β) be the volume of the beta-shape corresponding
to the spherical probe of a water molecule. Then, the radius of the sphere with the volume Vol
(β) is βθ_beta (Fig. 3(d)). Fig. 4 shows the three-dimensional counterpart of the L-descriptors
for three ligands found from protein complexes in PDB.

Methods

Definition of an optimal pocket
Consider a complex consisting of a receptor moleculeMR (the gray object in Fig. 5(a)) and its
bound ligand moleculeML (the green object the same figure) where both are defined by atom
sets. Let @MR be the boundary of the van der Waals model ofMR and d(q,MR) the minimum
Euclidean distance between two points q and x 2 @MR. @ML and dist(q,ML) are similarly de-
fined. Let IIF1 = {q1,q2,q3,. . .} be the surface (the blue curve in Fig. 5(b)) which is the locus of
qi where dist(qi,M

R) = dist(qi,M
L). In other words, IIF1 is the mid-surface betweenMR andML

emanating to infinity. Let IIF� IIF1 be the trimmed surface (the red curve in Fig. 5(d)) of
IIF1 using the probe of a water molecule as a cutter (the red ball in Fig. 5(c)) [51]. Then, IIF is

Fig 3. L-descriptor types in the plane. (a) The minimum enclosing sphere and βθ_mes, (b) the bounding box by PCA, βθ_PC1, and βθ_PC2, (c) the van der
Waals model of the ligand and βθ_vdW, and (d) the beta-shape of the ligand and βθ_beta.

doi:10.1371/journal.pone.0122787.g003
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called the interaction interface betweenMR andML. LetP�MR be the set of receptor atoms
(the blue five atoms in Fig. 5(d)) which defines IIF. Then, we callP the optimal pocket in this
paper.P is called optimal in the sense that a complex consisting of a receptor and a ligand is
crystalized, and its structure is solved in its entirety. For the details, see [52].

Evaluation of a recognized pocket
In a binary decision problem, a decision made by a classifier can be represented in a confusion
matrix [53]. Recall thatP denotes the optimal pocket. LetPc = B−P where B is the set of
atoms on the receptor boundary. In other words,Pc is the boundary atoms except those in the

optimal pocket. Let P̂ be the recognized pocket by the proposed algorithm. Then, P̂c ¼ B� P̂
is the boundary atoms except those in the recognized pocket.

Fig 4. Some of the proposed L-descriptor types. The black circle denotes the minimum enclosing sphere; the red circle denotes the sphere whose volume
is identical to the volume of the van der Waals model of the ligand; the blue circle denotes the sphere whose volume is identical to the volume of the beta-
shape; the black rectangle denotes the bounding box of the PCA analysis. The PDB accession codes that contains the complex with the shown ligands are
as follows: (a)1t46, (b)1oq5, and (c) 1tt1.

doi:10.1371/journal.pone.0122787.g004

Fig 5. The interaction interface (IIF) of a two-dimensional molecule complex and the optimal pocket defined by IIF. The gray and green objects are
a receptor moleculeMR and a ligandmoleculeML, respectively. (a) A two-dimensional molecule complex, (b) IIF1 shown as the blue curve, (c) IIF shown
as the red curve trimmed by the red circle, and (d) the optimal pocket consisting of the five blue atoms and IIF.

doi:10.1371/journal.pone.0122787.g005
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We can now define the confusion matrix for pocket recognition as in Table 1. The atoms in

P \ P̂ are called true positive (T+); The atoms inPc \ P̂c are called true negative (T−); The

atoms inPc \ P̂ are called false positive (F+); The atoms inP \ P̂c are called false negative
(F−). Hence, true positive(T+) refers to the positive atoms correctly recognized as positive; False
positive(F+) refers to the negative atoms incorrectly recognized as positive; True negative(T−)
refers to the negative atoms correctly recognized as negative; False negative(F−) refers to the
positive atoms incorrectly recognized as negative.

Given the confusion matrix, various metrics can be defined for the evaluation of the quality
of a recognized pocket. The true positive rate, TPR, is the proportion of the correct atoms in
the recognized pocket (T+) against the atoms in the optimal pocket (both T+ and F−). TPR is
also referred to as the recall rate R, or the sensitivity S. The false positive rate, FPR, is the pro-
portion of the incorrect atoms of the recognized pocket (F+) against the atoms which do not be-
long to the optimal pocket (both T− and F+). The specificity, SP, is the proportion of the correct
atoms not in the recognized pocket (T−) against the atoms not in the optimal pocket (both T−

and F+). The precision, P, is the proportion of the correct atoms in the recognized pocket (T+)
against the atoms in the recognized pocket (both T+ and F+). The accuracy, AC, is the propor-
tion of correct atoms in the recognized pocket (both T+ and T−) against all atoms in the bound-
ary B. In this paper, these are called the primary metrics from the confusion matrix and
summarized in Table 2.

There are trade-offs among the primary metrics. A good recognized pocket should have
high TPR and low FPR values. An overestimated, large pocket tends to have higher values for
both TPR and FPR because there can be both many correctly identified atoms and many incor-
rectly identified atoms at the same time. An underestimated, small pocket tends to have a low
FPR value (because the pocket size is small and thus there is a lower chance to have incorrect
atoms) and a low TPR value (because the chance to have correct atoms is also lower). This
trade-off is conveniently represented in the Receiver Operator Characteristic (ROC) graph
which is useful for visualizing the performance of classifiers [54]. In the ROC-graph, the

Table 1. Confusion matrix for pocket evaluation.

In recognized pocket (P̂) Not in recognized pocket (P̂c)

In optimal pocket (Π) True Positive (T+) False Negative (F−)

Not in optimal pocket (Πc) False Positive (F+) True Negative (T−)

doi:10.1371/journal.pone.0122787.t001

Table 2. Primarymetrics of the confusionmatrix.

Primary metric Equation

True Positive Rate (TPR) TPR ¼ Tþ
TþþF� ¼ nðP\P̂Þ

nðPÞ

False Positive Rate (FPR) FPR ¼ Fþ
T�þFþ ¼ nðPc\P̂Þ

nðPcÞ

Precision (P) P ¼ Tþ
TþþFþ ¼ nðP\P̂Þ

nðP̂Þ

Specificity (SP) SP ¼ T�
T�þFþ ¼ nðPc\P̂cÞ

nðPcÞ ¼ 1� FPR

Accuracy (AC) AC ¼ TþþT�
TþþFþþT�þF� ¼ nððP\P̂Þ[ðPc\P̂cÞÞ

nðBÞ

Sensitivity (S) = Recall (R) S = R = TPR

doi:10.1371/journal.pone.0122787.t002
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horizontal and vertical axes denote FPR and TPR, respectively. Hence, the coordinate (FPR = 0,
TPR = 1) denotes the perfect pocket recognition. In the ROC-graph, the more upper-left a co-
ordinate is, the better the performance. Given the operating points in the ROC-graph, a smooth
ROC-curve can be computed with the assumption of binormal distribution. Then, the area
under the ROC-curve, AUC, is a measure combining both TPR and FPR that is interpreted as
the average sensitivity over all of the specificity range. In other words, AUC is the probability
that a pocket recognizer will select a randomly chosen pocket atom higher than a randomly
chosen atom not in a pocket.

It is usual that the number of atoms that do not belong to the optimal pocket significantly
exceeds the number of atoms belonging to the optimal pocket. In other words, n(Pc)>> n

(P). SincePc \ P̂ � P̂ and P̂ � P, the numerator of FPR is usually significantly smaller
than its denominator. Thus, even a large change in F+ does not result in a significant change in
the FPR. Hence, in pocket recognition, a ROC-graph tends be optimistic in that most recog-
nized pockets and algorithms are likely to have low FPR regardless of the performance
in reality.

The PR-graph denotes the coordinate system where the horizontal and vertical axes are the
recall R and the precision P, respectively. Note that the precision P captures the size of the cor-

rectly recognized pocket becauseP \ P̂ � P andP � P̂. In the PR-graph, there is a trade-off
between R and P. If all the atoms of an optimal pocket are perfectly predicted, R = 1, and if no
atom of an optimal pocket is predicted at all, R = 0. If all the atoms of a recognized pocket are
correct (i.e., there is no noise atoms in a recognized pocket), P = 1, and if all the atoms of a rec-
ognized pocket are noise atoms, P = 0. Hence, perfect pocket recognition occurs at the coordi-
nates (R = 1, P = 1). Therefore, the more upper-right a coordinate is, the better
the performance.

An overestimated, large pocket tends to have a high R (due to having many correct atoms)
but a small P (because there are many noise atoms as well). On the other hand, an underesti-
mated, small pocket tends to have a high P (because the size is small and it has lower chance to
have noise atoms) but has a low R (because the chance to have correct atoms is lower).

Normalized Mutual Information [55], NMI, is a measure of information transmission
which is based on Shannon’s Entropy. Entropy measures are widely used in comparing true
data with predicted data. Among those possible measures, entropy measures focus on the
amount of the cross-section together with the match of total amount. Given a confusion ma-
trix, the following four entropy values can be defined: the row entropy H(x), the column

Optimal Pocket Recognition

PLOS ONE | DOI:10.1371/journal.pone.0122787 April 2, 2015 8 / 29



entropy H(y), and two conditional entropies H(xjy) and H(yjx)
HðxÞ ¼ �

X
i

pi log 2pi; ð1Þ

HðyÞ ¼ �
X

j

pj log 2pj; ð2Þ

HðxjyÞ ¼
X

j

pj �
X

i

pij
pi

log 2

pij
pj

" #
; ð3Þ

HðyjxÞ ¼
X

i

pi �
X

j

pij
pj

log 2

pij
pi

" #
ð4Þ

where pi and pj represent the empirical probabilities of the predicted and true examples, respec-
tively, and pij is their joint probability. Then, NMI is defined as

NMI ¼ HðxÞ � HðxjyÞ
HðxÞ : ð5Þ

The NMI contains more details of the confusion matrix which is not accounted for by other
metrics [56]. The likelihood ratio test, LR, is a related metric that statistically compares the
maximum likelihood of an unrestricted model with a restricted model [57] and is defined as

LR ¼ 2
X
i;j

Observed log
Observed
Expected

� �
ð6Þ

implying

LR ¼ 2fN logN þ Tþ logTþ þ F� logF� þ T� logT� þ Fþ log Fþ

� ðTþ þ FþÞ log ðTþ þ FþÞ � ðTþ þ F�Þ log ðTþ þ F�Þ
� ðT� þ FþÞ log ðT� þ FþÞ � ðT� þ F�Þ log ðT� þ F�Þg:

ð7Þ

Table 3. Evaluation metrics.

Secondary metric Equation

ROC-based metrics Balanced accuracy (BA) BA ¼ SþSP
2

Geometric mean 2 (G2) G2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� SP

p

Euclidean distance (ED) ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS� 1Þ2 þ ðSP� 1Þ2

q
Youden index (YI) YI = S+SP−1

Precision-based metrics F-measure (f) f ¼ 2�S�P
SþP

Geometric mean 1 (G1) G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S� P

p

Predictive summary index (PSI) PSI = NPV+P−1

Negative Predictive Value (NPV) NPV ¼ T�
T�þF� ¼ nðOpc\RpcÞ

nðRpcÞ

Ordinal association metrics Gamma (γ) g ¼ Tþ	T��Fþ	F�
Tþ	T�þFþ	F�

Tau-b (τb) tb ¼ Tþ	T��Fþ	F�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTþþF�ÞðT�þFþÞðTþþFþÞðT�þF�Þ

p

Tau-c (τc) tc ¼ 4ðTþ	T��Fþ	F�Þ
ðTþþT�þFþþF�Þ2

doi:10.1371/journal.pone.0122787.t003
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Both the LR and NMI are based on information entropy, which is loosely similar to the vari-
ance of the entries in the confusion table Table 2. Note also that the metric derived from the in-
formation entropy is independent of the ligand size.

In addition, we tested eleven more secondary metrics for the proposed six L-descriptors in
Table 3: four based on ROC, four based on the precision, and three based on the ordinal associ-
ation. The four metrics related to ROC graph are as follows: The balanced accuracy (BA) is de-
fined as the numerical mean of S and SP[58]. The geometric mean 2 (G2) is the geometric
mean of S and SP[59]. The Euclidean distance from an ideal classification (ED) is the combina-
tion of S and SP that measures the distance from an ideal classification in ROC space, where S
and SP both equal one [56]. Youden index (YI) is the sum of the S and SPminus one and is a
measure of goodness for diagnostic tests [60].

The four metrics related to PR graph are as follows: The F-measure (f) is a harmonic mean
of P and S and was first used by Lewis and Gale for assessing text classification effectiveness
and [61]. The geometric mean 1 (G1) is the geometric mean of P and S[59]. The predictive
summary index (PSI) is the sum of P and NPVminus one and was developed as a measure of
goodness for diagnostic tests [62]. The negative predictive value (NPV) is the proportion of the
correct atoms out of the computed pockets (T−) against the atoms out of the computed pocket
(both T− and F−).

The ordinal association metrics have been used for the analysis of cross classifications with
ordinal categories. The gamma (γ) is the estimated difference between the probability of con-
cordance and the probability of discordance and has a range 1� γ� 1 [63]. The Kendall’s τb
makes an adjustment for ties when it measures the proportion of concordant and discordant
pairs. The Kendall’s τc is a variant of τb, which makes an adjustment for table size in addition
to a correction for ties [64]. Both τb and τc has range 1� τb,τc � 1.

From the results of the ROC-graph and PR-graph, it is important to note the following: i)
The AUC of ROC-curve can mislead because the curve cannot reflect the low sensitivity of
smaller L-descriptor, and ii) the AUC of PR-curve can also mislead because the curve cannot
reflect the low precision of larger L-descriptor. This phenomenon resides in the various sec-
ondary metrics based on the ROC-graph and PR-graph.

Fig. 6 shows the results of the ROC-based metrics which is based on sensitivity and specifici-
ty. Fig. 7 shows the results of metrics based on precision. These PR-based metrics mislead be-
cause the metrics cannot reflect the low precision of larger L-descriptor. Negative predictive
value cannot discriminate among the L-descriptor types at all, because an optimal pocket has
larger negative cases than positive cases. In all metrics, it turns out that the van der Waals vol-
ume consistently belongs to the group of L-descriptors showing better performance.

Results

Experimental materials and methods
The experiment was done using the Astex Diverse Set (ADS) consisting of 85 high resolution
protein-ligand complexes containing drug-like compounds [65]. The optimal pocketP of each

receptor was computed from the bound complex, and the corresponding recognized pocket P̂
was computed from each receptor after the bound ligand was removed.

Consider an effective, optimal pocket related to a given ligand, and suppose that there is
more than one depressed region on the receptor boundary that can be considered as a pocket
candidate. Obviously, the larger the number of pockets used in the docking simulation, the bet-
ter the solution quality, and the more time a computation takes. In this experiment, we as-
sumed that the optimal pocket corresponds to one of the five biggest pocket candidates in
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terms of the number of atoms belonging to each pocket candidate. In fact, in most of the cases
in our experiment, the optimal pocket belonged to one of the two biggest pocket candidates.

A ligand may have rotational bonds that can generate various conformations. In this experi-
ment, we used two conformations for each ligand to check the effect of a ligand’s conformation
change: i) the native conformation found in the crystal structure and ii) the minimum energy
conformation that was calculated by the MM2 method using ChemOffice software [66]. Fig. 8
shows two such examples.

Fig 6. Box plots by ROC-basedmetrics of the six shape descriptors. (a) Balanced accuracy, (b) geometric mean 2, (c) Euclidean distance and (d)
Youden index.

doi:10.1371/journal.pone.0122787.g006
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Fig 7. Box plots by Precision-basedmetrics of the six shape descriptors. (a) F-measure, (b) geometric mean 1 and (c) predictive summary index (d)
negative predictive value.

doi:10.1371/journal.pone.0122787.g007
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L-descriptors and ligand size
Fig. 9 shows the curves for the L-descriptors vs. the ligands ordered in their sizes. The six L-de-
scriptors are divided into two graphs: Fig. 9(a) for the PC1, PC2, and PC3; Fig. 9(b) for the
minimum enclosing sphere, the van der Waals volume, and the beta-shape volume. The L-de-
scriptors tend to increase with respect to the ligand size, and their average values are in the fol-
lowing order (Within the parentheses are the averages):

by betað3:35Þ < by PC3ð3:60Þ < by vdWð4:04Þ
< by PC2ð4:96Þ < by PC1ð7:21Þ < by mesð7:41Þ: ð8Þ

When βX < βY in Equation (8), we say that βX is smaller than βY and βY is bigger than βX.

Pocket evaluation
Fig. 10 compares the six L-descriptor types with four primary metrics; the sensitivity S, the pre-
cision P, the specificity SP, and the accuracy AC. The horizontal axis denotes the L-descriptors
in the order given in Equation (8). The vertical axis denotes the metric values. Fig. 10(a) shows
that a bigger L-descriptor tends to produce a higher sensitivity value than a smaller one. This
implies that a bigger L-descriptor tends to produce a larger recognized pocket which has a

Fig 8. Two different conformations of two ligands: the native state and the minimum energy state. The minimized energy conformation is
calculated by MM2 in ChemOffice software. (a) and (b) the native and the minimum energy conformations of 1hwi, respectively; (c) and (d) those of 1v0p.

doi:10.1371/journal.pone.0122787.g008

Fig 9. L-descriptor curves with respect to the ligand size. R2 (the coefficient of determination) is a statistical measure of how close the data are to the
fitted regression line. The p-values of the six linear regressions are all less than 10−11.

doi:10.1371/journal.pone.0122787.g009
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higher chance to have more correct atoms. On the other hand, Fig. 10(b) shows that a smaller
L-descriptor tends to have a higher value of precision than a bigger one. This implies that a
larger pocket has a higher chance to have incorrect atoms in a recognized pocket. This observa-
tion thus shows the trade-offs among the sensitivity and the precision. Fig. 10(c) and (d) shows
that the specificity and the accuracy cannot properly discriminate the L-descriptor types.

Fig. 11 and Fig. 12 show the ROC-graphs and the PR-graphs of the six L-descriptor types,
respectively, in the order as before. In the ROC-graphs in Fig. 11, the FPR tends to be small be-
cause there are many boundary atoms which do not belong to the optimal pocket. Note that
the window of the horizontal-axis is given between 0 and 0.2. From these graphs, we observe
that Fig. 11(c) and (d) shows the best distribution of the FPR and TPR values. Fig. 11(a) and
(b) shows rather widely distributed TPR values and Fig. 11(e) and (f) shows rather widely

Fig 10. Box plots by primarymetrics of the six types of L-descriptor. (a) Sensitivity, (b) precision, (c)
specificity, and (d) accuracy.

doi:10.1371/journal.pone.0122787.g010
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distributed FPR values. Recall that the perfect match occurs at the point (FPR = 0,TPR = 1). In
the PR-graphs in Fig. 12, we observe that Fig. 12(c) (βθ_vdW) and (d) (βθ_PC2) show the best
distribution of the R and P values. Fig. 12(a) and (b) shows rather widely distributed R values
and Fig. 12(e) and (f) shows that the P values are rather downward distributed. Recall that a
perfect match occurs at the point (R = 1,P = 1).

Fig. 13(a) and (b) shows the normalized mutual information NMI and the likelihood ratio
LR, respectively, and both suggest that βθ_vdw and βθ_PC2 are better than the others. The
value of βθ_vdW is again slightly better than βθ_PC2. From a statistical view point, however, it
is difficult to make a clear statement of their superiority. In this regard, we performed further
statistical tests with additional eleven metrics and summarized the result in S1 Table of the sup-
plementary material. The test clearly shows that the van der Waals volume of L-descriptors is
consistently better measure than the others. For details, see the “Section 4. Secondary metrics
tested” in the Supplementary material.

Optimal L-descriptor: the van der Waals volume
Fig. 14 shows some examples of recognized pockets using the six L-descriptor types from the
two receptors (PDB accession codes: 1jd0 and 1s19) in the Astex Diverse Set. The NMImetric
of each recognized pocket is shown in the figure. Fig. 14(a) shows 1jd0 (the carbonic anhydrase

Fig 11. The ROC-graph of the L-descriptors. (a) the beta-shape volume, (b) the PC3, (c) the van der Waals volume, (d) the PC2, (e) the PC1, and (f) the
minimum enclosing sphere.

doi:10.1371/journal.pone.0122787.g011
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XII-acetazolamide complex), which has a small ligand consisting of 18 atoms. In this case,
βθ_PC3 and βθ_beta are totally incorrect in that any atom of the optimal pocket is not con-
tained within the recognized pocket. The value of βθ_PC1 and βθ_mes computes relatively large
pockets compared to the size of the optimal pocket. Fig. 14(b) shows 1s19 (the vitamin D nu-
clear receptor-calcipotriol complex), which has a large ligand consisting of 70 atoms. In this
case, βθ_PC1 and βθ_mes computes pockets that are too large compared to the size of the opti-
mal pocket. In both cases, the βθ_vdw and the βθ_PC2 consistently predict good quality
pockets.

Let lbound and lopt be the ligand conformations found in the crystal structure and in the mini-

mum energy conformation, respectively. Let bY
yX
be the value of lY for the L-descriptor type X

of lopt, where X is one of the six L-descriptor types and Y 2 {bound,opt}. Fig. 15 shows the

graphs for DL ¼ bbound
yX

- bopt
yX

for the Astex Diverse Set. Note that the graph of βθ_vdW and

βθ_beta show less fluctuations compared to the other four; this implies that they are less sensi-
tive to ligand conformation and less affected by the flexibility of the ligand. The fluctuation in
the four graphs other than Fig. 15(a) and (c) implies that the corresponding L-descriptors are
very sensitive to the ligand’s flexibility. From the experiment, we conclude that βθ_vdW is opti-
mal in that it yields a consistently good performance regardless of ligand size and conforma-
tional change.

Fig 12. The PR-graph of the L-descriptors. (a) the beta-shape volume, (b) the PC3, (c) the van der Waals volume, (d) the PC2, (e) the PC1, and (f) the
minimum enclosing sphere.

doi:10.1371/journal.pone.0122787.g012
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Benchmark
We benchmarked the proposed method against the STP (surface triplet propensities) algorithm
[67] for recognizing the pockets of each protein in the Astex Diverse Set after removing the
drug-like compounds. The STP algorithm assigns a score, called a patch score ranging between
0 to 100, to each and every atom of a protein. A higher value of the score implies that the atom
has a higher probability to belong to a pocket. The STP algorithm selects those atoms whose
scores are greater than a given threshold as the constituent of a predicted pocket. Thus, a higher
patch score as a threshold selects fewer atoms than a lower one does. Be aware that the pro-
posed method of this paper produces multiple components of boundary mesh where each can
be a pocket candidate.

Fig. 16 shows the optimal pocket (Fig. 16(a)), the pocket computed by the proposed method
(Fig. 16(b)), and the one by the STP method (Fig. 16(c) through (f)) for a protein (PDB Acces-
sion code: 1jd0). The bound compound is visualized as a set of blue sticks (for the reference
purpose), the atoms belonging to pockets are visualized as colored balls, and the rest of the pro-
tein structure is visualized as gray line segments. The red balls in Fig. 16 (a) are the atoms of
the optimal pocket; The green balls in Fig. 16 (b) are the atoms of the best matched component
produced from the proposed algorithm; The yellow balls in Fig. 16 (c), (d), (e), and (f) are the
atoms recognized by the STP method for the threshold values 80, 60, 40, and 20, respectively.
Fig. 17 shows another example (PDB Accession code: 1s19). Experiments with other proteins
show similar results.

The examples above show that the proposed method seems very powerful without any pa-
rameters and perhaps better than the STP method. This claim is asserted by the following

Fig 13. Box plots by entropy-basedmetrics of the six types of L-descriptor. (a) normalized mutual information and (b) Likelihood ratio. *Note that the y-
axis scale of the LR plot is different from theNMI plot’s.

doi:10.1371/journal.pone.0122787.g013
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Fig 14. The optimal and recognized pockets of the PDBmodels. (a) PDB ID: 1jd0 (carbonic anhydrase XII—acetazolamide(18 atoms) complex) (b) PDB
ID: 1s19 (vitamin D nuclear receptor-calcipotriol(70atoms) complex). The atoms are the colored receptor in black, the ligand in blue, the optimal pocket in
pink, and the recognized pocket in red.

doi:10.1371/journal.pone.0122787.g014
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Fig 15. Difference in the βθ values by change of the ligand conformation. DL ¼ bbound
yX

- bopt
yX

(ie, ΔL = (βθ of the bound ligand)−(βθ of the ligand with
minimum energy)).

doi:10.1371/journal.pone.0122787.g015
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Fig 16. The visualization of pockets (PDB accession code: 1jd0). (a) The optimal pocket, (b) the best matched component produced by the proposed
method, (c), (d), (e), and (f) are the atoms recognized by the STP method for the threshold values 80, 60, 40, and 20, respectively.

doi:10.1371/journal.pone.0122787.g016

Fig 17. The visualization of pocket (PDB accession code: 1s19). (a) The optimal pocket, (b) the best matched component produced by the proposed
method, (c), (d), (e), and (f) are the atoms recognized by the STP method for the threshold values 80, 60, 40, and 20, respectively.

doi:10.1371/journal.pone.0122787.g017
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benchmark consisting of two types of tests. The first test type is the following. The proposed
method selects the best five pocket candidates and the STP method selects atoms based on a
threshold. We also select atoms at random for the reference where each random atom set has
the size identical to the set produced by the STP method for each threshold value. Then, all
atoms of each method forms one set, without processing to identify components where a “com-
ponent” is a cluster of molecular boundary atoms which are topologically connected to each
other. In this regard, we refer to this test type as “Without (component).”

The second test type is identical to the first except that the atoms in the atom set of each
method are clustered together by the connectivity between the atoms. Then, the best matched
component is used for the test. In this regard, we refer to this test type as “With (component).”

The following notations are for the “Without” case:

• ABeta: The set of atoms in the five largest candidate sets by the proposed method.

• ASTP: The set of atoms by the STP method corresponding to each threshold τ whose value is
determined from 0 to 95 by the increment of 5.

• ARandom: The set of randomly selected atoms where the n(ARandom) = n(ASTP) where n(A) is
the number of elements of A.

The following notations are for the “With” case:

• ABeta�: The best matched atom set to the optimal pocket by the proposed method.

• ASTP�: The best matched component (of atom set) defined by clustering the atoms in ASTP.

• ARandom�
: The best matched component of ARandom.

We computed the five measures: The precision P (Fig. 18), the specificity SP (Fig. 19), the ac-
curacy AC (Fig. 20), the sensitivity S (Fig. 21), and the normalized likelihood ratio LR (Fig. 22).

Fig. 18(a) shows the graphs of the precision for the three methods for “Without.” The hori-
zontal axis denotes the threshold and the vertical axis the computed precision value. Note the
the proposed method, shown by the red solid circle labeled by “Beta,” is constant, independent
of the threshold. On the other hand, the STP (the black triangle) and the Random (the blue
rectangle) methods heavily depends on the threshold value. It seems that the STP method

Fig 18. The precision graphs. The red circle corresponds to the proposedmethod. The black triangle and blue square correspond to the average
value (of the 85 structures of the Astex Diverse Set) for the STP and Randommethods for each threshold value, respectively. The horizontal and
the vertical axes denote the thresholds and the computed values of precision, respectively. (a) Precision for “Without (component)” and (b) one for
“With (component).”

doi:10.1371/journal.pone.0122787.g018

Optimal Pocket Recognition

PLOS ONE | DOI:10.1371/journal.pone.0122787 April 2, 2015 21 / 29



behaves better than the proposed method if the threshold is sufficiently big, say
 60. No sur-
prise to see the Random method behaves the worst.

Fig. 18(b) shows the precision graph for “With” component case. It is interesting to see that
both STP and Random behave very well from the precision point of view if the threshold is big
enough. Surprisingly the Random method shows the best precision for the range approximate-
ly between 55 and 70: It seems that this is because the Random method forms several compo-
nent where each consists of relatively few atoms than the other two methods and some of the
member atoms belong to the true pocket.

Fig. 19(a) shows the graphs for the specificity for the “Without” case. It is interesting that
the STP and Randommethods are surprisingly close and both produces slightly higher values
than the proposed method where the threshold is bigger than (approximately) 60. The “With”

Fig 20. The accuracy graphs. The red circle corresponds to the proposedmethod. The black triangle and blue square correspond to the average
value (of the 85 structures of the Astex Diverse Set) for the STP and Randommethods for each threshold value, respectively. The horizontal and
the vertical axes denote the thresholds and the computed values of accuracy, respectively. (a) Accuracy for “Without (component)” and (b) one for
“With (component).”

doi:10.1371/journal.pone.0122787.g020

Fig 19. The specificity graphs. The red circle corresponds to the proposedmethod. The black triangle and blue square correspond to the average
value (of the 85 structures of the Astex Diverse Set) for the STP and Randommethods for each threshold value, respectively. The horizontal and
the vertical axes denote the thresholds and the computed values of specificity, respectively. (a) Specificity for “Without (component)” and (b) one for
“With (component).”

doi:10.1371/journal.pone.0122787.g019
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case, Fig. 19(b), shows a similar behavior but all three methods are similar for bigger threshold
values. Fig. 20 are the accuracy graphs which show patterns very similar to the specificity
graphs. The similarity between the specificity and the accuracy is because there are significantly
more atoms not belonging to the true pocket than the number of atoms belonging to the
true pocket.

Fig. 21 shows the sensitivity graphs. While the proposed method (the red circle) shows a
constant behavior, the STP method shows a decreasing pattern as the threshold increases and
the two curves crosses approximately at the threshold of 50. It is obvious that the STP curve is
monotonic because ASTP(τ = τ1)� ASTP(τ = τ2), τ1> τ2. As is expected, the graph of Random
method is lower than the STP method. It is important to note that both Fig. 21(a) and (b) are

Fig 22. The normalized likelihood ratio graphs. The red circle corresponds to the proposedmethod. The black triangle and blue square
correspond to the average value (of the 85 structures of the Astex Diverse Set) for the STP and Randommethods for each threshold value,
respectively. The horizontal and the vertical axes denote the thresholds and the computed values of likelihood ratio, respectively. (a) The
normalized likelihood ratio for “Without (component)” and (b) one for “With (component).”

doi:10.1371/journal.pone.0122787.g022

Fig 21. The sensitivity graphs. The red circle corresponds to the proposedmethod. The black triangle and blue square correspond to the average
value (of the 85 structures of the Astex Diverse Set) for the STP and Randommethods for each threshold value, respectively. The horizontal and
the vertical axes denote the thresholds and the computed values of sensitivity, respectively. (a) Sensitivity for “Without (component)” and (b) one for
“With (component).”

doi:10.1371/journal.pone.0122787.g021
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Fig 23. The radar charts of the proposed algorithm, the STP algorithm, and the Randommethod for
the five statistical measures. (a) The case corresponding to the five best pockets recognized by the
proposed algorithm, and (b) the case corresponding to the best pocket recognized by the proposed algorithm.

doi:10.1371/journal.pone.0122787.g023
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very close to each other. This is because, regardless which method is used, the best matching
component contains most of the atoms of the optimal pocket.

Fig. 22 shows the normalized likelihood graphs. Note that the proposed method outper-
forms the others independent of the threshold value.

We performed another test as follows. Let ABeta be the set of all atoms belonging to the best
five pockets recognized by the proposed algorithm. Let ASTP0 be the set of n(ABeta) atoms recog-
nized by the STP method. This means that we collect the best n(ABeta) atoms from the one with
the highest patch score to the ones with lower score, without considering the threshold. Let
ARandom0

be the set of n(ABeta) atoms randomly selected. Fig. 23(a) shows the distribution of the
five statistical measures for the three methods. Suppose that we find the best matching compo-
nent among the five pockets recognized by the proposed algorithm and let ABeta� be the set of
the atoms belonging to this pocket. Let ASTP0� and ARandom0�

be the sets of n(ABeta�) atoms rec-
ognized by the STP and the Random methods, respectively. Fig. 23(b) shows the distribution of
the five statistical measures for the three methods with the three atom sets ABeta�, ASTP0� and
ARandom0�

.
From the analysis above, we claim that the proposed method is better than the STP method

in that it produces better quality pocket and is more robust.

Conclusion
This paper proposes a parameter optimization for a pocket recognition algorithm based on the
recent theory of the beta-shape, which is a derivative structure of the Voronoi diagram of
atoms in a molecule. The parameter optimization was done by considering the ligand shape,
thus called the L-descriptor, in the pocket recognition process so that the recognized pocket is
ligand-specific.

We examined six types of L-descriptor for ligands: the minimum enclosing sphere, the three
principal axes of the principal component analysis, the van der Waals volume, and the beta-
shape volume. From the experiment using the Astex Diverse Set containing 85 complexes of
proteins with ligands and various statistical measures based on the confusion matrix, the L-de-
scriptor based on the van der Waals volume showed the best and consistent performance
throughout the entire range of the ligand size. The van der Waals volume also showed a consis-
tent result over different ligand conformations. In conclusion, we claim that the van der Waals
volume is the optimal shape descriptor of ligands for pocket recognition algorithms based on
the beta-shape using a spherical probe representing the ligands. The claim is verified by a
benchmark test against the STP algorithm using the Astex Diverse Set. The code for the pro-
posed pocket algorithm will be included in the powerful BetaVoid program for extracting
void features of molecules [68].
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(PDF)
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