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1. Introduction

Models for conditional quantiles play an important role in
econometrics and statistics. In practice, it is often desirable to
consider simultaneously multiple quantiles to obtain a complete
analysis of the stochastic relationships between variables. This
underlies the consideration of the conditional quantile process.
A seminal contribution to this analysis is Koenker and Portnoy
(1987), which established a uniform Bahadur representation and
serves as the foundation for further developments in this area.
More recently, Koenker and Xiao (2002) considered the issue of
testing composite hypotheses about quantile regression processes
using Khmaladzation (Khmaladze, 1981). Chernozhukov and
Fernandez-Val (2005) considered the same issue and suggested re-
sampling as an alternative approach. Angrist et al. (2006) estab-
lished inferential theory in misspecified models. Their results can
be used to study a wide range of issues, including but not restricted
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to (i) testing alternative model specifications, (ii) testing stochas-
tic dominance, and (iii) detecting treatment effect significance
and heterogeneity.

The main focus of the above literature has been on paramet-
ric quantile models. However, there are frequent occasions where
parametric specifications fail, making more flexible nonparametric
methods desirable. This paper aims to achieve two goals. The first
is to propose two simple nonparametric estimators for the condi-
tional quantile process. The second is to derive an inferential the-
ory that can be used for constructing uniform confidence bands and
testing various hypotheses concerning conditional quantile pro-
cesses.

The two proposed estimators are both based on local linear re-
gressions (Fan et al., 1994; Yu and Jones, 1998), but differing in how
they ensure the quantile monotonicity. Specifically, the first esti-
mator applies local linear regressions to a grid of quantiles while
imposing a set of linear inequality constraints, and then linearly
interpolates between adjacent quantiles to obtain an estimate for
the quantile process. The second estimator first applies local lin-
ear regressions to a grid of quantiles without any constraints and
then applies rearrangement (Chernozhukov et al., 2010) if quantile
crossing occurs. They share the following two features. First, the
bandwidth parameter is allowed to vary across quantiles to adapt
to data sparsity. This is important because data are typically more
sparse near the tails of the conditional distribution. Second, the
computation is feasible even for large sample sizes. More detailed
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comparisons between the two estimators are provided in Section 3
of the paper.

For inference, three sets of results are established. (1) We derive
a uniform Bahadur representation for the unconstrained estimator
(i.e., obtained without imposing the monotonicity constraint). This
generalizes Theorem 2.1 in Koenker and Portnoy (1987) to the local
linear regression setting. While being of independent interest, this
representation forms a key step in proving the subsequent results.
(2) We show that the first proposed estimator has the same first-
order asymptotic distribution as the unconstrained estimator if a
certain rate condition on the quantile grid is satisfied. Further, its
asymptotic distribution is a continuous Gaussian process, whose
critical values can be estimated via simulations by exploiting the
fact that it is conditionally pivotal, drawing on the insights of
Parzen et al. (1994) and Chernozhukov et al. (2009). (3) We show
that the second proposed estimator follows the same asymptotic
distribution as the first. This result broadens the application of
rearrangement to the local linear regression context.

The inferential theory and methods can be used to analyze a
wide range of issues. They include: (1) constructing a uniform con-
fidence band for the conditional quantile process, (2) construct-
ing a uniform confidence band for the difference or other linear
functions of multiple such processes, and (3) testing distributional
hypotheses such as the homogeneity or equality of quantile treat-
ment effects, as well as first-order and second-order conditional
stochastic dominance. They can also be potentially useful for con-
structing specification tests of parametrically specified conditional
quantile processes. Studies considering the latter issue include Es-
canciano and Velasco (2010) and Mammen et al. (2013).

We evaluate the proposed methods using simulations and
briefly summarize the results below. First, the two proposed es-
timators and the conventional quantile-by-quantile local linear
estimator all perform similarly in terms of the integrated mean
squared error criterion. This result confirms the finding that they
all share the same limiting distribution. Second, the confidence
band can have undercoverage because the bias term in the estima-
tor can be difficult to estimate. This is not particular to our problem,
but rather is a well known fact in the nonparametric literature. To
address this issue, we suggest a simple modification that allows
for a more flexible bias correction. The resulting confidence band
is asymptotically conservative. Simulation evidence suggests that
it has adequate coverage, even with small sample sizes, and that it
is only mildly wider than the confidence band that uses the con-
ventional bias correction.

As an empirical illustration, the paper considers a dataset from
an experiment known as Project STAR (Student-Teacher Achieve-
ment Ratio). Two results emerge. First, the students in the up-
per quantiles of the test score distribution benefit more from the
class size reduction. Second, the effect of the class size reduction is
strongest for the classes taught by moderately experienced teach-
ers (i.e., 6-8 years of experience). We also conduct hypotheses tests
for treatment significance, homogeneity, equality as well as first
order stochastic dominance. The results reconfirm the above two
findings.

There are two key differences between this paper and Belloni
et al. (2011). The first difference is in the estimation framework.
Belloni et al. (2011) consider a series-based framework, where
the conditional quantile function is modeled globally with a large
number of parameters. The current paper is based on local linear
regressions, where the quantile function is modeled locally by a
few parameters and the modeling complexity is governed by the
bandwidth. Consequently, different techniques are applied to es-
tablish the asymptotic properties of the estimators. The second dif-
ference is how the quantile monotonicity is achieved. Belloni et al.
(2011) apply monotonization procedures to a preliminary series-
based estimator, while in our first estimator the monotonicity en-
ters directly into the estimation through inequality constraints.

When viewed from a methodological perspective, the current
paper is related to the following two strands of literature. First, the
first estimator is related to the studies on estimating nonparamet-
ric regression relationships subject to monotonicity constraints,
where the main focus has been the monotonicity with respect to
the covariate. For example, Mammen (1991) considered an esti-
mator consisting of a kernel smoothing step and an isotonization
step. Delecroix et al. (1996) studied a procedure that involves un-
constrained smoothing followed by a constrained projection. He
and Shi (1998) and Koenker and Ng (2005) considered smoothing
splines subject to linear inequality constraints. In the current pa-
per, the monotonicity constraint is with regards to the quantiles,
giving rise to a different type of estimator than those discussed
above, and requiring different techniques for studying its statis-
tical properties. Note that He (1997), Dette and Volgushev (2008),
Bondell et al. (2010) and Chernozhukov et al. (2010) considered
monotonicity with respect to the quantiles. The connection with
their works is discussed later in the paper. Second, there is an ac-
tive literature that studies uniform confidence bands for nonpara-
metric conditional quantile functions; see Hardle and Song (2010)
and Koenker (2010). The former paper considered kernel-based
estimators and obtained confidence bands using strong approxi-
mations. The latter considered additive quantile models analyzed
with total-variation penalties and obtained confidence bands us-
ing Hotelling’s tube formula. Their results are uniform in covariates
but pointwise in quantiles. Therefore, their results and ours com-
plement each other and, when jointly applied, allow one to probe
a broad spectrum of topics.

The paper is organized as follows. Section 2 introduces the is-
sue of interest. Section 3 presents the estimators while Section 4
establishes their asymptotic properties. Section 5 discusses the
bandwidth selection. Section 6 shows how to construct uniform
confidence bands and conduct hypothesis tests on the conditional
quantile process. Section 7 reports simulation results. Section 8
contains an empirical application and Section 9 concludes. All
proofs are in the two appendices, with Appendix A containing the
proofs of the main results and Appendix B some auxiliary lemmas.

The following notation is used. The superscript 0 indicates the
true value. ||z|| is the Euclidean norm of a vector z. 1(-) is the
indicator function. supp(f) stands for the support of f. The symbols
“=" and “—P” denote weak convergence under the Skorohod
topology and convergence in probability, and O,(-) and op(-) is the
usual notation for the orders of stochastic magnitude.

2. The issues of interest

Let (X, Y) be an Rt '-valued random vector, where Y is a scalar
response variable and X is an R%-valued explanatory variable (X
does not include a constant). Let fyx (-) and fx (-) be the conditional
density of Y and the marginal density of X. Denote the conditional
cumulative distribution of Y given X = x by Fyx(:|x) and its
conditional quantile at T € (0, 1) by Q(t|x), i.e.,

Q(t]x) = Fyy(t]x) = inf{s : Fy(s|x) > 7}.

In this paper, Q(t|x) is modeled as a general nonlinear function
of x and 7. We fix x and treat Q(t|x) as a process in 7, where
T € T = [AM,A]JWwith0 < Ay < Ay < 1. Here, T falls
strictly within the unit interval in order to allow the conditional
distribution to have an unbounded support.

This paper has two goals. The first is to develop nonparamet-
ric estimators for the conditional quantile process. The second is
to provide some asymptotic results that can be used for construct-
ing uniform confidence bands and testing various hypotheses con-
cerning Q (t|x). Throughout the paper, we assume {(x;, )}, is a
sample of n observations that are i.i.d. as (X, Y). The following ex-
amples illustrate the above issues of interest. More discussions will
follow in Section 6.
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Example 1 (Quantile Treatment Effect, QTE). QTE measures the
effect of a treatment on the distribution of the potential outcomes.
Specifically, let X = (D, Z), where D is a binary policy variable and
Z includes the covariates. Let Q (t|d, z) denote the tth conditional
quantile of the potential outcome given D = d and Z = z. Then,
the QTE is defined as'

Q(z|1,2) = Q(x]0, 2).

One may be interested in examining: (i) whether the treatment has
a significant effect at some quantile, i.e., testing Hy: Q(t|1,2) =
Q(7|0,z) forall T € T against H;: Q(z|1, z) # Q(z]0, z) for some
T € 7; (ii) whether the effects are homogeneous, i.e., testing Hy:
Q(r|1,z) — Q(t]|0,z) = 4(z) for some §(z) and forallt € T
against the hypothesis that the preceding difference is quantile
dependent; (iii) whether the effects are equal at two different
covariate values, i.e., for given z; and z, testing Hp: Q (7|1, z1) —
Q(z10,2z1) = Q(z|1,2) — Q(7]0, 25) against Hy: Q(|1,21) —
Q(r]0,z7) # Q(t|1,z) — Q(7|0, z,) for some T € T . Koenker
and Xiao (2002) and Chernozhukov and Fernandez-Val (2005)
developed inferential procedures for the first two hypotheses using
parametric conditional quantile models. The results obtained here
will allow us to analyze these issues under a nonparametric setting.
In practice, 7 can be flexibly chosen. For example, if the policy
target is the lower part of the distribution, then we can choose
T = [e, 0.5] with € being a small positive number.

Example 2 (Conditional Stochastic Dominance). Stochastic dom-
inance is an important concept for the study of poverty and
income inequality. Although a large part of the literature has
focused on unconditional dominance, conditional dominance has
also received interest recently, see Koenker and Xiao (2002), Cher-
nozhukov and Fernandez-Val (2005) and Linton et al. (2005).
Specifically, let Q;(t|x) and Q,(t|x) denote conditional quantile
functions associated with two conditional distributions. Then, Dis-
tribution One (weakly) first-order stochastically dominates Distri-
bution Two at x if and only if

Qi(t]x) = Qx(r|x) forallt € (0, 1). (1)

Distribution One (weakly) second-order stochastically dominates
Two at x if and only if

/ Qi (s|x)ds > /r Q(s|x)ds forallt € (0, 1). (2)
0 0

The null hypotheses (1) and (2) can be tested using one sided
Kolmogorov-Smirnov tests based on Q;(r|x) — Qx(t|x) and its
integral. Note that the above three papers assumed parametric
models for the conditional mean or quantiles functions, while the
results obtained in this paper will allow us to test these hypotheses
under a nonparametric setting.

Example 3 (Sharp Regression Discontinuity Design, SRD). The re-
gression discontinuity design provides an alternative framework
to randomized experiments for evaluating social programs and
policy interventions. Under SRD, the treatment status of an in-
dividual, say D;, is a deterministic function of some scalar vari-
able X;, i.e.,, D; = 1{X; > c}, where c is some known cut-off. The
average effect of the treatment at X; = c is given by (see Im-
bens and Lemieux, 2008, for a more comprehensive discussion)
limy ¢ E[Y;|x] — limysc E[Y;|x]. Analogously, the quantile treatment
effect can be defined as 8(z|c) = limyc Q(7[x) — limyy Q(T[X).

1 This concept traces back to Lehmann (1975) and Doksum (1974); recent works
include Heckman et al. (1997), Abadie et al. (2002), Chernozhukov and Hansen
(2005) and Firpo (2007).

One may be interested in examining (i) whether the treatment has
a significant effect at some quantile, i.e., testing Hy: 8(t|c) = 0 for
all T € T against Hy: 8(t|c) # O for some 7 € 7, (ii) whether
the effect is homogeneous, i.e., testing Hy: §(t|c) is constant in
T € 7 against the hypothesis that §(z|c) is quantile dependent,
and (iii) whether the effect is uniformly nonnegative, i.e., testing
Hp: §(t|c) = Oforall T € T against Hy: §(t|c) < O for some
TET.

Remark 1. Although one can get glimpses into the hypotheses in
the above three examples by considering a few pre-specified quan-
tiles, to address them thoroughly it is necessary to study the en-
tire conditional quantile process. For example, to test whether the
treatment effect is always non-negative or whether it is constant
across quantiles, we need to examine the entire range of quan-
tiles, rather than merely a few points in the conditional distri-
bution. Concerning stochastic dominance, Abadie (2002) showed
that if the outcome distribution of the treatment group first or-
der stochastically dominates that of the control group, then the
outcome is socially preferable under any widely acceptable utility
function. Thus, the entire distribution, not only a few pre-specified
quantiles, matters when designing socially preferable policies. The
testing procedures and confidence bands proposed in this paper
can provide informative results for such purposes.

3. The estimators

We start by briefly reviewing the idea underlying the local
linear regression; more details can be found in Chaudhuri (1991),
Fanetal.(1994)and Yu and Jones (1998).Foragiven t € (0, 1), the
method assumes that Q (7 |x) is a smooth function of x and exploits
the following first-order Taylor approximation:

0
Q(tlx) ~ Q(zlx) + (x; — x)’%. (3)

The local linear estimator of Q(r|x), denoted by a(t), is
determined via

@), p() =arg min > pr (yi—a(0) = i —0'B(D)
’ i=1

K <Xi_x> (4)
U, )

where p, (u) = u (r — I(u < 0)) is the check function, K is a kernel
function and h, ; is a bandwidth parameter that depends on .
As demonstrated in Fan et al. (1994), the local linear regression
has several advantages over the local constant fit. In particular,
(i) the bias of &(r) is not affected by the value of f;(x) and
dQ (t]x)/dx, (ii) it is of the same order irrespective of whether x is a
boundary point, and (iii) plug-in data-driven bandwidth selection
does not require estimating the derivatives of the marginal density,
therefore is relatively simple to implement. As will be seen later,
these three features continue to hold for our estimators. Note
that the results in Fan et al. (1994) and Yu and Jones (1998) are
pointwise in 7.

3.1. The first estimator

We propose the following two-step procedure to estimate the
process Q(t|x), T € 7.
STEP 1. Partition 7 into a grid of equally spaced quantiles {zq, ...,
T }. Consider the following constrained optimization problem
m n
min Y pe (vi — () — (i —X)'B(1)
{e@.pm}l, =7 =

g 5
xK {5 (5)




4 Z.Qu, J. Yoon / Journal of Econometrics 185 (2015) 1-19

subject to

a(t) <a(tjyq) forallj=1,...,m—1. (6)
Denote the estimates by @(t7), ..., @(tn).

STEP 2. Linearly interpolate between &(ty), ..., @(ty) to obtain

an estimate for the quantile process, i.e., for any T € 7, compute
a'() =y @am+A—y@)a(y) iftely gal, (7)

where y (1) = (tj+1 — 1)/ (tj41 — T)).

Remark 2. The constraints a(7})) < a(fjp) G =1,...,m—1)
are necessary and sufficient for ensuring quantile monotonicity.
They depend neither on the data (such as their support) nor on
the model (such as the number of covariates), but only on the
number of quantiles entering the estimation. Consequently, the
above procedure can be applied to different models and covariate
values without any modification.

Remark 3. The constrained optimization (5) is essentially a special
case of Koenker and Ng (2005), who provided algorithms for com-
puting quantile regression estimates under general linear inequal-
ity constraints. An efficient implementation can be constructed
with little cost.

Remark 4. The linear interpolation step is motivated by Neocleous
and Portnoy (2008). It permits obtaining a tractable inferential
theory as presented later.

Remark 5. There exist other methods for ensuring quantile mono-
tonicity. He (1997) exploited the structure of a location-scale
model. Bondell et al. (2010) considered quantile smoothing splines
and showed that non-crossing can be imposed via inequality con-
straints on the knots. Dette and Volgushev (2008) first estimated
the conditional distribution function and then inverted it to obtain
the quantiles. However, their results are pointwise in quantiles. It
remains an open question whether they can lead to tractable infer-
ential theory for the quantile process.

3.2. The second estimator

Chernozhukov et al. (2010) proposed a generic framework
for estimating monotone probability and quantile curves. Their
method uses a preliminary estimator that is not necessarily mono-
tonic and applies rearrangement to ensure monotonicity. Adapting
their method to the current nonparametric setting leads to the fol-
lowing procedure.

STEP 1. Partition 7 into a grid of equally spaced quantiles {zq, ...,
Tm}. Solve the following unconstrained optimization problem

min > p. (v — a(g) — ¢ — 0'B()) K (x" - X)

a(5).B(5) = hn

forallj =1, ..., m. Denote the estimates by a(t), ..., @(tn).
STEP 2. Linearly interpolate between the estimates:

=y @a+A—-y@)a(yy) iftely gal, (8)

where y (t) = (tj+1 — 1)/(tj41 — 7;). Apply rearrangement to
a*(7) (see Displays (2.1) and (2.2) in Chernozhukov et al., 2010) to
obtain

&*(r):inf{yeR:/1(&*(u)§y)duzt—k1}, (9)

where A1 is the lower limit of 7.
In the second step, the rearrangement is applied after the
linear interpolation in order to be consistent with the theoretical

analysis in Chernozhukov et al. (2010). As the paper suggests, to
facilitate the implementation, it can also be applied directly to
a(t) (=1, ..., m)provided that mis sufficiently large. The linear
interpolation can then be applied to the monotonized estimate to
obtain the final estimate.

Although this paper focuses on the nonparametric setting, the
above two procedures can also be extended to analyze semipara-
metric models. Below we provide two illustrations. The discussion
focuses on the implementation aspect while the asymptotic anal-
ysis is beyond the scope of the current paper. First, consider a par-
tially linear conditional quantile model given by

Q (tlxi, z) = q(x;, T) +2{8 (T),

where x; and z; are two sets of covariates (excluding a constant),
q (x;, T) is a nonlinear function of both arguments and § () a vec-
tor of coefficients. Similar models are considered in He and Shi
(1996), Chen and Khan (2001), Lee (2003) and Song et al. (2012).
Analogously to (3) and (4), a local linear approximation to the tth
conditional quantile at a particular x is given by

Q(tlxz) ~ o (1) + (xi — %) B (7) + 28 (1)

and the parameter estimates can be obtained using (see Chen and
Khan, 2001)

@(). p(1).3(x) = argmin 3" pr (i — (1)
a(1),B(1),8(7) T4

— (% —x)'B(x) — 25 (1)) K (X;l_ x) )

n,t

Here, the quantile monotonicity at a particular x and over the sup-
port of z; can be enforced by imposing constraints on «(r) and
8 (7). This will automatically guarantee the linearity with respect
to z;. Alternatively, we can solve the above unconstrained estima-
tion problem and then apply rearrangement at x and the values of
z; that are of interest. This may not preserve the linearity with re-
spect to z; when quantile crossing occurs.

Next, consider a varying coefficients quantile model given by
(see Honda, 2004; Kim, 2007; Cai and Xiao, 2012)

Q (tlx) = xB (t, w),

where u; is a scalar random variable and S (t, u;) is a smooth
function of u;. A local linear approximation to the rth conditional
quantile at a particular u is given by Q (tr|u,x) ~ x;8(tr) +
(u; — u) x;8 (r) and the parameter estimates can be obtained using

B(@),8 () = g{g)n;(ir;Zpr (vi = XB(x) — (i — W) x5 (1))
.01 =1

(5)

x K .

hn -

Similarly to the partially linear model, the quantile monotonicity at
a particular u and over the support of x; can be enforced either by
imposing constraints on S(t), or by repeating the rearrangement
operation for this u and all x; of interest. The comment regarding
the linearity with respect to x; also applies here.

We conclude this section by comparing the two estimators tak-
ing into consideration of their further developments. The second
estimator is computationally more straightforward if the main goal
is to study the conditional quantile process nonparametrically for a
fixed x. The first estimator is more flexible if one wishes to impose
additional restrictions, say restricting some elements of 8(t) to be
non-negative (see the Engel curve example considered in Koenker
and Ng, 2005). It can also be attractive when dealing with certain
semiparametric models as discussed above. Although the theory in
the next section does not consider the estimation of the derivatives
and semiparametric models, we conjecture that the techniques de-
veloped there can be useful for such further analysis.
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4. Asymptotic properties

Let §(x) denote some small open neighborhood surrounding x.
We make the following assumptions.

Assumption 1. (i) X is an R%-valued explanatory variable exclud-
ing a constant. (ii) The evaluation point x belongs to the support
of X whose density fx is continuously differentiable at x with 0 <
fx(x) < oo. (iii) {(xi, yi)}i., is a sample of n observations that are
iid.as(X,Y).

Assumption 2. (i) fy;x(Q(t|x)|x) is Lipschitz continuous over 7.
(ii) There exist finite positive constants f;, fy and € such that f; <

frix(Q(zls) + nls) < fy forall [n] < €5 € §(x) N supp (fx) and
TEeT.

Assumption 3. (i) Q(r|x) and 9Q (t|x)/dt are finite and continu-
ous in T € 7. (ii) The elements of 32Q(z|s)/dsds are finite and
Lipschitz continuous over {(s, 7): s € §(x) Nsupp (fx) andt € T }.

Assumption 4. The kernel K is compactly supported, bounded,
having finite first-order derivatives and satisfying K(-) >
0, [Kwdu = 1, [uK(u)du = 0, [uu'Ku)du = p,(K) with
U2 (K) being positive definite.

Assumption 5. The bandwidth h,, ; satisfies h, ; = c(t)h,, where
h, = O(n~V“9) and nhd — oo and c() is Lipschitz continuous
satisfying0 < c <c(t) <c <ocoforallt € 7.

Assumption 1 is fairly standard. In practice, d is typically a small
number. Although the i.i.d. assumption is maintained throughout
the paper, the asymptotic results derived in Section 4 continue to
hold in a Markov time series setting, that is, when Y = Y;, X =
X:_1 and Y; depends on the past only through X;_;. Assumption 2
imposes restrictions on the conditional density. Part (i) requires
it to have finite first-order derivatives with respect to t over 7.
It is used to show that the optimal bandwidth in Display (16) is
Lipschitz continuous with respect to t. This further ensures that
allowing the bandwidth parameter to vary across quantiles does
not interfere with the stochastic equicontinuity. Part (ii) implies
that it is positive and finite in a neighborhood of x and 7. This
is needed to ensure that the estimator will have the usual rate of
convergence. Assumption 3 imposes restrictions on the conditional
quantile process. Part (i) requires this process and its derivative in
T to vary smoothly with respect to 7. Part (ii) implies that the error
in the Taylor expansion (3) is uniformly small. A common theme
of Assumptions 2 and 3 is that they are local. That is, they impose
restrictions only on neighborhoods surrounding x and 7. For
example, if 7 = [0.5, 0.8], then the lower part of the conditional
distribution and the extreme quantiles are left unrestricted. There,
the conditional densities can be non-smooth or zero.

Assumption 4 permits univariate as well as multivariate ker-
nels, although it rules out those with unbounded support (e.g., the
Gaussian kernel) and those with unbounded derivatives. The ma-
trix u, (K) will be diagonal if a product kernel is used. Assumption 5
imposes restrictions on the bandwidth parameter, in particular re-
quiring it to be a smooth function of z. This is needed to ensure
stochastic equicontinuity. It is not restrictive, and is satisfied by
the optimal bandwidth that minimizes the asymptotic MSE; see
Section 5. Note that for a given 7, we use the same bandwidth for
every coordinate of x. This simplifies the expressions for the bias
and variance, especially when x is a boundary point. More general
formulas allowing for different bandwidths at different x can be
obtained by applying similar arguments as those in Section 5.

The asymptotic properties of the estimator depend on whether
x is close to the boundary of the support. As in Ruppert and Wand
(1994), define &, = {v € R? hnflf(x — v) € supp(K)}. Call x an

interior point if & ; C supp(fx) forall ¢ € 7 and otherwise call
it a boundary point. If x is a fixed point in the interior of supp(fx),
then x is an interior point for all large n. Therefore, to model the
boundary point, we consider a sequence of points x = x" converg-
ing to x,; on the boundary of supp(fx) so that x is a boundary point
for all n. Formally, a boundary point x satisfies

X =Xy + hpc forsome v € 7 and some fixed
c € supp(K). (10)

We also define the following set which serves as the domain for
integration:

Dy =1{veR: (x+ hyv) € supp (fx)} N supp (K) .

Note that if x is an interior point, then Dy, = supp (K).
To illustrate the boundary point case, suppose supp (K) =
[—1,1],supp (fx) = [0,1] and x = ch,, with ¢ > 0, then
Dy = [—c, 1]. The next assumption rules out degeneracies and
is the same as in Ruppert and Wand (1994).

Assumption 6. There is a convex set € with nonnull interior such
that x; € € and infyce fx (x) > 0.

Below, we establish the asymptotic properties of (7) and (9) in
three steps by sequentially analyzing the following three quanti-
ties:

a(t): the solution of (4)atagivent € 7,
a*(t): obtained from the linear interpolation without imposing
the constraints, see (8),
a*(t): the final estimator defined in (7) or (9).

The first step provides a uniform Bahadur representation for & (7).
The second step quantifies the effect of the linear interpolation.
The third step analyzes the effect of the inequality constraints or
the rearrangement and delivers the limiting distributions of the
proposed estimators.

Theorem 1 (Uniform Bahadur Representation). Let Assumptions 1-
5 hold. Then the following results hold uniformlyint € 7.

1. If x is an interior point, then

/nhd  (&(t) — Q(z]x) — dh%))

(¢ )Y (¢ — 1(D) < 0)) i
— i=1 _l ’
e 0 fex Q@O op (1)

a2 P
where d, = tr (f’zggl") ,uz(K)> K, = K (’;’m") Ju(t) =
yi — Q(z|x).
2. Ifxis a boundary point as defined by (10) and Assumption 6 holds,
then

M (&(T) —Q(tlx) — db,fhg,f)

G R (T i (v — 10(r) < 0))ziKi
i=1

S @) frix QTIX)1%)

+o0p (D),
wheret; = (1,00), u € R, ot = (1,v), dp, = %L’]Nx ()"
o w U K (u)du, Ny () o, WKWy, 7. = (1,

9xax’

(Xi - X)//hn,r)~
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Note that the bias terms will be zero if Q (t |x) is linear in x. The-
orem 1 generalizes Theorem 2.1 in Koenker and Portnoy (1987) to
the nonparametric setting. The proof faces two challenges that do
not arise in the parametric situation. First, the conditional quan-
tile function is approximated using a first-order Taylor expansion.
Second, the bandwidth can vary across quantiles. They both lead to
difficulties when establishing the stochastic equicontinuity. Since
the strategy of the proof can be of interest, we provide an outline
below.

We first introduce some notations that will also be used in the
two appendices. Define u;(t) = y; — a(t) — (x; — x)’' 8(t), where
a(7) € Rand B(t) € RY are some candidate parameter values. Let

e (1) = [Q(r|x) + (% —x)’ 8Q;;|x)} —Q(r|x) and
a(t) — Q(z|x)
¢(v) = /nhd | (ﬁ(r) B 8Q(r|x))
m ax
Then, u;(t) can be decomposed as u;(t) = u?(r) —e(r) —

(nhd )~z ¢ (r), where 2, = (1, (x; — X)'/hy¢). This decom-
position is useful because it breaks u;(t) into three components:
the true residual, the error due to the Taylor approximation and
the error caused by replacing the unknown parameter values in
the approximation with some estimates. Define

Var(@(D) = Y pe (u(x) — € (x) — (nhl )72} ¢ (1) Kic
i=1

— Y o (@) —e(@) Ki, (11)
i=1

where the first summation is the same as in the objective function
in (4) and the second is introduced for recentering the first and has
no effects on the estimation. Finally, let

Sn (T, 9(7), € (7))
= i) ™2 P (10d(r) < (nhé )72 p(7) + ei(0))| x)
i=1

— 1(u)(r) < hl )22 p(1) + ei(0))} 21 Ki .

The proof proceeds in three steps. It is structured similarly
to that of Theorem 2.1 in Koenker and Portnoy (1987). The first
step establishes uniform rates of convergence for &(z) and 3(r),
ie., sup,er lp(0) < log"?(nh?) with probability tending to
1. Specifically, it uses the convexity of V; (¢ (7)) and Knight’s
(1998) identity to show that, if the preceding inequality is violated,
Vi« (¢ (7)) will be strictly positive with probability tending to 1 for
some t € 7. This contradicts with qAb(r) being the minimizer of
Vn.z (¢(7)). The second step studies the subgradient over the set

®={(t,¢(x): T €T, llp()|l <log"*(nhl)}. (12)
Specifically, the subgradient multiplied by (nh%)~'/? equals
(nhd) =23 {r—1) () < e (D)+1hn) %2 b (1))}ziKic,
which, by Theorem 2.1 in Koenker (2005), is of order 0, ((nh%)~1/2)

= 0p(1) uniformly in 7. Adding and subtracting terms, it can be
rewritten as

{Sn(T, @(7), € (7)) — Sa (7,0, 6 ()} + {S: (7,0, €; (7))
— S5, (7,0,0)} + S, (,0,0) + (nh?) =12

X Z {r — P(u?(r) <ei (1)
i=1

()72 (o) xi)} ZioKie. (13)

The first term measures the effect from estimating the parameters,
the second term is due to the remainder term in the Taylor
expansion, the third term depends only on the true data generating
process, while the fourth term involves only smooth functions.
To further analyze the first term, the set @ is partitioned into
C(nh%)"/2+* (log'?(nh%) /8) @+ cells with C, k and & being some
constants such that, within each cell, the differences in  and ¢(7)
are at most (nhﬁ)”/Z*K and § respectively. Then, using a chaining
argument dating back to Bickel (1975), it is shown that this term
can be bounded using the values of S, (t, ¢(7), e; (t)) evaluated
at certain vertices of the cells. The latter involves only a countable
number of points and can be further analyzed using the maximal
inequalities developed in Bai (1996) and Oka and Qu (2011). It then
follows that the first term is o, (1) uniformly over the set @. The
second term is analyzed in a similar way. The third term is O, (1)
and appears in Theorem 1 and the fourth term is analyzed using
a first order Taylor expansion. Finally, the third step derives the
formulae for d, and dp , and verifies the Bahadur representation.

Theorem 1 is uniform in 7 but pointwise in x. Establishing uni-
formity in both dimensions (i.e., showing that remainder term in
Theorem 1 is o, (1) with respect to both 7 and x while maintain-
ing Assumptions 1-6) will be a challenging task. We conjecture
the techniques developed in the following papers can be useful
for such an analysis. Masry (1996, Theorem 6) showed that the
local polynomial estimator of the conditional mean function con-
verges uniformly and almost surely at the rate (log n/(nhﬁ))l/z.
Kong et al. (2010) considered a general class of M-regression func-
tions. They established a uniform Bahadur representation with an
remainder term of order (log n/(nh%))3/4.In both papers, an impor-
tant step is to partition the support of the covariates into small cells
whose size depends on the bandwidth and the sample size. Subse-
quently, it is shown that the differences in the relevant quantities
are small both within and across the cells; see the proofs of Theo-
rem 2 in Masry (1996) and Lemma 1 in Kong et al. (2010). Guerre
and Sabbah (2012) studied uniformity with respect to both t and x.
Combining the techniques in the above papers with the chaining
arguments used here can be a potential way to establish the unifor-
mity in both x and t under the current setting, although substan-
tial work is needed. Assuming such a representation is obtainable,
then the techniques developed in Lee et al. (2009), which handle
Gaussian processes indexed by multidimensional parameters over
an increasing set, can be useful for deriving relevant distributional
properties.

Theorem 1 implies that the limit of &(z) is driven by the
leading term in the Bahadur representation. This paves the way for
establishing the weak convergence of &*(t), stated below.

Theorem 2 (Weak Convergence Under Linear Interpolation). Let As-
sumptions 1-5 hold. Suppose m/(nhd)/4 — oo asn — oo. Then:
1. If x is an interior point, then

\/mfv\x QX (@*(r) — Q(rlx) — d:h2 ;)
= G(1),

where G (t) is a zero mean continuous Gaussian process defined
over T with covariance

EG)G®B) = (k Nk )™ (1 As—rs)

u u
X /K( >K <—> du, (14)
Kk (r) K (8)

where k () = hp ¢ /hn12 = c(T)/c(1/2).
2. If xis a boundary point as defined by (10) and Assumption 6 holds,
then

Jhd e 0fx Q) (6°(2) — Qe ) — dy oI, )

= Gp (1),
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where Gy, (t) is a zero mean continuous Gaussian process defined
over J with covariance

E(Gy () Gy (5)) = (k (N ke () 2 (r As—15) )Ny ()"
X To(r, S)Ny (5) "V eq, (15)
where

1 u o
Ti(r,s) = / u K( ) |:1 ]
Dy K (f) K (T) K (I’)

Jhy/2

XK( ())

and « (r) and Ny (r) have the same definitions as before.

The Gaussian process G (t) depends only on the kernel and the
bandwidth. In the extreme case where the bandwidths are equal
across quantiles, it is simply the Brownian bridge (truncated to the
interval ) multiplied by sz (u) du. In the boundary case, the
structure of the process is similar, except now it also depends on
the location of x relative to the boundary of the support.

The rate condition m/(nhd)/4 — oo ensures that the linear
interpolation induces no loss of efficiency asymptotically, i.e., the
limiting process is the same as if all quantiles were being esti-
mated directly. When formulating the result, we have related the
bandwidths at t to the median. This facilitates the computation of
the bandwidth selection rule in the next section. The next result
presents the asymptotic distributions of the two estimators. They
are both denoted by a* (7).

Theorem 3 (Weak Convergence of the Two Proposed Estima-
tors). Let Assumptions 1-5 hold and assume m/(nh%)'/* — oo as
n — oo. In addition, assume m/(nhd)'/2 — 0 holds for the first esti-
mator and (nh¥t%)1/2 — h(t) < oo holds for the second estimator.
Then, they both satisfy

Jnhd fx Qfyix Q(x|®)|x) (& (7) — Q(z]x) — d:h2.) = G (1)

if x is an interior point, and

Ve fe QOfvix Q01X (&7 (1) — Q(elx) — dy oh; ) = Gy (7)

if x is a boundary point and Assumption 6 holds.

The first estimator requires an additional rate condition
m/(nh‘r’l) 1/2 5 0.This ensures that the constraints (6) act as a finite
sample correction, having no effect on the limiting distribution. We
conjecture this condition may not be necessary, but have not been
able to relax it. The adequacy of the limiting distributions under
different m will be evaluated using simulations. It turns out that
the property of @*(t) is rather insensitive to such choices, as long
as m is not too small. Motivated by this finding, we suggest the fol-
lowing simple rule m = max(10, /nh¢/log(nh?)), where the first
argument safeguards against using too few quantiles when the
sample size is relatively small and the second permits choos-
ing a large number if the sample size is large. The second
estimator requires nh;‘fgd to converge. This is to ensure that

ke @@

condition is satisfied by the bandwidth proposed in the next sec-
tion.

— Q(7]x)) has a well-defined limiting process. This

5. Bandwidth selection

Theorem 3 implies that, for any given T € 7, @*(t) has the
same limiting distribution as the conventional local linear estima-
tor studied by Fan et al. (1994). Therefore, the same bandwidth se-
lection rule can be applied.

Corollary 1 (Optimal Bandwidth for an Interior Point). Let As-
sumptions 1-5 and those stated in Theorem 3 hold. Assume
|er (02 Q(rlx)/axax)| > 0. Then, the bandwidth that minimizes the
(interior) asymptotic MSE of &*(t) for any t € T is given by

1/(4+d)
t(1—1)d[K(v)*dv

fx 00 o @b l0)? {er (22521, (K))}

x n~ V@D, (16)

nt

In Appendix A, we verify that the above bandwidth satisfies
Assumption 5. The result implies that the bandwidth selection
rule for estimating the conditional quantile process is conceptually
no more difficult than in the conventional situation. The result
also illustrates how the bandwidths change as t shifts away from
the center of the distribution. It typically widens as changes in
frix (Q(z]x)|x) often dominate the other terms.

To compute the bandwidth (16), the main challenge is in esti-
mating 32Q (t|x)/9xdx’. Although this quantity can often be esti-
mated reasonably well for t close to the median, the estimation
precision can be low when 7 is close to the tail of the conditional
distribution. The latter can affect negatively the estimation of the
conditional quantile process. In simulations and the empirical ap-
plication, we have experimented with an approximation due to Yu
and Jones (1998), which treats 92Q (t|x)/dxdx’ as constant across
quantiles. Specifically, under such an approximation, the optimal
bandwidth at 7 is related to the median via

4+d 2
M =41 (1-1) M
h:,1/2 fY\X Q(z|x)|x)
Next, applying a Normal reference method (considering fyx to be a

Gaussian density) as in Yu and Jones (1998), the above relationship
simplifies to

o\ 2
n,t — T ( - 7:) ’ (17)
h 12 TPp(P~1(1))?

where ¢ and @ are the density and the cdf of a standard normal
random variable. Finally, the bandwidth hy ; , can be determined
using (16) in the above Corollary. This procedure delivers a se-
quence of bandwidths that automatically satisfies Assumption 5.

6. Uniform confidence bands and hypothesis tests

We first present the uniform band for the conditional quantile
process and explain how to estimate the relevant quantities ap-
pearing in its expression. Next, we illustrate how to compute con-
fidence band for the difference between two conditional quantile
processes. Then, we show how to test a variety of hypotheses on
quantile processes using the three examples discussed in Section 2.

6.1. Uniform confidence band for the conditional quantile process

Corollary 2. Let Assumptions 1-5 and those stated in Theorem 3

hold, then an asymptotic (1 — p) confidence band for Q (t|x) is given

by:

1. If x is an interior point,
G = [(&*(x) —d:h,)

(&*(v) —d:h% ) + oneZp], (18)

- O',,,r(X)Z )

where oy - (x) = (,/nhd fx (X)fyx (Q(r|x)|x))_1 and Z, is the

(1 — p) percentile of sup,c |G (7)].
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2. Ifx is a boundary point,
G = [(&*(T) - db,rhﬁ_t) - Un.r(x)zp»
(&*(T) - db,rhi,f) + Gn,rzp] )

where o, . (x) is the same as above and Z, is now the (1 — p)
percentile of sup;c+ |Gp (7).

The confidence bands are typically wider near the tails of the
conditional distribution, because the change in fyx (Q(7|x)|x) of-
ten dominates the rest. To compute the bands, the terms d,
and d, ; can be estimated using local quadratic or cubic regres-
sions, the conditional density fy)x (Q(7]x)|x) can be estimated
from the conditional quantile process and the critical values of
sup,c; |G (1) /v/fx ()| and sup,.; |Gy (r) //fx ®)] can be esti-
mated via simulations. We now examine the latter simulation in
detail. Consider the boundary case. From Theorems 1 and 2,

ONe (7 (e )T (0 - 1w (2) < 0)zi Kl
i=1

fx )

Gy (7)
= )
Vix %)
The left hand side is conditionally pivotal. Using (nhd ) ™' Y"1, z; -
Z{YTK,-,I —P fx (x)Nx(7) and the Skorohod representation, we have

-1
n
0 ((nhzyr)1 Zzi,rz,{rzq,r) (nhd )~1/?
i=1

x ; (T — 1 — 7 <0)ziKir = 5}% (19)

where u; arei.i.d. Uniform(0, 1) random variables and independent
of {x;}i_,. This suggests the following simple procedure: (i) Simu-
late the left hand side of (19) by drawing i.i.d. Uniform(0, 1) ran-
dom variables and keeping K; . and z; ; fixed; (ii) Repeat the above
step for a large number of replications; (iii) Compute their abso-
lute values to estimate the distribution of sup, <+ |Gy (t) //fx (%)].
The critical values of this distribution can then be combined with
estimates of dj ; and fyx (Q(7|x)|x) to form a confidence band. Be-
cause (19) automatically accounts for the relative location of the
evaluation point from the boundary, it allows us to easily han-
dle situations where the support of fx has a complicated structure.
Note that the resulting critical values are asymptotically valid even
if x is an interior point.

Remark 6. The above simulation procedure is inspired by Parzen
et al. (1994) and Chernozhukov et al. (2009). The former paper
exploited the conditional pivotal property to obtain a resampling
method, while the latter used such a property to obtain finite sam-
ple confidence bands for quantile regression models. The current
paper is the first that applies such a property to the local regression
setting and, more importantly, to provide valid confidence bands
for both interior and boundary points.

Now consider estimating the bias. From Theorem 1,
dyr = 1) {fc X Ne (D))
3%2Q(t|x
u’Mu |:1:| K (u) du} )

/
Der 0X0X u

1
x {=fx (x
{ 2fx ()
The term inside the first curly bracket can be consistently esti-
mated using (nhgyf)*1 > i 1ZiZ] K. The second curly bracket is
the limit of —h;2 (nh¢_) ™ Y0, e (v) 2K ., where

1 (xi—x\ 3%Q(zlx) (x—x\ , 5
) - __ h hs ).
¢ (T) 2 ( hn.r ) 0x0xX’ hn,r e + 0( n’Z)

Therefore, d}, ; can be estimated using

-1
n
A ((nhﬂ,r)‘1 Zzi,fz{,rK,-,f>
i=1
7‘1 n
x <—h;§ (nht.) Ze,-(r)z,-,rk,;,). (20)
i=1

In (20), the only unknown is 32Q (z|x) /dxdx’. This can be estimated
using a global or local polynomial regression, although caution
is needed because the estimate can be imprecise. As before, (20)
automatically accounts for the relative location of the evaluation
point from the boundary, allowing us to easily handle situations
where the support of fy has a complicated structure.

Remark 7. We use the formulas (19) and (20) throughout in the
simulation study and the empirical application when constructing
the confidence band. In the simulation section, it will emerge that
treating the estimated bias term as the true value can cause the
confidence band (18) to have substantial undercoverage (see Panel
(b) in Table 2). Some modifications that can reflect the estimation
uncertainty are desirable. This leads to the modified confidence
band considered below.

We suggest the following simple modified confidence band,
where the idea is to allow for, but do not force, a bias adjustment:
(Consider the interior point case; the boundary point case can be
handled in the same way.)

[(@*(t) —dfh ) — on:(X)Zp, (&% (v) — d hE ) + 0n:Zp], (21)

where d} = max (d;, 0) and d; = min(d,, 0). This modified band
has the same or higher coverage relative to not making any bias
adjustment (i.e., by setting d, to zero, as often done in the liter-
ature). This is preferable when the bias is small. It also has the
same or higher coverage than the conventional band (18), which
is preferable when the bias is large. Here, an important concern is
whether the band will be too wide to be informative. Our simula-
tion evidence in Section 7 suggests otherwise. This is because when
the curvature of the conditional function (d,) is high, the proposed
bandwidth selection rule can deliver a small bandwidth, therefore
the value of d, h%yf remains modest. Consequently, (21) is typically
only mildly wider than (18).

6.2. Uniform confidence band for the difference between two quantile
processes

Suppose there are two groups (say the treatment and control
group) of observations with conditional quantile processes Q1 (t|x)
and Q,(t|x). The issue of interest is to obtain a confidence band for

S(t|x) = Qi(t]x) — Q2(t|x) witht € 7.

Without loss of generality, suppose x is an interior point for both
groups. Then,

Group 1:
nlhg_r,1fY|x$1 (Qi(zlx)[x) (&T(T) — Qq(t|x)
G ()
deah? . ) = —=. (22)
) = =T
Group 2:

V 2kl ofvix2 (Qa(TX)[%) (@5 (1) — Qu(tx)

G? (1)
—deohy o) = ——= (23)

N2
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where n; and n, are the number of observations for the two groups
and G (1) and G® (7) are independent copies of G (). All the
quantities are group dependent as signaled by their sub-indices.
Assume the ratio n;/n, converges to a positive constant. Then, by

(16), there exists some r(r) > 0 such that,/nhd /. /mhd , —
(7). Multiplying (23) by

n1hz,1.1fy|x,1 Qi (z10)1x)

(24)
\/ nzhg,f.zfnx,z (Q(z10)1x)
and subtracting it from (22), we obtain
\/nlhg,t,1fy|x.1 (Qi(z]x)]x) ‘(&T(T) - dr,1hﬁ,f,1
— @5 (1) +de okl ) — 8(z |0
G (1) frxa (Qu(z0)]x) G? (1)
_— . 25
"o e @ fo® (23)

Consequently, the following procedure can be used to construct
a confidence band for §(t|x). First, simulate the supremum of
(25) for a large number of replications. Compute the (1 — p)
percentile of the resulting distribution. Call it ¢, (x). Next, compute
the confidence band for 6 (z|x) as

(&T(T) - d"fvlhi,r.] - &;(T) + dr,2hi_r’2)
Cp(x)
nlhg,mfwx,l (Qi(z|x)[x)

As in Corollary 2, the above band is typically wider near the tails
of the conditional distribution. This follows from the multiplication
of (23) by (24). Without such a multiplication, the bands will tend
to be narrower in the tails because there the bandwidth tends to
be greater.

+

(26)

6.3. Hypothesis tests

We revisit the three examples in Section 2. Without loss of gen-
erality, assume the evaluation points are interior points except for
the third example. To ease the exposition, suppose the bandwidth
hn: (t € T) is used to estimate all the conditional quantile pro-
cesses. To be consistent with the notation used in Section 2, we let
Q(t|x) denote &*(t) when the evaluation point is x.

Example 1 (QTE, Continued). Let Q (z|1,z) and O (z|0, z) be the
estimates of Q (7|1, z) and Q (7|0, z) using the treatment and the
control group, respectively. Treatment significance can be tested
using a Kolmogorov-Smirnov (KS) type test:

sup,/nhd
TeT ’

Q(tl1.2) - o, 7). (27)

Let x; = (1,2), x, = (0,2), and define G¥ (v) = G? (v)/
(VFx @fyix (Q(z1x)[x)) with G? (7) (j = 1, 2) being independent
copies of G (7). Assume Assumptions 1-5 hold at x; and x, and
9%2Q(t]x1)/0x0x = 32Q(t|x;)/0xdx’. Then, the test has the fol-
lowing null limiting distribution sup, .+ |G,(<P (r)—G,(é) (7) |, whose
critical values can be consistently estimated by simulating inde-
pendently its first and second component using the algorithm de-
scribed in Section 6.1. The treatment homogeneity hypothesis can
be tested using

Q(zI1,2) — Q(z]0,2)

sup,/nhd
TeT ’

—ﬁ{é(ﬂl,z)—@(ﬂO,z)}dr , (28)

whose null limiting distribution is given by sup,.s |G§1)(1:) —

Gg)(r) — fT{G,E})(r) — G,g)(r)}drl, whose critical values can be

obtained in a similar manner. The quantile treatment equality hy-
pothesis between z; and z, can be tested using

Q(t11,21) — Q(z]0, z)

sup,/nhd
TeT ’

S CICIES RIS I (29)

Its null limiting distribution is given by sup, .+ |G,((}: (t)— ng (r)—

{Gin (1) — Gy (D)}, where x;; = (1,7) and x5 = (0, ) for
j =1, 2 and the distributions involved are mutually independent.

Example 2 (Stochastic Dominance, Continued). Let @ (t]x) and
Qz(rlx) be the estimates of Q;(t|x) and Q,(t|x) respectively. The
first-order conditional stochastic dominance can be tested against
the non-dominance alternative using a signed KS test:

1(Q - Qo <0)

sup,/nhd
TeT ’

x (@i — Qo) | (30)

Assume Assumptions 1-5 hold for both samples and 92Q;(z |x)/
9xdx' = 8°Qy(t|x)/dx0x". Then, under the least favorable null
hypothesis, the test converges to

sup |1 (G (1) =GP (v) < 0) (G{” () — G (1))],

TeT

where G,((’) (j = 1, 2) has the same definition as in Example 1, but

with /fx ®fyix (Q(r1%)[x) replaced by \/fij ®fyix; (Q(T[%)]x)
(j = 1,2) to allow the quantities to be group dependent. The
second-order dominance can be tested using

sup ,/nhd

1 ( [ (@60 - Gucso) s < o)
TeT &

x [ (@ - Qo) as

Then, under the least favorable null hypothesis, the test converges
to

sup
TeT

1 (/ (G (1) =GP (1)) dr < 0)

X [ (G () =GP (1)) dr

In the above construction, the lower limit of the integral is some
positive constant ¢ instead of zero. This allows the conditional
distributions to have unbounded support, at the cost of possibly
sacrificing some power if the main differences between two dis-
tributions lies in the lower tails. Again, the critical values can be
consistently estimated via simulations.

Example 3 (SRD, Continued). Let Q(r|c+) and Q(r|c_) be the
estimates of limyc Q(7]x) and limy Q(7|x), respectively. The
treatment significance hypothesis can be tested using

sup /nhd 1Q(tlc) — Q(rlc ).

TeT

The treatment homogeneity hypothesis can be tested using
sup.cr \/nhd 1Q(zley) — Q(rle) — [{Q(zley) — Qzle)}dz.
The nonnegative treatment effects hypothesis can be tested using
sup,cr \/nhd 11Q(xley) — Qrler) < 0)(Q(zley) — Axle))l.

Their limiting distributions are analogous to those in Examples 1
and 2, hence the detail is omitted.
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Table 1
Root mean integrated squared error (RMISE).
Models n =250 n = 500 n = 1000
(0.5,05) (0.75,0.75) (0.9,09) (05,0.5) (0.75,0.75) (0.9,09) (05,0.5) (0.75,0.75) (0.9,0.9)

Model 1
Proposed 1 0.03759 0.07590 0.13775 0.02635 0.05702 0.09151 0.01914 0.04081 0.06612
Proposed 2 0.03759 0.07590 0.13760 0.02635 0.05702 0.09151 0.01914 0.04081 0.06612
Local Linear  0.03759 0.07590 0.13791 0.02635 0.05702 0.09154 0.01914 0.04081 0.06612
Crossing (0.000) (0.074) (0.748) (0.000) (0.000) (0.302) (0.000) (0.000) (0.074)
QR 0.03191 0.05791 0.07686 0.02280 0.04213 0.05245 0.01643 0.02842 0.03605

Model 2
Proposed 1 0.14561 0.22266 0.29231 0.11908 0.18039 0.22324 0.09612 0.13359 0.16635
Proposed 2 0.14561 0.22265 0.29166 0.11908 0.18039 022317 0.09612 0.13359 0.16634
Local Linear  0.14561 0.22267 0.29327 0.11908 0.18040 0.22340 0.09612 0.13359 0.16637
Crossing (0.078) (0.118) (0.740) (0.010) (0.066) (0.618) (0.000) (0.010) (0.358)
QR 0.49038 0.41946 0.21568 0.48823 0.41356 0.18802 0.49100 0.41509 0.18165

Model 3
Proposed 1 0.14170 0.15985 0.33123 0.10707 0.12180 0.23555 0.08391 0.08776 0.18468
Proposed 2 0.14170 0.15985 0.33103 0.10707 0.12180 0.23541 0.08391 0.08776 0.18466
Local Linear 0.14171 0.15985 0.33203 0.10707 0.12180 0.23572 0.08391 0.08776 0.18471
Crossing (0.100) (0.092) (0.882) (0.028) (0.002) (0.780) (0.004) (0.000) (0.362)
QR 0.52300 0.15640 0.60453 0.52676 0.12593 0.60823 0.52451 0.11409 0.60268

The domain of the conditional quantile process is 7 = [0.2, 0.8] and the number of the estimated quantiles is 30. We report the average of the
RMISE over 500 simulation replications. “Proposed 1” denotes the first proposed estimator. “Proposed 2" is the second proposed estimator.
“Local linear” is the quantile-by-quantile application of the local linear estimator. “QR” is obtained from the conventional linear quantile
regression. “Crossing” denotes the fraction of simulations in which “Local linear” has quantile-crossing.

7. Monte Carlo experiments

We focus on two issues: (i) the performance of the proposed
estimators relative to some other estimators, and (ii) the property
of the uniform confidence band. We consider the following three
models whose conditional quantile functions are

Model 1: Q(z]X) = x; — Xo + (0.5%1 + 0.3%2)Qe, (7).
Model 2 : Q(t|x) = (0.5 + 2x1 + sin(2wx; — 0.5)) + %,Qe, (7).

Model 3 : Q(t]x) = log(x1x2) + 1/ (14 exp(—x1Qe, (T)
—%2Qe, (1)) + %2Qe, (7).

The regressors x; and x, are mutually independent and are i.i.d.
U(0, 1). The error terms e; and e, are i.i.d. N(0, 1) and U(0, 1)
respectively. Model 1 is a linear location-scale model. Model 2
is a similar model but with nonlinearity in the location. Model 3
is a fairly complicated nonlinear model. The conditional quantile
functions in Models 2 and 3 exhibit significant curvature in x, which
can pose substantial challenges for estimation and inference.

Other aspects of the simulation design are as follows. We con-
sider three evaluation points: x = (0.5, 0.5), (0.75, 0.75) and (0.9,
0.9). The latter can be viewed as a boundary point, since the se-
lected bandwidth at this point is typically greater than 0.1. The
sample sizes are: n = 250, 500 and 1000. Given that the exper-
iment involves estimating the quantile process nonparametrically
atx = (0.9, 0.9),n = 250 should be viewed as a very small sample
size. We set 7 = [0.2, 0.8] unless stated otherwise. The number of
quantiles (m) equals 10, 20 and 30. The kernel function is the prod-
uct of univariate Epanechnikov kernels. All subsequent results are
based on 500 replications.

The bandwidths are estimated in three steps.

STEP 1. Obtain a set of pilot bandwidths for calculating the rele-
vant quantities in (16). This is done by first obtaining a bandwidth
for the local median regression using leave-one-out cross valida-
tion, and then relating it to the other quantiles using (17) following
Yu and Jones (1998).

STEP 2. Estimate tr (9%Q (z]x)/9x0x’) and fyx (.|x). For the for-
mer, we apply a local cubic regression with the bandwidth deter-
mined via leave-one-out cross validation. For the latter, we use

A 1 — ~
Frx(@lx) = / — K (u) dF (),

(31)
hyx hyx

where hy, is a bandwidth parameter and K;(-) is a univariate
Epanechnikov kernel and I:'(y|x) = sup{r € (O, 1)|Q(r x) < y}
with Q(r |x) equal to our proposed two-step estimator &*(t) com-
puted using the bandwidth selected in Step 1. To implement (31),
we sample from ﬁ(ylx) and apply kernel smoothing to the result-
ing draws. The value of hy, is set to Zﬁyx, where flyx is determined
by Silverman’s rule-of-thumb method.

STEP 3. Apply the estimates from Step 2 to compute the opti-
mal bandwidth for the median using (16) and that for the other
quantiles using (17).

7.1. The relative performance of different estimators

We contrast the finite sample performance of the proposed esti-
mators (Proposed 1 and 2) with two alternatives. The first alterna-
tive is the classical estimator in Koenker and Bassett (1978), labeled
as QR. This comparison is used to illustrate the gain or loss from
using a nonparametric specification. The second alternative is the
standard quantile-by-quantile local linear estimator (labeled Local
linear), which is included to illustrate the effect of imposing the
monotonicity. The same bandwidth selection rule is used through-
out the comparison.

The criterion is the RMISE criterion with
RMISE = \/m*1 ZJL |Q(rj|x) — Q(gj]x)|?, where m is the number
of quantile entering the estimation. Table 1 reports the results for
m = 30. We obtained similar findings with m = 10 and 20. They
are omitted to save space.

First consider the proposed estimators and QR. When the un-
derlying model is linear (Model 1), the proposed estimators show
a moderately higher RMISE. The efficiency loss is not high because
the bandwidth selection rule delivers wide bandwidths in this case.
When nonlinearity (Models 2 and 3) is present, the nonparametric
estimators show substantially superior performance overall.

Next consider the proposed estimators and the standard
quantile-by-quantile local linear estimator. For the latter, we also
report the fraction of the simulation runs in which the estimates
exhibit quantile crossings. The results show that quantile cross-
ings are relatively infrequent at interior points, however they oc-
cur frequently at points close to the boundary. Specifically, when
n = 250, the fractions of crossings are between 0 and 0.100 for
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Table 2
Coverage ratio of the 90% confidence band.
Models  x m=10 m =20 m =30
n=250 n=500 n=1000 n=250 n=500 n=1000 n=250 n=500 n=1000
(a) Modified Bias Correction
(0.50,0.50)  0.892 0.884 0.868 0.884 0.878 0.896 0.878 0.882 0.906
1 (0.75,0.75)  0.906 0912 0.916 0.894 0.908 0.908 0.894 0.926 0.934
(0.90, 0.90) 0.908 0.918 0.940 0.888 0.922 0.928 0.882 0.940 0.952
(0.50, 0.50) 0.720 0.754 0.790 0.764 0.770 0.774 0.760 0.746 0.784
2 (0.75,0.75)  0.810 0.826 0.880 0.804 0.822 0.874 0.802 0.798 0.910
(0.90,0.90) 0.780 0.848 0.916 0.794 0.884 0.898 0.800 0.844 0914
(0.50,0.50)  0.890 0.934 0.942 0.870 0.928 0.946 0.860 0914 0.932
3 (0.75,0.75)  0.828 0.888 0.874 0.866 0.872 0.878 0.858 0.854 0.872
(0.90,0.90) 0.736 0.806 0.860 0.770 0.810 0.854 0.754 0.848 0.842
(b) Conventional Bias Correction
(0.50,0.50) 0.490 0.454 0.454 0414 0.450 0.442 0.402 0.432 0.430
1 (0.75,0.75)  0.712 0.740 0.744 0.756 0.720 0.734 0.752 0.746 0.768
(0.90,0.90) 0.392 0.460 0.492 0.382 0.400 0.422 0.388 0.412 0.460
(0.50,0.50)  0.690 0.734 0.776 0.720 0.748 0.766 0.716 0.730 0.772
2 (0.75,0.75)  0.766 0.780 0.842 0.748 0.786 0.836 0.748 0.766 0.876
(0.90,0.90)  0.690 0.804 0.848 0.704 0.820 0.826 0.700 0.788 0.852
(0.50,0.50) 0.790 0.826 0.824 0.766 0.798 0.846 0.748 0.784 0.836
3 (0.75,0.75)  0.590 0.586 0.596 0.618 0.590 0.546 0.598 0.544 0.566
(0.90,0.90) 0.592 0714 0.766 0.578 0.722 0.744 0.568 0.742 0.734

Results are based on 500 Replications; m is the number of quantiles entering the estimation; n is the sample size.

x = (0.5,0.5),0.074and 0.118 for x = (0.75, 0.75), and 0.740 and
0.882 for x = (0.9, 0.9). When n = 1000, the values are between
0 and 0.004, 0 and 0.010, and 0.074 and 0.362, respectively. Con-
cerning RMISE, the proposed estimators typically perform better,
but the difference is always small. This is consistent with the re-
sult that these estimators are first-order asymptotically equivalent.
Therefore, in the current simulations, the monotonization serves as
a way to ensure a coherent estimate, but not a way to substantially
improve the precision in finite samples.

Now compare the two proposed estimators. They have very
similar RMISE, confirming the result in Theorem 3 that these two
estimators are first-order asymptotically equivalent. Interestingly,
the RMISE of the rearranged estimator tends to be slightly smaller.
However, the difference is too small to prefer one estimator to
another.

7.2. Properties of the uniform confidence band

We examine the following two issues: whether the modified
confidence band (21) shows a significant improvement over the
conventional one (18), and whether the improvement comes at the
cost of a substantially wider band. The results reported are based
on the first proposed estimator.

Table 2 reports the coverage ratios. Panel (a) corresponds to the
modified bias adjustment. For Model 1, the modification delivers
adequate coverage for all the cases considered. For Models 2 and 3,
undercoverage exists in some cases when n is small. However, the
coverage becomes adequate when nis increased to 1000, except for
Model 2 with x = (0.5, 0.5). To examine the reason for the under-
coverage in the latter case, we sequentially replace the quantities
appearing in (21) with their true values. First, when plugging in the
true conditional density, the coverage does not improve. Second,
when plugging in the infeasible optimal bandwidth while keeping
the estimated conditional density, the coverage ratio reaches 0.922
when n = 1000. Finally, we plug in both the infeasible bandwidth
and the true conditional density and obtain 0.938. Therefore, the
undercoverage is due to oversmoothing. Panel (b) in Table 2 re-
ports results under conventional bias adjustment. For Model 1, the
coverage can be quite low even when n = 1000. Because the true
bias is zero, the conventional bias correction can only have detri-
mental effects on the coverage ratio. Further, because the selected

bandwidths are large, such effects can be severe. For the other two
models, the improvement from using the modified adjustment is
more important when the sample size is small or when the x is
close to the boundary of the data support.

The results in Table 2 can be further contrasted with two addi-
tional cases: the coverage ratio of the uniform band without bias
adjustment and that of the pointwise confidence band with modi-
fied bias adjustment. We summarize the results below while omit-
ting the details. Without any bias adjustment, the coverage ratios
for Model 1 are indeed close to the nominal rate. However, for
Model 2, the ratios are quite low. For model 3, the difference is
not as drastic as in Model 2, but the modified bias adjustment still
offers improvement. Meanwhile, the pointwise band has severe
undercoverage, confirming that it should not be used in problems
involving quantile processes.

We now examine the relative width of these confidence bands.
Table 3 summarizes the widths of the confidence bands under
modified and conventional bias adjustment, measured at two rep-
resentative quantiles t = 0.5 and 0.8. The values are based on
n = 500. The uniform bands with modified bias adjustment are
overall only mildly wider. This pattern holds even when the quan-
tile function has a substantial curvature, say in Model 2 with x =
(0.75, 0.75). Intuitively, when the curvature is large, the selected
bandwidth tends to be small, therefore safeguarding the effect of
the bias on the width of the confidence band. We have also com-
pared the uniform band with the pointwise band under modified
bias adjustment. The former are overall mildly wider. The ratios are
between 1.25 and 1.35at ¢ = 0.5 and 1.25 and 1.63 at T = 0.8.
This suggests that such bands can deliver valid inference for the
quantile process without losing informativeness about individual
quantiles.

8. An illustrative example: effects of class size reduction

We consider a dataset from an experiment known as Project
STAR (Student-Teacher Achievement Ratio). In the late 1980s,
Tennessee conducted a randomized controlled experiment to
measure the effect of class size reduction on student achievements.
Students were randomly assigned to a small class with target sizes
of 13 to 17, a regular size class of 22 to 25 or a regular size class
with a teaching aide. Teachers within a given school were also
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Table 3
The length of the 90% uniform confidence band.
Models  x m =10 m =20 m =30
=05 T =028 T =05 =028 T=05 T =028
(a) Modified Bias Correction
(0.50,0.50) 0.138 0.186 0.141 0.190 0.142 0.192
1 (0.027) (0.033) (0.027) (0.036) (0.027) (0.033)
(0.75,0.75) 0.299 0.395 0.309 0.409 0.317 0.420
(0.044) (0.064) (0.045) (0.066) (0.047) (0.071)
(0.90,0.90) 0.595 0.814 0.625 0.834 0.624 0.853
(0.141) (0.211) (0.132) (0.198) (0.143) (0.200)
(0.50,0.50) 0.372 0.476 0.387 0.503 0.390 0.502
2 (0.047) (0.088) (0.050)  (0.097) (0.051) (0.101)
(0.75,0.75)  0.668 0.925 0.684 0.953 0.688 0.959
(0.096) (0.222) (0.106) (0.213) (0.107) (0.223)
(0.90, 0.90) 1.070 1.451 1.103 1.504 1.087 1.523
(0.261) (0.482) (0.300) (0.504) (0.263) (0.515)
(0.50,0.50) 0.541 0.688 0.562 0.703 0.563 0.703
3 (0.071) (0.133) (0.076) (0.128) (0.075) (0.130)
(0.75,0.75)  0.594 0.725 0.617 0.769 0.615 0.776
(0.113) (0.139) (0.113)  (0.176) (0.105) (0.157)
(0.90,0.90) 1.209 1513 1.231 1.540 1.259 1.589
(0.306) (0.439) (0.308) (0.498) (0.302) (0.455)
(b) Conventional Bias Correction
(0.50,0.50) 0.121 0.161 0.123 0.167 0.124 0.167
1 (0.021) (0.030) (0.021)  (0.032) (0.020) (0.029)
(0.75,0.75)  0.266 0.359 0.277 0.372 0.283 0.382
(0.034) (0.054) (0.036) (0.059) (0.037) (0.059)
(0.90,0.90) 0.504 0.679 0.526 0.693 0.523 0.711
(0.112) (0.168) (0.111) (0.161) (0.117) (0.176)
(0.50, 0.50) 0.319 0.421 0.334 0.448 0.337 0.446
2 (0.043) (0.087) (0.047) (0.098) (0.048) (0.102)
(0.75,0.75)  0.570 0.824 0.587 0.852 0.593 0.860
(0.086) (0.224) (0.096) (0.215) (0.097) (0.226)
(0.90,0.90) 0.971 1.357 1.001 1.408 0.986 1.425
(0.255) (0.478) (0.288) (0.502) (0.257) (0.510)
(0.50,0.50) 0.464 0.607 0.485 0.623 0.486 0.625
3 (0.066) (0.132) (0.069) (0.127) (0.069) (0.127)
(0.75,0.75) 0.523 0.655 0.544 0.702 0.543 0.707
(0.090) (0.130) (0.094) (0.172) (0.084) (0.150)
(0.90,0.90) 1.121 1.425 1.143 1.443 1.168 1.500
(0.301) (0.431) (0.302) (0.495) (0.299) (0.456)

The sample size is 500 and results are based on 500 replications. We report the average length of the
uniform confidence bands. The standard deviations are in parenthesis.

randomly assigned to one of the three types of classes. Over the
four-year period from kindergarten to the third grade, more than
11,000 students at 79 schools participated in the program.

We focus on a sample that was previously analyzed many times.
It consists of the students who entered the kindergarten when
Project STAR started in the fall of 1985. After excluding students
in regular sized classes with aide, this sample has 1738 and 2004
observations in the treatment and control group, respectively. Fo-
cusing on this sample allows us to compare our results to previous
studies, in particular that of Krueger (1999), to show that the new
findings are due to the new framework rather than differences in
the samples considered.

The existing studies using this dataset mainly considered the
average effect. The results broadly agree that class size is an im-
portant determinant of student achievement. Our method provides
further information by studying the distribution effect in a flexi-
ble nonparametric setting. First, we find that students in the upper
quantiles of the test score distribution benefit more from the class
size reduction. Second, using teachers’ experience as a condition-
ing variable, we find that the effect of the class size reduction is
strongest for the classes taught by moderately experienced teach-
ers (i.e., 6-8 years of experience). We also conduct hypotheses tests
for treatment significance, homogeneity, equality and first order
stochastic dominance. The results reconfirm these two findings.

8.1. Heterogeneous effects of small class sizes

The detailed model specifications are as follows. Student
achievement is measured by the sum of math and reading scores
of the Stanford Achievement Test after finishing the kindergarten.
The total score ranges from 635 to 1253. Because the goal is to es-
timate distributional effects, we do not use percentile ranks as in
Krueger (1999). The conditioning variable is teachers’ experience,
whose 10th to 90th percentiles are: 2, 4,6, 8,9, 11, 12, 14, 17. The
process of quantile treatment effects is defined as the difference
between the two conditional quantile processes (i.e., for small and
regular class sizes) over the range t € [0.1, 0.9]. All the results are
obtained using the first proposed estimator.

Fig. 1 presents the estimates of the quantile treatment ef-
fects (the dashed black lines) along with their 90% uniform confi-
dence bands (the shaded areas). Two interesting patterns emerge.
First, the effects are heterogeneous, with the students in the up-
per quantiles benefiting more than those in the lower quantiles
of the conditional distribution. This pattern is particularly pro-
nounced when the classes are taught by less experienced teach-
ers (i.e., Fig. 1(a)-(d)). There, the differences between the 90th
and 10th percentiles are 23.2, 23.5, 14.2 and 7.5 points, respec-
tively. Second, the effect of class size reduction depends strongly
on teachers’ experience. Specifically, the effect is large and signif-
icant when the classes are taught by teachers with 6-8 years of
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Fig. 1. Processes of quantile treatment effects. Each figure 