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A finite strain nonlinear viscoplastic constitutive model for polyurethane (PU)–Montmorillonite clay
(MTM) nanocomposites is developed with the goal of characterizing the mechanical response under
different strain rates and strain amplitudes. In this model, both the elastic and viscous responses are
considered to be nonlinear. It is shown that a simple mathematical extension of the model used to
characterize the PU determines the nonlinear material constants for the PU–MTM. A finite deformation
nonlinear viscoelastic model is used to represent the mechanical behavior of PU. The rate dependent
viscous behavior and multiple relaxation times present in the PU response are determined using the
frequency dependent tan d measurements from Dynamic Mechanical Analysis (DMA). The model is
capable of accurately capturing both the rate dependent behavior and frequency dependent damping
of PU. The entire rate dependent hysteresis behavior (loading–unloading) is predicted accurately
through the constitutive model for strains up to 10%. For the PU–MTM nanocomposite, the constitutive
stress update is implemented in a finite element (ABAQUS/Explicit) framework and validated using a
range of experimental results. The model predictions show excellent agreement with experimental
results in capturing rate dependent loading/unloading responses for both PU and PU–MTM nanocomposites.
The proposed model can easily be extended to characterize other polyurethane based
nanocomposites.

Published by Elsevier Ltd.
1. Introduction

Polymer–clay nanocomposites are used in numerous applica-
tions ranging from automobile bumpers to advanced opto-
electronic devices. Recent experimental results demonstrate that
polymer nanocomposites can exhibit significant property
improvements compared to the base polymer. These properties
include increased strength, modulus, thermal stability and electri-
cal conductivity (Ramanathan et al., 2005; Sandler et al., 1999;
Muzny et al., 1996; Coleman et al., 2004; Podsiadlo et al.,
2007). A recent review of the state of the art of polymer–clay
nanocomposites (Nguyen and Baird, 2006) has a good discussion
of the preparation of such materials and their structure–property
relationships. Research is being conducted on developing analyt-
ical and numerical models to understand the chemistry, morphol-
ogy and synergistic effects between nanoparticles and polymer
matrices. Recently, many studies have been directed at under-
standing the effect of an interphase region that is formed in the
vicinity of nanoscale fillers (Li et al., 2011a,b; Liu and Brinson,
2006; Sheng et al., 2004). Continuum based finite element model-
ing studies can be effectively used to understand the physical and
mechanical interactions between the nanoparticles and the bulk
polymer chains in these nanocomposites (Kaushik et al., 2011;
Kheng et al., 2010). As a polymer, the response of bulk polyure-
thane depends on the applied strain rate and strain amplitude
and the dependence can be highly nonlinear. Polyurethanes exhi-
bit a two-phase microstructure composed of soft segments
(amorphous phase) and hard segments (semi-crystalline glassy
phase). These microstructures can be incorporated into a fully
3D constitutive model as developed in Boyce et al. (1988). Since
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Fig. 1. Normalized relaxation modulus at various strain levels for polyurethane.

Fig. 2. Schematic representation of the constitutive model for polyurethane.
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polymer chains undergo large stretching, most of the mathemat-
ical development is focused on capturing the large strain or post
yielding response of the polymers (Arruda et al., 1995; Qi and
Boyce, 2005; Bergstrom and Boyce, 1998; Mulliken and Boyce,
2006; Shim and Mohr, 2011). Further, some models focus only
on capturing the loading response at different strain rates;
however it is extremely important to accurately characterize
the unloading response of the polymer in order to capture the
dissipation as done in Anand and Gurtin (2003), Anand (1996,
2003). The missing link in the existing state of the art in modeling
of polymer constitutive response is to develop a single model
which can predict both, the rate dependent loading and unloading
behavior, together with the amplitude dependent nonlinear
response. To predict the viscous dissipation in polyurethane
(or such materials) as a function of varying strain rate, the devel-
opment of a constitutive model which captures the hysteresis
response in polymers is necessary. The phenomenon becomes
more demanding for PU–MTM nanocomposites, as the stress–
strain response in general for these materials is highly nonlinear.
In the present paper, a phenomenological constitutive model is
proposed for polyurethane (PU) and polyurethane based MTM
clay nanocomposites to fill this missing link. The model is shown
to capture the amplitude dependent nonlinear response of the PU
and the PU–MTM nanocomposite from quasi-static to the moder-
ate strain rate regime. In order to incorporate the rate dependent
variation of stiffness and viscous behavior of the polymer the
relaxation response is assumed to be a collection of discrete
relaxation spectra with several characteristic relaxation times.
This approach has been earlier used by Lion (1998), Haupt et al.
(2000) to identify the various relaxation times present within a
polymer system. In particular, (Lion, 1998), with 4 different relax-
ation constants and use of the experimental storage modulus was
found to be good enough to predict frequency dependent varia-
tion of loss modulus, but amplitude dependence was not esti-
mated correctly. In another work (Haupt et al., 2000) the
continuous relaxation spectra was approximated through a series
of step functions and parameters were estimated with help of a
fractional derivative based model. However the method was not
used for capturing amplitude dependent nonlinear response of
the polymer. The present approach considers the frequency
dependent tan d data to characterize the multiple relaxation pro-
cesses in the PU system. The tan d involves both the storage
(stiffness) and loss modulus (viscosity) in characterizing the
relaxation behavior. The proposed model captures the loading
path of the constitutive response at different rates, and effectively
predicts the unloading response. The mathematical framework
is based on the commonly used concept of characterizing the
various rate activated relaxation processes through discrete
approximations. This approach is shown to be able to capture
the PU–MTM nanocomposite response. In particular, the approach
is able to predict rate dependent responses at strain rates higher
than those corresponding to the highest frequency of the DMA
apparatus (100 Hz). The constitutive framework for PU–MTM
nanocomposites is developed considering PU as a constituent
and hence the PU parameters are directly fed into the nanocom-
posite models in addition to incorporating the combined effects of
clay and interphase. The successful implementation of the nano-
composite model greatly depends on how well the base PU is
characterized, hence considerable attention is paid to validation
of the PU model. Samples of two different volume fractions of
clay are used f ¼ 4% and f ¼ 9% for the present study. The pro-
posed constitutive model is implemented in a finite element
framework and is shown to predict the stress–strain response of
PU and PU–MTM nanocomposites with good accuracy.
2. Constitutive polymer model

2.1. Experimental characterization of PU

The polymer chosen is a polyurethane (manufactured in-house)
and has a storage modulus of 40 MPa and very high damping
(tan d ¼ 0:98 at 1 Hz) at room temperature. The pristine PU is
experimentally characterized through uniaxial loading–unloading
tests at different rates ð0:5%= sec�10%= secÞ, stress relaxation
tests, and Dynamic Mechanical Analysis (DMA).

Stress relaxation tests performed at three different strain levels
ð1%;2%;5%Þ and the normalized modulus as a function of time is
plotted in Fig. 1 which shows that PU is not an ideal linear
viscoelastic material as for a linear viscoelastic material the
normalized relaxation modulus plots at different strain coincide
with each other; however the nonlinearity may be limited to
entropic elasticity, which appears in the long term modulus. Hence
a nonlinear spring is added to the standard linear viscous solid
framework as shown in the schematic representation of the model
in Fig. 2.

2.2. Mathematical formulation of the constitutive model

As seen in Fig. 2 the model consists of several Maxwell branches
spring and dashpot combinations to represent the discrete relaxa-
tion spectrum, each of them with a characteristic relaxation time
si. The number of Maxwell branches can vary to capture the rate
dependent response of the PU. The nonlinear spring is added to
capture the nonlinear elastic response at large strains. The macro-
scopic deformation gradient F is the same in all branches and is
given by:
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F ¼ Fn ¼ Fi; i ¼ 1;m ð1Þ

where the superscript n represents the nonlinear spring branch and
the subscript i stands for the ith spring and dashpot branch, and m is
the total number of Maxwell branches. The total Cauchy stress is
the sum of the stresses from all the springs, and is expressed as,

T ¼ Tn þ
Xm

i¼1

Te
i ð2Þ

where the Te
i are the stresses in the Maxwell springs. The Cauchy

stress in the non linear spring following the eight chain potential
(Arruda and Boyce, 1993) is given as:

Tn ¼ n1kh
3J

ffiffiffiffi
N
p

kchain
L�1 kchainffiffiffiffi

N
p

� �
B0 ð3Þ

with n1 being the chain density (number of molecular chains per
unit reference volume) of the underlying macromolecluar network,
k the Boltzmann’s constant, h the absolute temperature, currently
taken as constant at room temperature and J ¼ detðFÞ. N represents
the length of the chains in the polymer network and

ffiffiffiffi
N
p

represents
the limiting stretch of each chain. Concisely G0 ¼ n1kh, the rubbery
modulus or initial stiffness of the nonlinear spring as shown in
Fig. 2.

In Eq. (3), B is the isochoric left Cauchy–Green strain given by

B ¼ FFT ð4Þ

and B0 is the deviatoric component of B as given by,

B0 ¼ B� trðB=3Þ ð5Þ

The isochoric deformation is developed by neglecting the volume
change as:

F ¼ J�1=3F ð6Þ

In Eq. (3), L�1 is the inverse Langevin function, given by its Padé
approximation,

L�1ðnÞ ¼ n
3� n2

1� n2 ð7Þ

and (3), kchain is the stretch on each chain in the network as given by
kchain ¼

ffiffiffiffiffiffiffiffiffi
I1=3

p
, with I1 ¼ trðBÞ, the first invariant of B.

2.3. Kinematics of the Maxwell Elements

The kinematics of each Maxwell spring–dashpot element
assumes that the total deformation gradient can be multiplica-
tively decomposed into an elastic part Fe

i and a viscous part Fv
i as:

F ¼ Fe
i Fv

i ð8Þ

Furthermore, we introduce the relations among the velocity gradi-
ent li, the rate of total deformation tensor and the rate of viscous
strain tensor (in the current configuration) as follows,

l ¼ _FF�1 ¼ _Fe
i Fe�1

i þ Fe
i :

_Fv
i Fv�1

i

� �
Fe�1

i ð9Þ

Hence, in the elastically unloaded configuration, the viscoplastic
velocity gradient can be written as,

lv ¼ Dv
i þWv

i ¼ _Fv
i Fv�1

i ð10Þ

where Dv
i is the rate of viscous strain and Wv

i is the viscous spin ten-
sor respectively. Without loss of generality, assuming the constitu-
tive model to be isotropic one can assume the viscous spin to be
zero Wv

i ¼ 0
� �

and the viscous flow rule is expressed as

Dv
i ¼

_cdi
vffiffiffi

2
p

svi

Te
i
0 þ

_cPi
vffiffiffi

2
p

sv i

PiI ð11Þ
where Pi is the hydrostatic pressure. In most models, the viscous
stretch rate is assumed to depend only on the deviatoric component
of the driving Cauchy stress (the first term in the right hand side of
Eq. (11)). However we found it necessary to include a small
component that depends on the hydrostatic pressure in the viscous
stretch rate in order to fit the DMA data (the 2nd term in the right
hand side of Eq. (11)). The ith equivalent stress ðsvÞi is given by

ðsvÞi ¼
1
2

Te
i
0Te

i
0

	 
1=2

ð12Þ

where Te
i
0 is the deviatoric component of the Cauchy stress

developed in the spring connected in series with the ith dashpot.
The constitutive equation to describe the stress–strain response in
the ith spring is given by

Te
i ¼

1
ðdetFe

i Þ
Le

i lnVe
i

� �
ð13Þ

where Ve
i is the left stretch tensor obtained by polar decomposition

of the elastic deformation gradient as

Fe
i ¼ Ve

i Re
i ð14Þ

and Le
i is the fourth order elasticity tensor of the ith spring and given

by,

Le
i ¼ kI� Iþ 2lI sym ð15Þ

where k and l are the Lame parameters I is the second order
identity tensor and I sym is the symmetric part of the 4th order
tensor. In Eq. (11), _cdi

v and _cPi
v are the equivalent viscous strain

rates due to the deviatoric stress and due to the hydrostatic
pressure respectively, and are assumed to follow a linear viscous
law. Moreover, the viscous laws for deviatoric and volumetric
deformations are assumed to have the same relaxation time
constant, tri. For a linear viscoelastic model, the relationship
between the strain rate and the stress in the linear small strain
regime is given by

_� ¼
dev Te

i

� �
2Gtri

þ
tr Te

i

� �
3Ktri

ð16Þ

In order for the finite deformation model to be equivalent to a linear
viscoelastic model described by Eq. (16) in the small strain regime,
the equivalent viscous strain rates are given by:

_cdi
v ¼

ffiffiffi
2
p
ðsvÞi

2Gitri
ð17Þ

_cPi
v ¼

ffiffiffi
2
p
ðsvÞi

3Kitri
ð18Þ

where Gi (Ki) is the shear modulus (bulk modulus) corresponding to
the ith elastic spring. As the polymers are nearly incompressible
materials with K � G, the dissipation due to the hydrostatic term
is essentially negligible compared to the shear dissipation. The
procedure to determine the material constants is explained in the
following section.

2.4. Equivalent prony series model: characterizing strain rate/
frequency dependent behavior of polyurethane

In order to characterize the rate dependent behavior of PU, the
relaxation behavior is approximated as a combination of several
discrete relaxation spectra. Hence an equivalent frequency domain
approximation for the complex shear and bulk modulus can be
written in terms of a Prony series expansion. For a linear viscoelas-
tic material, in response to a sinusoidal load of frequency x (in
radians), the complex shear modulus, G�ðxÞ, and the complex bulk
modulus, K�ðxÞ, can be written as:



Table 1
Material parameters for polyurethane.

i 1 2 3 4 5

tri (sec) 22.95 1.12 0.16 0.023 0.0023
Gi (MPa) 1.85 4.04 15.04 43.28 107.45

G0 ¼ n1kh 1.115 MPa
N 20
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G�ðxÞ ¼ G0 þ
XNb

i¼1

GiIxtri

1þ Ixtri
ð19Þ

K�ðxÞ ¼ K0 þ
XNb

i¼1

KiIxtri

1þ Ixtri
ð20Þ

where the superscript � denotes a complex number, I denotes the
imaginary unit number, G0 and K0 are the initial shear and bulk
moduli of the hyperelastic spring, Gi; i ¼ 1; ::;Nb are the shear
moduli of the elastic springs, Ki; i ¼ 1; ::;Nb are the bulk moduli of
the elastic springs and tri are the relaxation times of the dashpots.

Following Eq. (19), the viscoelastic loss factor ðtan dÞ can be
written as

tan d ¼ imgðG�ðxÞÞ
ReðG�ðxÞÞ ð21Þ

Hence tan d is a function of the Gi and tri. A least squares fit is per-
formed between the experimental frequency sweep measurement
of tan d and Eq. (21) to determine the Gi0s and tri0s. To assess the
goodness of fit the sum of the squared of the residuals ðR2Þ is calcu-
lated and compared with a user specified tolerance as

R2 ¼
XM

i¼1

ðtan di � tan df Þ2 6 tol ð22Þ

where tan di is the experimentally measured value and tan df is the
fitted value and M represents the total count of data set. In the
present study R2

6 0:05 is considered to be the criterion for a good
fit.

2.5. Material parameter identification and validation with experiments

To find the initial shear modulus of the hyperelastic spring
ðG0 ¼ n1khÞ and limiting stretch

ffiffiffiffi
N
p

, stress relaxation experiments
as described earlier are performed at three different strain levels.
The specimens are loaded to 1%, 2% and 5% strains at a strain rate
of 10%/sec and held there for t ¼ 100 sec. All springs in series with
dashpots will eventually relax and the stress in this relaxed config-
uration will correspond to the stress in the hyper-elastic spring at
that strain level. Hence, the relaxed stress values ð27:1 kPa;
64:5 kPa and 153:0 kPaÞ at those three strain levels ð0:01;0:02
and 0:05Þ respectively are used to find the initial stiffness and
the limiting stretch of the nonlinear spring by a nonlinear least
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at a quasi-static strain rate of 0:5%= sec and effect of the number of Prony series terms
squares fit to Eq. (3) and found to be 1:115 MPa and 20 respec-
tively. It is to be noted that the nonlinearity in the relaxation
response is assumed to be in the elastic response and characterized
through this hyperelastic spring. With G0 found as explained,
another least squares fit is performed to determine the Gi’s and
tri’s as mentioned in Section 2.4. These simulations involve opti-
mizing the fit to the tan d versus frequency response as in Fig. 3
(a) with a Prony series containing Nb ¼ 1 to Nb ¼ 5 terms. Fig. 3
(a) shows that Nb < 5 deviates significantly from the data and
Nb ¼ 5 provides an excellent ðR2 ¼ 0:0342Þ match between the
computed and experimental tan d. The relaxation times and
moduli for the Nb ¼ 5 branches are reported in Table 1 in decreas-
ing order of time constants.

The effect of all the relaxation times on the loading/unloading
response of PU is examined via a constitutive update which
includes the finite deformation formulation, written in the
commercial finite element (FE) package ABAQUS/Explicit using a
VUMAT. FE simulations are performed to predict material response
at different strain rates. Fig. 3 (b) shows the FE simulation results
for the quasi-static loading case predicted with an increasing
number of Prony series terms and compared with experiment.
The experimental stress–strain responses at different strain rates
are obtained by uniaxial tensile testing in a standard MTS machine.
By comparing all the relaxation times in Table 1 it is clear that
the stiffness corresponding to the slowest relaxation time of
tr1 ¼ 22:95 sec will have a significant effect on the quasi-static
ð0:5%= secÞ loading case, as the total time of loading for 10% strain
is tL ¼ 0:1=0:005 ¼ 20 sec. To incorporate the viscous effects seen
in the material response, the relaxation constants that are faster
than the loading time but still have a significant effect within the
time scale analyzed need to be included. It is observed that the
1st three terms are sufficient to capture the entire hysteresis loop
at 0.5%/sec with reasonable agreement. The relaxation times
6 0:023 sec do not improve the goodness of fit at this rate.
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However the influence of faster relaxation times becomes more
prominent as the strain rate of loading increases. As the strain rate
increases, longer relaxation time constants become large compared
to the duration of the experiment and play less of a role in the
viscous dissipation of the material at higher rates. The contribu-
tions due to the shorter relaxation times become increasingly
important at higher rates. For a material with multiple relaxation
times such as the PU discussed here, the rate dependent behavior
is essentially a function of multiple relaxation times that are on
the order of test duration (Wineman and Rajagopal, 2000).

Hence for polymers with multiple relaxation times, to predict
high rate responses accurately it is necessary to include fast
relaxation times, which invariably influence the material behavior
as seen in Fig. 4(a).

To examine the capability of the model to capture the nonlinear
dissipation as a function of strain level, simulations are performed
for the quasi-static loading case in which the specimens are loaded
and unloaded to different strain levels. Fig. 4 (b) shows an excellent
agreement between simulation with ðNb ¼ 5Þ and experimental
data at all strain levels. For viscoelastic materials damping not
only depends on the strain rate, but also on the strain amplitude
and the dependence can be nonlinear in nature; it is noted that
the present constitutive approach has the capability of predicting
the amplitude dependent hysteresis loss quite well.

3. Constitutive model of PU-based MTM nanocomposites

To predict the constitutive response of PU-based MTM nano-
composites the following assumptions are made:

� The constitutive model considers the nanocomposite system as
a combination of bulk polyurethane and a homogenized contri-
bution of clay and interphase. The phenomenological model
consists of Maxwell elements corresponding to the polyure-
thane and additional elements representing the combined
effects of the clay and interphase. The nonlinear spring incorpo-
rates the combined elasticity of all three constituents.
� Clay is considered to be elastic and the viscous contribution due

to the combined effects of clay and the interphase is solely due
to the interphase.
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various strain levels and FE model predictions using 5 Prony series terms.
In order to determine the stiffness and relaxation constants for
the homogenized clay and interphase in the PU–MTM experimen-
tal DMA data are used for f ¼ 4%. The response of PU–MTM at
f ¼ 9% is predicted assuming all of the Gi at f ¼ 4% scale by the
same factor as the increase in the clay volume fraction, 2.25. To
characterize the nonlinear viscous dashpots, a phenomenological
law commonly used for glassy polymers is introduced. Using
Argon’s (1973) theory of viscoplastic dissipation, which states that
the deviatoric part of the viscoplastic strain rate is related to the
activation energy of the polymer chain as

_cVv ¼ _cNL
0 exp �AS

kh
1� sv

S

� �	 

� _cNL

0 exp �AS
kh

1þ sv

S

� �	 

ð23Þ

where _c0
NL is the pre-exponential factor proportional to the attempt

frequency and S is the athermal shear strength with an initial value
of S0 ¼ 0:077G

ð1�mÞ , related to the elastic shear modulus G and the
Poisson’s ratio m (Argon, 1973; Arruda et al., 1995). A is the zero
stress level activation energy, k is the Boltzmann’s constant and h
is the absolute temperature. The above described strain rate
equation is very commonly used to capture the response of glassy
polymers. In large deformation cases, the 2nd term in Eq. (23) is
often neglected. In the small strain regime, neglecting the 2nd term
can cause non-physical viscous dissipation at zero stress. The
viscous strain rate corresponding to hydrostatic pressure is
considered to be linear as before (2nd part of Eq. (11)).

3.1. Equivalent linearization of the constitutive model

The DMA measurements on the PU–MTM nanocomposites
show a significant variation of storage modulus and damping
values as a function of frequency as shown in Fig. 5. Following a
similar approach as for PU, the rate dependent material constants
ðGi and triÞ are fitted using the frequency dependent tan d values
for f ¼ 4%. However, for purposes of the least squares fit only we
have linearized the nonlinear equation to an equivalent linear
one by assuming that in the small strain regime linear viscosity
prevails. The assumption can be justified by the fact that DMA
measurements are done at a very low amplitude strain level 0.1%
with a very low pre-strain value ð0:5%Þ. Simplifying Eq. (23), we
obtain
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_cVv ¼ _cNL
0 exp �AS

kh

� �
exp

As
kh

� �
� exp

�As
kh

� �	 

ð24Þ

Assuming small strains and the corresponding s to be small, the
exponential function can be approximated as exp As

kh

� �
¼ 1þ As

kh

� �
.

Hence one can rewrite Eq. (24) as

_cVv ¼ _cNL
0 exp �AS0

kh

� �
2As
kh

� �
ð25Þ

Equating Eq. (25) with the deviatoric part of the linear viscous rela-
tion in Eq. (16), we obtain a relation between the two pre-exponen-
tial factors as:

_cNL
0 ¼

ffiffiffi
2
p

4Gtr

kh

A exp � AS0
kh

� � ð26Þ

The Prony series approximation of the complex modulus results in
several ðGi; triÞ pairs. Using those ðGi; triÞ values in Eq. (26), the
nonlinear reference viscous strain rate is obtained. The reference
values are then substituted in Eq. (23) to compute the nonlinear
rate of dissipation under finite deformation. The following section
explains the material parameter identification procedure in detail.
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4. Material parameter identification and validation of the
PU–MTM constitutive model with experiments

In order to determine the material parameters the experimental
DMA data for f ¼ 4% are used. As explained in Section 3, the con-
stitutive framework for the nanocomposite includes PU and the
combined effects of interphase and clay. It is assumed that the
PU–MTM DMA data contains the information corresponding to
bulk PU. To extract the information for the homogenized clay-
interphase part, the PU storage modulus and loss modulus are sub-
tracted from the PU–MTM data for f ¼ 4%. A least squares fit is
then performed over the tan d ¼ GlossðPU�MTMÞ�GlossðPUÞ

GstorageðPU�MTMÞ�GstorageðPUÞ, to deter-

mine the stiffness and relaxation coefficients for the combined clay
and interphase. It is seen that 5 terms in the Prony series approx-
imation provides a reasonable match with the experimental data
as shown in Fig. 6 with R2 ¼ 0:04.

The parameters estimated for the combined effect of clay and
interphase are reported in Table 2 for f ¼ 4%. Analyzing the
relative values of tr , it is known from the PU study that tr > 0:1
sec will have a significant effect on the quasi-static response.
Hence the viscous dashpot corresponding to tr ¼ 4:435 sec is con-
sidered as nonlinear. The associated parameters for the nonlinear
viscous relation are also reported in Table 2. A user material
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subroutine (VUMAT) is written in ABAQUS/Explicit for the entire
finite deformation constitutive equations and FE simulations are
performed to validate the proposed modeling approach. The
material subroutine can be used to predict large scale simulations
with realistic geometry in finite element environment. Fig. 7 (a)
shows the comparison between the model prediction and
experiments performed on uniaxial test conditions at a quasi-static
Table 2
Material parameters corresponding to the constitutive model for the clay-interphase
component of PU–MTM ðf ¼ 4%Þ.

i 1 2 3 4 5

triðsecÞ 4.435 0.456 0.145 0.025 0.0028
GiðMPaÞ 124 67 103 224 288

G0 ¼ nkh 30 MPa
N 20
k 1:38� 10�20N �mm=K
S0;1 12.5 MPa
A0;1 2� 10�20
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Fig. 7. Uniaxial loading–unloading response curves for PU–MTM nanocomposites at a q
(a) and for f ¼ 9% (b).
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Fig. 8. Storage modulus versus frequency (a) and tan d versus frequency (b) res
strain rate ð0:5%= secÞ for f ¼ 4% PU/MTM nanocomposites. The
specimens are loaded to a strain level of 5% and 10% followed by
unloading. The model results are in excellent agreement with
experimental results for f ¼ 4% and demonstrate the ability of
the model to capture the entire hysteresis responses fairly accu-
rately based on the DMA characterization. It is to be noted that
the model can predict the nonlinear viscous behavior accurately
for a quite large strain value at 10%. In addition to that, to explore
the predictive capability of the model at another volume fraction, a
f ¼ 9% PU–MTM nanocomposite is considered. It is assumed that
the stiffnesses associated with the combined clay and interphase
are increased by a factor of 2.25 in accordance with the increase
in the clay content. The relaxation times are assumed to be same
as for f ¼ 4%. Following Eq. (26) the rate of viscous damping for
f ¼ 9% will decrease compared to f ¼ 4% as a function of the prod-
uct ðG� trÞ due to the increase in G values as the tr remain the
same, which is in accord with the understanding that viscous
damping reduces in PU–MTM nanocomposites with increase in
clay volume fraction. The FE model predictions for the quasi-static
response at two different strain levels are plotted and compared
against experimental data in Fig. 7 (b). A very accurate agreement
is obtained between the FE predictions and experimental results.
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The frequency dependent storage modulus and tan d are also
predicted for f ¼ 9% and compared with experimental DMA mea-
surements as shown in Fig. 8. The predictions agree reasonably
well with the experiments but in general underpredicts the
stiffness and overpredicts the damping, specifically in the low
frequency regime. Increased amounts of clay hinders relaxation
properties of polymer chains and the resulting nanocomposite
response transitions from a ductile to brittle behavior with a
considerable reduction in damping, as reported in Kaushik et al.
(2011). The slower relaxation times, which dominates the behavior
at low frequency become even more slower with increased clay
volume fraction. Hence in the present case, slower relaxation times
ðtrÞ for the combined clay and interphase also might have altered
at f ¼ 9% compared to f ¼ 4% along with the G values, which
our current model has not considered due to the limitation in least
square fitting of time constants. Hence the model predictions
for the DMA data for f ¼ 9% shows less stiff behavior for the
nanocomposites compared to the experimental results.
Te
nþ

_cv
d n

Bnþ
5. Conclusions

A finite deformation rate dependent constitutive model is pre-
sented for PU and PU–MTM nanocomposites to characterize the
frequency dependent mechanical responses of these materials.
The PU model predicts the storage modulus versus frequency
response as well as the rate and strain dependent loading–unload-
ing response, based on nonlinear elastic and linear viscous charac-
terization. It is shown that the frequency dependent damping
characterization is effective at predicting the strain rate dependent
response of PU up to approximately 10%/sec. Incorporation of
nonlinear elasticity increases the accuracy of the model to predict
the rate dependent response up to what is considered to be a
fairly large strain (10%) for linear viscous materials. The present
approach identifies the importance of faster relaxation times in
polymers in order to predict high rate response accurately. Based
on the constitutive description of PU, a phenomenological model
was presented for PU–MTM nanocomposites, in which the clay
particles and the interphase are treated as a homogenized material.
A frequency sweep of the damping ðtan dÞ is used to fit the
material parameters for f ¼ 4%, as in the PU model. The response
of the f ¼ 9% nanocomposite is predicted by assuming the moduli
scale by the same ratio as the clay volume fraction. The predicted
results are in excellent agreement with the loading–unloading
response curves at two strain levels and there is reasonable agree-
ment with the DMA data. The proposed methodology effectively
predicts the strain dependent nonlinear viscous response of poly-
mer nanocomposites in terms of both loading and unloading
responses. The model predictions show very good agreement with
experimental results for both PU and PU–MTM systems, for uniax-
ial loading–unloading responses at various strain levels.
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Appendix A. Summary of the stress update algorithm in
ABAQUS VUMAT for PU

� Known at time tn : Fn; F
e
n; F

v
n ;Tn; sv ;n; _cv

d n

Given at time tnþ1 : Fnþ1

� Using explicit forward Euler approach, the viscous flow rule (for
the ith branch) is integrated as:
Fv
nþ1 ¼ Fv

n þ _cv
d n

1ffiffiffi
2
p

sv ;n
Te0

n

 !
Fv

nDt ðA:1Þ

This step repeats for all the Maxwell branches.
� With Fv

nþ1 determined in the last step, elastic part of the defor-
mation gradient for each Maxwell branch is computed as:
1 ¼ Fnþ1 Fv
nþ1

� ��1 ðA:2Þ
� Perform eigenvalue decomposition on Fe
nþ1 to find out the

stretch tensor Ve
nþ1

� Calculate the Cauchy stress as:
1 ¼
1

detFe
nþ1

� � Le lnVe
nþ1

� �
ðA:3Þ
� Calculate the equivalent stress as:
sv;nþ1 ¼
1
2

Te
nþ10T

e
nþ10

	 
1=2

ðA:4Þ

where Te
nþ10 ¼ Te

nþ1 � 1=3trace Te
nþ1

� �
� Update the viscous strain rate at ðnþ 1Þ th time step as:
þ1 ¼
ffiffiffi
2
p

sv;�nþ1

2Gtr
ðA:5Þ
� To calculate the stress in the Arruda–Boyce spring, update the
left Cauchy–Green strain as:
1 ¼ Fnþ1FT
nþ1 ðA:6Þ
� Calculate the stress in the Arruda–Boyce spring using Eq. (3)
as:
Tnþ1 ¼ n1kh
3J

ffiffiffiffi
N
p

kchain;nþ1
L�1 kchain;nþ1ffiffiffiffi

N
p

� �
B�0

nþ1 ðA:7Þ
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