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a b s t r a c t

We present ECOM (Equilibrium solver via COnformal Mapping), a fast and accurate fixed boundary solver
for toroidally axisymmetric magnetohydrodynamic equilibria with or without a toroidal flow. ECOM
combines conformal mapping and Fourier and integral equation methods on the unit disk to achieve
exponential convergence for the poloidal flux function aswell as its first and second partial derivatives. As
a consequence of its high order accuracy, for dense grids and elongations comparable to or smaller than
the elongation of ITER, ECOM computes key quantities such as the safety factor and the magnetic shear
with higher accuracy than the finite element based code CHEASE (Lütjens et al., 1996) at equal run time.
ECOM has been developed to provide equilibrium quantities and details of the flux contour geometry as
inputs to stability, wave propagation and transport codes.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Numerically computed magnetohydrodynamic (MHD) equilib-
ria are the starting point of a wide class of numerical solvers that
are used to study MHD stability, transport, and heating and cur-
rent drive in magnetic fusion devices [1–4]. Static MHD equilib-
ria of toroidally axisymmetric configurations are described by the
Grad–Shafranov (G–S) equation [5,6], a nonlinear, second-order el-
liptic partial differential equation. Stationary equilibriawith purely
toroidal flows are determined by solving a close variant of the G–S
equation [7], the only difference being that for the latter the pres-
sure term does not only depend on the poloidal flux function Ψ ,
but also on the radial variable R. Numerical codes to solve the G–S
equation have been developed since the early days of the mag-
netic fusion program [8,7,9]. Nevertheless, the development of op-
timizedG–S codes remains a topic of active research, for threemain
reasons. First, G–S solvers must be able to properly resolve com-
plex two-dimensional geometries [10,11], with boundaries that
may have a corner, corresponding to a magnetic field X-point [11].
Second, G–S solvers must be fast. This criterion is particularly rele-
vant in the context ofmultiphysics integrated simulations [12–16].
Several of thesemultiscale,multiphysics solvers already include, or
will eventually include, in their iterative procedure a step in which
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the equilibrium configuration is self-consistently updated. A rea-
sonable requirement is that the calculation of the updated equilib-
rium takes a negligible amount of time and computing resources
as compared to the computationally intensive transport, MHD sta-
bility and plasma heating solvers. Third, G–S solvers must be ac-
curate. The solution of the G–S equation is the poloidal flux Ψ , but
the physical quantities of interest, such as the magnetic field, the
safety factor, the magnetic shear, the magnetic curvature, and the
current density are all functions of partial derivatives of Ψ . Since
there always is some loss of accuracywhen computing derivatives,
a high level of accuracy for Ψ is desired.

The computation of MHD equilibria can be categorized in two
general classes: (i) fixed-boundary problems in which the plasma
boundary is prescribed, with Ψ = constant on the boundary and
one solves for Ψ inside the plasma, and (ii) free-boundary prob-
lemswhere the current flowing in a set of external coils is given and
one has to find Ψ such that the equilibrium is self-consistent with
these currents. In this article, we consider only fixed-boundary
problems. That is, the shape of the plasma boundary is given and
Ψ = constant on the boundary. We focus on this class of problems
because a large number of plasma stability, transport, and plasma
heating numerical codes take fixed boundary equilibria as their ini-
tial data. We present the new Grad–Shafranov code ECOM (Equi-
librium solver via COnformal Mapping), a fixed boundary, direct
solverwritten in Fortran 77/90 that is based on three key elements:
(1) the formulation of the G–S equation as a nonlinear Poisson
problem; (2) a spectrally accurate numerical method to compute
the conformal map from the smooth plasma cross section of in-
terest to the unit disk; (3) a fast, high order Poisson solver on the
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unit disk [17]. Itsmain novelty lies in the last two aspects discussed
in the paragraph above, namely accuracy and speed. Regarding the
first point,wedemonstrate in this article that ECOMhas better con-
vergence properties than popular G–S solvers based on finite ele-
ments [9,10,18–20]. In the finite element approach the numerical
error of the solution decays as a power of grid size, i.e. N−α where
α is an integer and N is the number of grid points in one direction.
Often, for magnetic fusion applications α ≤ 4 [18,9,20], although
α ≤ 7was recently demonstrated [10]. In contrast, convergence in
ECOM is exponential: the error decays as β−N for some real num-
ber β > 1. Just as importantly, in ECOM the rate of convergence for
the derivatives of Ψ is the same as that of Ψ , whereas in the finite
element approach the derivatives ofΨ converge more slowly than
Ψ [10]. Remarkably, in ECOM numerical accuracy is not obtained
at the expense of computational complexity and speed. For a given
grid size, our solver is faster than finite element solvers and less
demanding in terms of memory. We will show that a drawback of
relying on conformalmapping is that ECOMoften requires a denser
grid than FEM based solvers to achieve a desired accuracy. Yet de-
spite this, we find that for tokamak geometries with elongations
that are not significantly larger than 2 andmedium to high number
of grid points, ECOM is more accurate than FEM based equilibrium
codes at equal run time.

This article follows an earlier article [17], inwhichwe gave a de-
tailed description of our new numerical algorithm for solving the
G–S equation. The focus here is different. One of the main moti-
vations is to present extensions recently added to our G–S solver
that make it a practical tool readily usable in fusion applications.
The new capabilities of our equilibrium solver include the possi-
bility of computing equilibria with arbitrary toroidal flow profiles,
the possibility of specifying current and pressure profiles in var-
ious ways, as well as the evaluation of the key physical quanti-
ties that are required as inputs in stability, transport and heating
codes. Since ECOM is a direct solver that calculates Ψ on a pre-
scribed grid for the poloidal cross section [21], we put a particular
emphasis on the accurate computation of the contours of constant
flux, and of flux surface quantities such as the safety factor and the
magnetic shear. A second motivation for this article is to perform
detailed comparisons between the popular G–S code CHEASE [18]
and ECOM, and to assess the merits of each solver. The equilib-
rium solver CHEASE is based on a bicubic Hermite finite element
formulation of the Grad–Shafranov equation, and is often coupled
with MHD stability codes and transport codes [22–24,2]. Further-
more, it shares a large number of similarities, in terms of formula-
tion and performance, with another popular G–S FEM code called
HELENA [9], which is most often used in combination with MHD
stability codes such as CASTOR [25].

The structure of the article is as follows. In Section 2 we briefly
review the numerical algorithm we use to solve the G–S equa-
tion [17]. In Section 3, we give a detailed presentation of the
equilibrium quantities ECOM computes during the postprocessing
phase, and of the numerical methods we implemented to calcu-
late these quantitites with high accuracy. In Section 4 we evalu-
ate the speed, accuracy, and convergence properties of our solver,
and compare them to those of CHEASE [18]. In Section 5we explain
how ECOM computes stationary equilibria with toroidal flows, and
in Section 6 we summarize our main findings, discuss the current
limitations of ECOM and future plans. Appendix A presents our
method to calculate the Miller parametrization [26] of a numeri-
cally computed flux contour, and Appendix B contains a table with
all the important variables in ECOM, along with a short description
for each of them.

2. Numerical algorithm

In this section, we briefly review the numerical algorithm used
in ECOM to solve the G–S equation. A more detailed presentation
of each of the steps described below can be found in [17].
2.1. The Grad–Shafranov equation as a nonlinear Poisson problem

The Grad–Shafranov equation is given by

∆∗Ψ ≡ R
∂

∂R


1
R
∂Ψ

∂R


+
∂2Ψ

∂Z2
= −µ0R2 dp(Ψ )

dΨ
−

1
2
dF 2(Ψ )

dΨ
(1)

where (R, φ, Z) is the usual cylindrical coordinate system associ-
atedwith the toroidal geometry, 2πΨ is the poloidalmagnetic flux,
µ0 is the permeability of free space, p(Ψ ) is the plasma pressure,
and F(Ψ ) = RBφ , with Bφ the toroidal component of the magnetic
field. Once the free functions p(Ψ ) and F(ψ) are given and Eq. (1)
is solved with appropriate boundary conditions, themagnetic field
B and the current density J can be computed according to the fol-
lowing formulas:

B =
F(Ψ )
R

eφ +
1
R
∇Ψ × eφ

J =
1
µ0R

dF
dΨ

∇Ψ × eφ −
1
µ0R

∆∗Ψ eφ .

Eq. (1) is a second-order elliptic nonlinear partial differential
equation for Ψ . ECOM solves the fixed boundary problem associ-
ated with this equation. Specifically, the boundary curve ∂Ω en-
closing the plasma domain Ω of interest is an input to the solver,
and ECOM solves Eq. (1) with the Dirichlet data Ψ = Ψb on ∂Ω ,
whereΨb is a constant. This formulation is particularly convenient
for multiphysics theoretical studies of the influence of shaping on
plasma performance [27–29]. Two types of inputs can be used in
ECOM to determine the geometry of ∂Ω . One option is to give an
exact representation of the plasma boundary, for example in the
form of parametric equations [26]. When such a representation
is not available, one can also give the coordinates (Rn, Zn) of dis-
crete points on the boundary. At the moment, ECOM can only treat
smooth plasma boundaries, and can therefore not compute equi-
libria whose plasma boundary has a separatrix.

The functional dependence on Ψ of the pressure and toroidal
magnetic field profiles is either prescribed or determined from
transport equations. In both cases, it is an input to ECOM. In gen-
eral, these profiles are such that Eq. (1) is nonlinear, and for a wide
class of profiles Eq. (1) has to be solved as an eigenvalue problem
[8,17,30,31]. This means that Eq. (1) has to be solved by iterating
on Ψ [32]. In ECOM, this is done as follows. A normalized flux ψ
is defined by ψ = (Ψ − Ψb)/(Ψ0 − Ψb), where Ψ0 and ΨB are the
poloidal flux at themagnetic axis and the last closed flux surface re-
spectively, so thatψ = 1 at themagnetic axis andψ = 0 at the last
closed flux surface. The pressure and toroidal magnetic field pro-
files are also normalized and expressed in terms ofψ according to:

dp(Ψ )
dΨ

=
dp̄(ψ)
dψ

and
dF 2(Ψ )

dΨ
=

dF̄ 2(ψ)

dψ
. (2)

Defining λ = 1/(Ψ0 − Ψb), Eq. (1) then becomes

∆∗ψ = −λ


µ0R2 dp̄

dψ
+

1
2
dF̄ 2

dψ


(3)

where λ plays the role of an eigenvalue. In ECOM, there are sev-
eral options to specify the profiles dp̄/dψ and dF̄ 2/dψ , with corre-
sponding namelist parameter IPTYPE for the pressure and IFTYPE
for the poloidal current. If IPTYPE = 1 or IFTYPE = 1, the profiles
are given by an explicit formula in terms of ψ . In ECOM, we often
use dp̄/dψ = p0ψ (1−(1−ψ)pin)pout , as is also done in CHEASE [18],
where the constants p0ψ , pin, and pout are specified in the namelist.
Likewise, we often use dF̄ 2/dψ = 2F0ψ (1 − (1 − ψ)Fin)Fout .
Different expressions can be easily implemented, such as formu-
las describing a steep pressure pedestal [17]. If IPTYPE = 2 or
IFTYPE = 2, the profiles are given by a set of data points and
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the corresponding values of ψ or of the minor radius. The value
of the namelist variable IPTABLE determines whether the tabu-
lated values of the profiles are in terms of ψ or of the minor ra-
dius. If IPTABLE = 0, the numerical tables of dp̄/dψ and dF̄ 2/dψ
are specified in terms of discrete values of ψ . If IPTABLE = 1,
p̄(ψ) and F̄(ψ) instead of their derivatives are specified by tables
in terms of ψ . If IPTABLE = 2, the numerical tables of p̄ and F̄
are specified in terms of the normalized minor radius ρ. In Sec-
tion 3, we explain in detail how ECOM accurately computes dp̄/dψ
and dF̄ 2/dψ starting from such tables. Furthermore, ECOM offers
the possibility to choose between three different definitions for
the minor radius ρ, corresponding to three different values of the
namelist variable IRHO. If IRHO = 0, theminor radius is defined by
ρ(ψ) = (Ro(ψ)− Ri(ψ))/(Ro(ψ = 0)− Ri(ψ = 0))where Ri(ψ)
and Ro(ψ) are the major radius at the inner and the outer location
of the flux surface ψ at Z = 0, respectively. If IRHO = 1, ρ is de-
fined by ρ(ψ) = (Ro(ψ)− R0)/(Ro(ψ = 0)− R0)where R0 is the
major radius at the location of the magnetic axis. If IRHO = 2, ρ is
defined by ρ =

√
(Ψ − Ψ0)/(Ψb − Ψ0). If IRHO = 3, ρ is defined

by ρ =
√
(Φ(ψ)− Φ(ψ = 1))/(Φ(ψ = 0)− Φ(ψ = 1)) where

Φ is the toroidal magnetic flux.
As already mentioned, Eq. (3) must be solved iteratively. G–S

solvers usually iterate on the operator ∆∗ [10,18]. One of the key
ideas in ECOM is to iterate on the Laplacian operator ∆ instead.
This can be done without any loss of generality, and does not in-
cur any additional computational cost. The advantage is that at a
given iteration, one now has to solve Poisson’s equation, and one
can therefore rely on the larger body of numerical methods devel-
oped for fast high order Poisson solvers in twodimensions. To solve
for ψ and the smallest eigenvalue λ in Eq. (3), ECOM uses a modi-
fied version of the inverse iterationmethod [32]. Specifically, ifψ (i)

and λ(i) are known at the iteration step i, thenψ (i+1) and λ(i+1) are
computed according to

∆ψ̃ (i+1)
=

1
R
∂ψ (i)

∂R
− λ(i)


µ0R2 dp̄

dψ
(ψ (i))+

1
2
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dψ
(ψ (i))


(4)

ψ (i+1)
=

ψ̃ (i+1)

∥ψ̃ (i+1)∥∞

(5)

λ(i+1)
=

λi

∥ψ̃ (i+1)∥∞

(6)

where ∥ψ̃ i+1
∥∞ is the extremum of ψ̃ i+1 in the domain Ω . In

ECOM, the iterative process terminateswhen ∥ψ (i+1)
−ψ (i)

∥∞ < δ
for somepredetermined small δ. In the numerical results presented
in this article, we typically had δ = 10−14. In order to keep consis-
tency across different grid sizes, ∥ψ̃ i+1

∥∞ is not only calculated for
all values of ψ̃ i+1 on the mesh, but instead over the entire domain
Ω . In ECOM, this is done by finding the location where ∇ψ = 0
with the Newton–Raphson method. It requires knowledge of the
Hessian matrix, whose values away from grid points are evaluated
by interpolation, based on the high order Fourier and Chebyshev
representations ECOM uses for the Poisson solver on the unit disk.
The extremumofψ on the grid is used to provide a very good initial
guess, so that in practice very few Newton steps are subsequently
required to find ∥ψ̃ (i+1)

∥∞ inΩ .
It is known empirically that iterative schemes such as the one

above converge faster when the right-hand side of the partial
differential equation is slowly varying. For better convergence we
thus scale the unknown functionψ asψ = u

√
R. Replacingψ with

u, Eq. (4) becomes
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√
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
. (7)
Unlike Eq. (4), the right-hand side of Eq. (7) does not have
derivatives of ψ , and it is therefore smoother. Note that while one
solves for u in the Poisson step, the normalization steps (5) and (6)
are still computed in terms of ψ .

Georg [33] proved the convergence of the inverse iteration al-
gorithm described above for a wide class of elliptic differential
operators and nonlinear sources. Lackner [34] discussed the ro-
bustness of the algorithm for the particular case of the operator
∆∗. Our empirical investigations agree with their conclusions. Our
iterative scheme for example converges for pressure profiles given
by dp̄(ψ)/dψ = exp(−αψ) as long as α ≤ 13. In principle, con-
vergence for more extreme cases could be achieved by adopting
the subtler,more robust iterative schemedevelopedbyMarder and
Weitzner in [35].We have not explored this possibility for two rea-
sons. First, the algorithm by Marder and Weitzner converges rela-
tively slowly when the nonlinearity of the source is strong [34].
Second, the inverse iteration scheme used by ECOM successfully
converges for all fusion-relevant profiles we have considered, in-
cluding profiles with a steep pressure pedestal near the edge [17].

Thus far, we have explained how ECOM treats the Grad–
Shafranov equation as a nonlinear Poisson problem. We now
briefly describe how ECOM computes the solution of the Poisson
equation (7) at each iteration, i.e. with fixed right-hand side, on a
domainΩ of fusion interest and with the Dirichlet boundary con-
dition ũ = 0 on ∂Ω . The Poisson solver in ECOM is based on two
elements: (1) a spectrally accurate numerical method to compute
the conformal map from the plasma domain Ω to the unit disk;
(2) a fast, high order Poisson solver on the unit disk.

2.2. Conformal mapping from the plasma domain to the unit disk

Conformal mapping is an effective method for solving Poisson’s
equation because a conformalmap transforms a Laplacian operator
into another Laplacian operator, with a scale factor [9]. Consider
the generic Poisson equation
∆u(R, Z) = f (R, Z) inΩ
u(R, Z) = 0 on ∂Ω (8)

the conformal map W : z = R + iZ → w = α + iβ fromΩ to the
unit diskD1 and its inversemap B : w = α+iβ ∈ D1 → z = R+iZ
∈ Ω . Solving Eq. (8) is equivalent to solving the following Poisson
problem in D1:∆v(α, β) = f (R(α, β), Z(α, β))

 dBdw
2 in D1

v(α, β) = 0 on ∂D1

(9)

where u(R, Z) = v(α(R, Z), β(R, Z)), and the functions R(α, β)
and Z(α, β) should be seen as the real and imaginary parts of the
inverse map B. Clearly, solving Eq. (9) is easier than solving Eq. (8),
provided one has a way to calculate the inverse map B at both
boundary and interior points ofD1. In ECOM, this is done as follows.
ECOM first computes the forwardmapW for points on ∂Ω that are
equispaced in arc length through theKerzman–Stein integral equa-
tion based on the Szegö kernel [17,36,37]. Using oversampling and
interpolation, ECOM then uses the boundary values of the forward
map to calculate the inversemap R(α, β) and Z(α, β) for points on
the boundary ofD1 that are equispaced in the polar angleϑ . Finally,
ECOM computes B for points in the interior of D1 using the Cauchy
integral formula and the Fast Fourier Transform [17].

ECOM relies on a somewhat naive implementation of the Kerz-
mann–Stein integral equation for the computation of W on ∂Ω ,
that requires O(n3

1) work, where n1 is the number of discretiza-
tion points on ∂Ω . There exist methods resulting in an asymptotic
O(n1) run time [38], but they are not currently implemented in
ECOM because the computation only needs to be done once, and
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Fig. 1. ECOM calculation for an up–down asymmetric MHD equilibrium using
EFIT [39] reconstructed boundary shape (black contour) and pressure and poloidal
current profiles for JET discharge 13 3221. The blue points represent the grid points
in ECOM (nr = 256, nϑ = 256), and the red curves are the contours 0.02, 0.21, 0.50,
0.79, and 0.98 of the normalized poloidal flux.

because other steps in ECOM are more expensive. The computa-
tion of the inverse map at interior points is based on the Cauchy
integral formula and the Fast Fourier Transform, and results in a
run time complexity of O(nrnϑ log nϑ ), where nr is the number of
radial grid points and nϑ the number of angular grid points for the
mesh that ECOM uses to solve Poisson’s equation on D1.

The boundary ∂Ω can be defined in several ways, that are spec-
ified by the namelist variable IBTYPE in ECOM. If IBTYPE = 0,
the plasma boundary corresponds to the contour Ψ = 0 of a
Solov’ev equilibrium we discuss in Section 4.1, parametrized by
Eqs. (44)–(45). If IBTYPE = 1, the boundary is specified by the
Miller parametrization [26] given by Eqs. (52)–(53) of Section 4.2,
and the elongation κ and triangularity δm must then be specified. If
IBTYPE = 2 or IBTYPE = 3, the boundary is specified by a set of dis-
crete points (R, Z) in an Ascii file (IBTYPE = 2) or an EFIT g-file [39]
(IBTYPE = 3), which allows the computation of equilibria specified
by experimental data. The conformal mapping routine requires
that the points on ∂Ω be equispaced in arc length.When IBTYPE =

0 or IBTYPE = 1, these points are easily calculated from the para-
metric equations for the boundary. When IBTYPE = 2 or IBTYPE =

3, ECOM uses Lagrange interpolation to compute these points.
ECOM can accurately compute equilibria with an up–down

asymmetric boundary, as was demonstrated in detail in [38].
Presently, the most direct way to calculate such equilibria in
ECOM is to give a set of discrete points (R, Z) corresponding to an
up–down asymmetric boundary and to set IBTYPE = 2, or to use an
EFIT g-file for an up–down asymmetric equilibrium and set IBTYPE
= 3. This is precisely what we have done to compute the up–down
asymmetric JET equilibrium shown in Fig. 1. The code could also be
modified to take more general parametrized surfaces as an input if
IBTYPE = 1, but this has not yet been done.

In principle, the conformal map has to be computed only
once, at the beginning of the iterative procedure corresponding to
Eqs. (5)–(7). However, as one might physically expect, computing
flux surface quantities is much more convenient if the point that
is mapped to the center of D1 coincides with the magnetic axis. To
facilitate the calculation of these quantities, which takes place af-
ter the G–S equation is solved, ECOM recomputes the conformal
map several times within the Poisson iterations to adjust the cen-
ter of D1 to the magnetic axis. We have empirically observed that
the conformal map only needs to be recomputed a few times.

The Riemann mapping theorem guarantees the existence and
uniqueness of an analytic map between any simply connected
plasma cross section Ω and the unit disk. However, this does not
mean that conformal mapping is a practical numerical method for
any arbitrary plasma shape. The issue is that points on the bound-
ary of D1 that are equispaced in the angle ϑ are not necessarily
mapped, under the inverse map, to points that resolve the bound-
ary ofΩ in the desired fashion. It is well known, for example, that
if Ω is an elongated ellipse, uniformly spaced points in ϑ on the
boundary ofD1 correspond to a distribution of points on the bound-
ary of Ω which is sparse on the curved parts and crowded on the
flat parts of the ellipse [9,17]. In the remainder of this article, we
will call this phenomenon the ‘‘crowding effect’’. It has two di-
rect implications for ECOM. First, ECOM can only treat in a robust
manner domains that have a smooth boundary, and can therefore
not be used to compute equilibria with a magnetic X-point on the
plasma boundary. Second, ECOM is particularly efficient for plasma
shapes that are not too elongated, as is the case for conventional
tokamaks. As elongation is increased, the high order convergence
properties are maintained for Ψ and its derivatives, but a higher
number of grid points is required to reach a certain level of accu-
racy [17]. We will go back to this point in Section 6.

It is interesting to stress that up–down asymmetry does not di-
rectly lead to additional crowding as compared to up–down sym-
metric boundaries. In [38], an equilibrium with a smooth tilted
plasma boundary is computed with the same level of accuracy
as the analogous up–down symmetric equilibrium for comparable
grid sizes. This is because the conformal map is independent of the
location of the plasma boundary with respect to the R-axis. How-
ever, in fusion plasmas, up–down asymmetry is often associated
with the presence of an X-point, and the approximation of this X-
point in ECOM is a region of rapidly changing curvature, that tends
to be underresolved as can be seen in Fig. 1.

2.3. Fast, high order Poisson solver on the unit disk

We finish this section by describing how ECOM solves Poisson’s
equation on the unit disk,
∆v = g in D1
v(α, β) = 0 on ∂D1

(10)

as required in Eq. (9). The solver uses separation of variables in the
usual polar coordinates (r, ϑ) and expands v and g as Fourier series

v(r, ϑ) =

∞
n=−∞

v̂n(r)einϑ g(r, ϑ) =

∞
n=−∞

ĝn(r)einϑ .

Substituting these expressions into Poisson’s equation, we get the
following ordinary differential equation for each n:
v̂′′

0 (r)+
1
r
v̂′

0(r) = ĝ0(r) v̂′

0(0) = 0 v̂0(1) = 0

v̂′′

n (r)+
1
r
v̂′

n(r)−
n2

r2
v̂n(r) = ĝn(r) v̂n(0) = 0

v̂n(1) = 0 n ≠ 0

(11)

where the boundary condition at r = 0 is obtained by requiring
the regularity of the solution at this point. For each n, a solution
of Eq. (11) that does not satisfy the boundary condition at r = 1
can be written in terms of convolutions with the Green function
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associated with Eq. (11) that has the proper behavior at r = 0 and
r → ∞:

v̂P0 (r) = log r
 r

0
sĝ0sds +

 1

r
s log sĝ0(s)ds

v̂Pn (r) = −
1

2|n|


r−|n|

 r

0
s|n|+1ĝn(s)ds

+ r |n|
 1

r
s−|n|+1ĝn(s)ds


n ≠ 0.

(12)

For each n, the general solution to the homogeneous equation

v̂′′

n (r)+
1
r
v̂′

n(r)−
n2

r2
v̂n(r) = 0 (13)

satisfying the regularity condition at r = 0 can also be written ex-
plicitly:

v̂Hn (r) = cnr |n| (14)

where cn is a constant to be determined from the boundary condi-
tion at r = 1. Setting cn = −v̂Pn (1), we can then write the solution
of Eq. (11) satisfying the proper boundary conditions as follows:

v̂n(r) = v̂Pn (r)− v̂Pn (1)r
|n|. (15)

One of the major advantages of the Green function formulation
and the formula (15) used in ECOM is that partial derivatives of
v can be calculated explicitly from the formulas in Eqs. (12) and
(14) [17]. Numerical differentiation is never required, which is one
of the main reasons why our numerical method leads to partial
derivatives of ψ that have the same order of convergence as ψ .

In ECOM, the computation and sum of the Fourier series are
done with the Fast Fourier Transform. The angular grid on the unit
disk is uniformly spaced in the polar angleϑ , to guarantee the spec-
tral accuracy of the representation for smooth data. The number of
grid points in the ϑ direction is nϑ . In the radial direction, ECOM
uses a piecewise Chebyshev grid. Specifically, the interval [0, 1]
is divided into nL subintervals, and on each of these subintervals
a Chebyshev grid of order nch is constructed. The number of grid
points in the radial direction is then nr = nchnL. nch = 16 is the
default setting in ECOM. The convolutions with Green’s function in
Eq. (12) are computed with a 16th order Gaussian quadrature rule.
Ref. [17] describes ways to avoid the computational issues associ-
ated with the rapid growth and decay of the monomials s|n| and
s−|n| for large n, as well as the recursive algorithm used to com-
pute these integrals in O(nr)work. The run time complexity of the
Poisson solver on the disk isO(nrnϑ log nϑ ): ECOM computesO(nr)
FFTs of size nϑ at a cost of O(nrnϑ log nϑ ) and solves nϑ radial or-
dinary differential equations at a cost of O(nrnϑ ).

The flowdiagram in Fig. 2 presents a condensed viewof the iter-
ative scheme used in ECOM, as a summary of Section 2. The initial-
ization step corresponds to the specification of the grid resolution
and of the values of the namelist variables presented in this arti-
cle. The parameters nf , nθD and nθE in Fig. 2 refer to discretizations
used during postprocessing, after the G–S equation is solved, and
are defined in Section 3.

3. Postprocessing

The main purpose of postprocessing is to compute equilibrium
quantities that play a key role in heating and current drive, stabil-
ity and transport calculations, and to scale the normalized solution
ψ to the physical flux Ψ . In addition, ECOM can compute the par-
allel current density using reduced models for the Ohmic current
and the bootstrap current, check theMercier criterion for each flux
Fig. 2. Flow chart of ECOM code. The orders in the parenthesis indicate the run
time complexity of the algorithm used for a given step.

surface [40] and the global Troyon limit [41], and calculate the
Miller parametrization that best fits a flux surface chosen by the
user.

3.1. Flux functions

The evaluation of flux quantities requires integration along
contours of constant poloidal magnetic flux ψ . A flux coordinate
system (ψ, θ, φ) is more convenient for such integrals than the
(R, φ, Z) coordinate system used by ECOM to solve the G–S equa-
tion. For postprocessing, ECOM thus constructs the following flux
coordinate system. φ is chosen to be the usual toroidal angle φ,
with ∇φ = eφ/R, while the poloidal angle θ is defined by θ =

atan2(Z − Z0, R− R0) if atan2(Z − Z0, R− R0) ≥ 0, θ = atan2(Z −

Z0, R − R0) + π if atan2(Z − Z0, R − R0) < 0, where atan2 is the
four-quadrant inverse tangent and (R0, Z0) is the position of the
magnetic axis. In terms of the (ψ, θ, φ) coordinates, the flux sur-
face average of a function X [7], written ⟨X⟩, is defined by

⟨X⟩ =

 2π
0 dθ JX 2π
0 dθ J

(16)

where J = (∇ψ × ∇θ · ∇φ)−1 is the Jacobian of the transforma-
tion between Cartesian coordinates and the (ψ, θ, φ) coordinate
system:

1
J

=
1
R


∂ψ

∂Z
∂θ

∂R
−
∂ψ

∂R
∂θ

∂Z


= −

1
R[(Z − Z0)2 + (R − R0)2]

×


(R − R0)

∂ψ

∂R
+ (Z − Z0)

∂ψ

∂Z


. (17)

As will soon be apparent, several physical quantities are best ex-
pressed in terms of the three functions IA(ψ), IB(ψ), and IC (ψ) de-
fined by

IA(ψ) =

 2π

0
dθ

J|∇ψ |
2

R2
, IB(ψ) =

 2π

0
dθ J,

IC (ψ) =

 2π

0
dθ

J
R2
.

(18)
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Rewriting Eq. (3) using flux coordinates, a simple relationship can
be obtained that links IA, IB, and IC . Indeed, Eq. (3) takes the follow-
ing form in flux coordinates [7]:

R2

J


∂

∂ψ


J
R2

|∇ψ |
2


+
∂

∂θ


J
R2

∇θ · ∇ψ


= −λ


µ0R2 dp̄

dψ
+

1
2
dF̄ 2

dψ


. (19)

Taking the flux surface average of 1/R2
× Eq. (19), we obtain the

desired relationship between IA, IB, and IC :

dIA(ψ)
dψ

= −λ


µ0

dp̄
dψ

IB +
1
2
dF̄ 2

dψ
IC


. (20)

The plasma volume inside the flux surface ψ is

V (ψ) = 2π
 ψ

1
dψ̃

 2π

0
dθ J = 2π

 ψ

1
dψ̃ IB(ψ̃), (21)

and the total plasma volume is V0 = V (ψ = 0). The toroidal cur-
rent within the flux surface ψ is

Iφ(ψ) =

 ψ

1
dψ̃

 2π

0
dθ jφ

J
R

= −

 1

ψ

dψ̃


Ic
2µ0

dF̄ 2

dψ̃
+ IB

dp̄

dψ̃


=

1
λµ0

 1

ψ

dψ̃
dIA
dψ̃

=
IA(ψ)
λµ0

, (22)

where we have used Eq. (20) and IA(ψ = 1) = 0. The total toroidal
current in Ω is Ip = Iφ(ψ = 0). The volume averaged pressure
⟨p⟩V is given by

⟨p⟩V = 2π

 0
1 dψ IB(ψ)p(Ψ )

V0
=

1
λV0

 1

0
dψV (ψ)

dp̄
dψ
, (23)

where we have used integration by part, combined with dV/dψ =

2π IB, V (ψ = 1) = 0, and p(ψ = 0) = 0. The total beta is

β =
2µ0⟨p⟩V

B2
0

, (24)

where B0 = F(Ψ = ΨB)/Rmid is the vacuum field at the point
(Rmid, 0), with Rmid = (Ri(0) + Ro(0))/2. Our definitions of the
poloidal beta and of the internal inductance are the same as
Jardin’s [7]:

βP =
4V0⟨p⟩V
µ0R0I2p

(25)

li(ψ) =
4π

µ2
0I2pR0

 ψ

1
dψ

 2π

0
dθ J

|∇Ψ |
2

R2
= 4π

 ψ
1 dψ IA(ψ)

I2A(ψ = 0)R0
. (26)

The total poloidal magnetic field energy is

Wp = π

 0

1
dψ

 2π

0
dθ J

|∇Ψ |
2

R2
=
π

λ2

 0

1
dψ IA(ψ). (27)

Finally, for each flux surface, the safety factor is defined as

q(ψ) = λ
F [Ψ (ψ)]

2π

 2π

0
dθ

J
R2

= λ
F [Ψ (ψ)]

2π
IC . (28)

The normalized radius can be used to find the differential volume
dV (ψ)/dρ and the differential flux dψ/dρ, which are often used in
transport orMHD analysis. Also, themagnetic shear can be defined
in terms of ρ by

ŝ(ψ) =
ρ

q(ψ)
dq(ψ)
dρ

. (29)
3.2. Numerical method for contour integrals

To evaluate the integrals in Eq. (18) numerically, one needs to
find the location of the desired flux contours, which in general do
not coincide with the (R, Z) grid of the Poisson solver, and then in-
tegrate the integrands along these contours. In ECOM, this is done
with the following three steps: (i) ECOM first determines the ra-
dial location of nf flux surfaces for each angle ϑ in the unit disk
D1; (ii) ECOM then evaluates the integrands at the corresponding
(R, Z) points in Ω , and interpolates the integrands to a grid that
is equispaced in the angle θ ; (iii) ECOM finally computes the in-
tegrals along contours of constant ψ in the domain Ω using the
trapezoidal rule. Since the numerical methods that are used for in-
terpolation and integration in steps (i)–(iii) are spectrally accurate,
ECOM computes the location of the flux contours and the integrals
in Eq. (18) without significant loss of accuracy, as we will demon-
strate in Section 4. We now describe steps (i)–(iii) in more detail.

For a description of step (i), we put ourselves in the situation in
which the G–S solver has computed the valuesψ(ri, ϑj) of the flux
ψ on the grid of the unit disk D1, and we imagine that we want
to determine the location of the contour ψ = ψs on D1. ECOM
does this as follows. For each angle ϑj, ECOM first finds the Cheby-
shev subinterval of the radial grid for which ψ(rt , ϕj) > ψs >
ψ(rt+ch−1, ϕj), where t is the index of the first Chebyshev point in
that radial subinterval. Once the subinterval is found, ECOM con-
structs a local continuous approximation ψc(r, ϑj) of ψ in the ra-
dial direction from the known values ψ(ri, ϑj) on the subinterval
of interest and the Chebyshev grid for that subinterval. Specifically,
ψc is written as the following sum:

ψc(r, ϑj) =

nch−1
k=0

akTk(r) (30)

where the functions Tk are the Chebyshev polynomials associated
with the Chebyshev grid of the subinterval, and where the coeffi-
cients ak are given by the expression

ak =
2 − δ0k

nch

nch−1
p=0

Tp(rt+p)ψ(rt+p, ϑj), (31)

where δij is the Kronecker delta. ECOM then uses the expansion in
Eq. (30) to find the radial position satisfying |ψc(r)−ψs| < δ with
a Newton–Raphson iterative method:

rq+1
= rq −

ψc(rq)− ψs

∂ψc/∂r|r=rq
q = 1, 2, . . . ,m. (32)

This root finding process usually converges in a few iterations, typ-
icallym ≤ 5, and the total cost to find the location of nf contours at
nϑ angles is O(nf nϑnch). Finally, after the radial position of a given
contour is found, ECOM uses (∂ψ/∂r)(ri, ϑj) and (∂ψ/∂ϑ)(ri, ϑj)
for i = t, t + 1, . . . , t + nch − 1 and Chebyshev representations
analogous to Eq. (30) to accurately evaluate (∂ψ/∂r)(r, ϑj) and
(∂ψ/∂ϑ)(r, ϑj) at the location of the flux contours. At the end of
step (i) the radial position of the specified flux contours are known
for each angle ϑj in D1, and so are the values of the integrands in
Eq. (18) at these points. Through the backwardmap, all these quan-
tities are also known in Ω . By default, ECOM calculates the radial
position of the contoursψs whose values are given by the abcissae
of a global Chebyshev grid of nf points in the interval [0, 1]. We
have found empirically that setting nf = 16 leads to very accurate
results, both for contour integration and differentiation.

In Eq. (18), one integrates quantities that are 2π-periodic in θ
over the period [0, 2π ]. Numerically, this can be done very accu-
rately with a trapezoidal-rule quadrature, provided that the inte-
grands are known on an equispaced θ grid. Since the equispaced
ϑ grid in D1 is not mapped to an equispaced θ grid, the goal of
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Table 1
Options to scale the equilibrium in ECOM.

Namelist Constraint to rescale λ Constraint on q profile

ISCALE = 0 None F(Ψ = Ψ0) or F(Ψ = ΨB)

ISCALE = 1 None q(Ψ = Ψ0)

ISCALE = 2 Ip F(Ψ = Ψ0) or F(Ψ = ΨB)

ISCALE = 3 Ip q(Ψ = Ψ0)

ISCALE = 4 F(Ψ = Ψ0) or F(Ψ = ΨB) and q(Ψ = Ψ0) Determined
step (ii) is to interpolate the quantities computed in step (i) on a
grid in Ω that is equispaced in θ . Because of the crowding effect
that is inherent to the conformal mapping technique, the angu-
lar grid resulting from the inverse map underresolves certain re-
gions of Ω . For accurate interpolation, it is thus desirable to first
oversample the integrands to be interpolated. The oversampling is
done by refining the equispaced ϑ grid of D1 using the FFT, assum-
ing band-limited integrands. As a result of this, the integrands are
known at nϑksamp angular grid points, where ksamp is the oversam-
pling factor. In principle, these values could then be mapped back
to Ω , and interpolated. In practice, however, the backward map-
ping of thenϑksamp grid points fornf contours fromD1 toΩ requires
O(nf (nϑksamp)

2) operations, and results in significant computa-
tional time when ksamp is as large as desired for accurate inter-
polation. Note that the run-time complexity is not of the form
nf nϑksamp log(nϑksamp) as it was for the backward mapping of the
(r, ϑ) grid points in D1 because the calculation of the backward
map for the flux contours cannot be trivially accelerated by the
FFT. The reason for this is that the radial location of the flux con-
tours varies as a function ofϑ . In order to reduce the computational
cost, we only compute the backwardmap for nθD points among the
nϑksamp oversampled points, with nθD ≪ nϑksamp, and chosen such
that their mapped positions are the closest to the target grid of nθE
points equispaced in θ . These nθD points are found by computing
the backward map of a small number of points lying on the con-
tour of interest in D1 with increasing angle ϑ across the interval
[0, 2π ], and using kLag th order Lagrange interpolation to construct
an approximation of the functionϑ(θ) on that contour.We usually
take nθD = nθE and kLag = 8 ≪ ksamp.

Once the nθD non-equispaced points are found, we use trigono-
metric interpolation for a periodic function [42] to interpolate
the integrands at the nθD points to the nθE equispaced points.
This requires O(nf n2

θD) work to find the barycentric factors, and
O(nf nθDnθE)work to interpolate at nθE points.

Once step (ii) is completed, step (iii) is straightforward. The con-
tour integrals in Eq. (18) are computed from the integrands on the
equispaced θ grid using the trapezoidal rule. Since the integrands
are smooth and periodic in θ , and since the θ grid is uniform, the
trapezoidal rule is spectrally accurate [43]. The required work for
the trapezoidal-rule quadrature is very small, O(nf nθE).

3.3. Scaling the equilibrium

A single solution of the normalized form of the G–S equation as
given in Eq. (3) can describe an infinite sequence of axisymmetric
equilibria that have a different total toroidal current Ip and a dif-
ferent safety factor q0 at the magnetic axis. To understand these
degrees of freedom, consider that ECOM has just computed the
eigenvector–eigenvalue solution (ψ, λ) of Eq. (3). The normalized
total toroidal current INp can be calculated from this solution ac-
cording to Eq. (22). All is then needed to obtain an equilibrium
with the desired total toroidal current IDp is the simple rescaling
λ → (INp /I

D
p )λ, which is equivalent to rescaling Ψ . From the defi-

nitions in Eq. (2), it is clear that dp̄/dψ and dF̄ 2/dψ are also scaled
by λ, and must be rescaled as well: dp̄/dψ → (IDp /I

N
p )dp̄/dψ and

dF̄ 2/dψ → (IDp /I
N
p )dF̄

2/dψ . Once λ is fixed, there still is a degree
of freedom for the determination of q, because q depends on F in-
stead of dF̄ 2/dψ , as can be seen in Eq. (28). In ECOM, this degree
of freedom can be removed by specifying the value of either the
poloidal current or the safety factor at a certain radial location.

There are several options for the scaling of the normalized equi-
librium in ECOM, with corresponding namelist variable ISCALE.
They are summarized in Table 1. If ISCALE = 0 or ISCALE = 1, λ
is not rescaled, so that the total toroidal current is the normalized
total toroidal current INp . When ISCALE = 0, the degree of freedom
associated with q is removed by specifying either F(Ψ = Ψ0) or
F(Ψ = Ψb). For F(Ψ = Ψ0), the additional namelist variable IFPOL
needs to be set to 0, while for F(Ψ = Ψb) IFPOL needs to be set
to 1. When ISCALE = 1, q(Ψ = Ψ0) is specified. If ISCALE = 2 or
ISCALE = 3, λ is rescaled so that the total toroidal current is ad-
justed to the desired toroidal current IDp . The choices for constrain-
ing the q profile are the same as before: when ISCALE = 2, either
F(Ψ = Ψ0)or F(Ψ = Ψb) is given, depending on the value of IFPOL,
and when ISCALE = 3, q(Ψ = Ψ0) is given. Finally, a last option
to fix λ in ECOM is to specify q(Ψ = Ψ0) and either F(Ψ = Ψ0) or
F(Ψ = Ψb). This option corresponds to ISCALE = 4.

3.4. Evaluation of the parallel current density

ECOM includes the option to evaluate the neoclassical parallel
current density using a reduced description for the bootstrap
current, either based on the Hirshman model [44] or on the Sauter
model [45], and the Sauter formula for the Ohmic current [45]. The
namelist variables associated with these capabilities are IBSCUR
and IJBSMODEL. IBSCUR must be set to 1 for ECOM to calculate the
parallel current, and themodel ECOMuses for the calculation of the
bootstrap current depends on the value of the variable IJBSMODEL.
If IJBSMODEL = 1, the Hirshmanmodel is used, if IJBSMODEL = 2,
the Sauter model is used.

Consider the parallel current density in the formula

J∥R(ψ) ≡
⟨J · B⟩

⟨B · ∇φ⟩
. (33)

The contribution of the ohmic current to the parallel current is de-
termined by the loop voltage and the neoclassical resistivity ac-
cording to

J∥RO(ψ) = σneo(ψ)
Vloop(ψ)

2π
, (34)

where σneo(ψ) is the neoclassical resistivity, and Vloop(ψ) is the
loop voltage. In ECOM, the dependence of Vloop on ψ can be speci-
fied as a one-dimensional array of lengthnf representing the values
of Vloop at the nf flux contours computed in postprocessing. The as-
sociated namelist variable is VLOOP. For simplicity, one may also
consider equilibria for which the loop voltage has become radi-
ally uniform through resistive relaxation. For these situations, the
value of Vloop can be simply set in ECOM by specifying the value
of the 0-dimensional namelist variable VLOOP0, in unit of volts.
If VLOOP0 is left empty, the values in the one-dimensional array
VLOOP will be used by ECOM to evaluate the ohmic current. If
VLOOP0 is assigned a real number V0 by the user, ECOM fills the ar-
rayVLOOPwithV0 in each of thenf entries. For the evaluation of the
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neoclassical resistivity σneo, the Sauter model is implemented:

σneo = σspitz


1 −


1 +

0.36
Zi


fteff (33)

+
0.59
Zi

f 2teff (33) −
0.23
Zi

f 3teff (33)


, (35)

where σspitz is the Spitzer resistivity as defined in [45], Zi is the ion
charge, and fteff (33) is given by Eq. (13b) in [45]. To evaluate fteff (33),
the effective passing particle fraction fp(ψ) is calculated on each
flux surface using the following formula:

fp(ψ) =
3
4
⟨|B|(ψ, θ)2⟩

 1/Bmax(ψ)

0
dy

ydy
⟨
√
1 − y|B|(ψ, θ)⟩

, (36)

where Bmax is the maximum value of the magnetic field on the flux
surface. The integral is computed numerically with a Chebyshev–
Gauss quadrature.

If IJBSMODEL = 1, ECOMevaluates the contribution of the boot-
strap current J∥RB(ψ) to the parallel current with the Hirshman
model [44]. The quantity ⟨J · B⟩B is calculated using the formu-
las (23) to (25) in Ref. [18] and the passing particle fraction fp in
Eq. (36) of the present article. If IJBSMODEL = 2, ECOM relies on
the Sauter model [45] to compute ⟨J · B⟩B. Specifically,

⟨J · B⟩B

= −
dp
dΨ

F
1 + ηi

[L31 + ηi(ψ)(L31 + 0.5L32 + 0.5L34α)) (37)

where ηi = (d ln n/dψ)−1(d ln Ti/dψ), the electron and ion den-
sities are the same, ne = ni = n, and the electron and ion tem-
peratures are also assumed to be equal for simplicity, Te = Ti. L31,
L32, L34, and α are all defined in [45], and are evaluated using fp in
Eq. (36).

3.5. MHD stability

If the namelist variable ISTABILITY is set to 1, ECOM veri-
fies whether the computed equilibrium crosses or not the Troyon
limit [41]. This limit is thought to ensure the no-wall stability of the
equilibrium to the n = 1 internal kinkmode, as well as ballooning,
and external ballooning-kink modes, provided the safety factor q
is larger than 1 at all radii. It can be expressed in two equivalent
ways [46],

βT1 = 0.028
Ip
aB0

> β, (38)

βT2 = 0.14
aκ
R0q⋆

> β (39)

where q⋆ = 2B0A0/(µ0R0Ip), A0 =
 0
1 dψ ID(ψ) is the total poloidal

cross section area, ID(ψ) =
 2π
0 dθ(J/R), and β has been defined

in Eq. (24).
In addition, ECOM also checks the Mercier criterion for stability

against interchange modes [40] on each flux surface, given by

−DI =


dp/dΨ
dq/dΨ

FIG
|λ|3

2π
−

1
2

2

+
dp/dΨ
(dq/dΨ )2

λ2

4π2

×


dIB
dΨ

− IHλ2
dp
dΨ

 
F 2IEλ2 + IC


> 0, (40)

where

IE(ψ) =

 2π

0
dθ

J
|∇ψ |2R2

, IG(ψ) =

 2π

0
dθ

J
|∇ψ |2

,

IH(ψ) =

 2π

0
dθ

JR2

|∇ψ |2
.

(41)
3.6. Miller parametrization of the flux surfaces

If the namelist variable IFITMIL is set to the value 1, ECOM
uses a nonlinear least square method to compute the Miller
parametrization that best fits a given flux surface of interest. The
details of the fitting method can be found in Appendix A. The
outputs of the calculation are the Miller parameters κ , δm, a/Rm0,
dRm0/dρ, dκ/dρ, dδm/dρ, q, ŝ, and αm, which can for example be
used in ballooning stability studies and in gyrokinetic codes. αm is
given by the expression [26]

αm = −
1

2π2

dV
dΨ


V

2π2Rm0
µ0

dp
dΨ

. (42)

4. Accuracy and speed

In this section, we consider two examples to compare the
performance of ECOM with that of the popular G–S solver
CHEASE [18]. The first example corresponds to a family of equi-
libria originally studied by Solov’ev [47], for which simple analytic
expressions can be written for the solution Ψ . These equilibria are
particularly advantageous for detailed error analysis, but lack gen-
erality in the sense that the G–S equation is linear and does not
have to be solved as an eigenvalue problem. In Section 4.2 we thus
consider a more general equilibrium, with p and F profiles cho-
sen in such a way that the G–S equation is nonlinear and has to
be solved as an eigenvalue problem. Every computational test in
this article is conducted using a single core 2.6 GHz AMD Opteron
processor with 8 GB of memory.

Before going into the details of these two examples, we justify
our choice to focus on the criteria of speed and accuracy to assess
the performance of CHEASE and ECOM. First, MHD equilibrium
solvers are required to be fast because their results are used as
inputs to MHD stability, transport, or plasma heating and current
drive simulations. It is thus reasonable to expect the time spent on
calculating the MHD equilibrium to be small compared to the time
spent on these more demanding simulations. Often, this speed
requirement is not very stringent becauseMHD stability, transport
and wave codes are much more computationally intensive and
have much longer run times than the MHD equilibrium solver.
There are however important situations inwhich the time spent on
calculating the MHD equilibrium represents a significant fraction
of the total computational time, and in which faster equilibrium
codes would lead to significant speed up. This is for example the
case when an MHD equilibrium code is coupled with a ray tracing
code to simulate lower hybrid current drive [48].

Regarding accuracy, one wants the equilibrium code to be at
least as accurate as the code it is coupled to, in order to avoid er-
ror propagation. This might seem like a fairly simple criterion to
achieve, given that FEM solvers can compute Ψ with 7 or 8 dig-
its of accuracy quite easily for equilibria with a smooth boundary
[9,49,10]. The reason why it is not as simple as it seems is that the
relevant physical quantities depend on derivatives of Ψ and not
Ψ itself. For example, the safety factor and the magnetic shear de-
pend on the first derivatives of Ψ , and the parallel current den-
sity, the magnetic curvature, and the local magnetic shear depend
on the second derivatives of Ψ [50]. In the standard finite element
formulation, one loses one order of convergence when one evalu-
ates first derivatives [10,49], and two orders of convergence when
one evaluates second derivatives. Thismeans thatwith an FEM for-
mulation based on bicubic Hermite polynomials one can expect a
convergence of the orderN−2 for key quantities such as the parallel
current and the magnetic curvature, and calculating these with an
accuracy of 3 or 4 digits may become challenging. As stated in the
introduction, we will show that in contrast to FEM solvers, ECOM
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has similar convergence properties for Ψ and its first and second
derivatives. This suggests that the error in q and ŝ converges faster
in ECOM than in FEM solvers. On the other hand, because of crowd-
ing, a larger number of grid points may at first be necessary to
match the level of accuracy of FEM solvers. A significant portion of
the next two sections is spent on looking at these points in detail.

4.1. Example 1: Solov’ev profiles

For the first example, we consider the Solov’ev profiles
µ0p(Ψ ) = −CsΨ and F(Ψ ) = FB, where Cs and FB are constants.
The G–S equation then reduces to ∆∗Ψ = CsR2, and an up–down
symmetric solution is given by the following expression [18]:

Ψ (R, Z) =
κFB

2R3
0q0


1
4
(R2

− R2
0)

2
+

1
κ2

R2Z2
− a2R2

0


, (43)

where Cs = FB(κ+1/κ)/(R3
0q0), R0 and q0 are themajor radius and

the safety factor at the magnetic axis, and a and κ are the effective
minor radius and elongation of the last closed flux surface, given by
Ψ = 0. A particularly convenient parametrization for the surface,
which ECOM uses to compute the conformal map from the plasma
boundary to the unit disk, is given by:

R2
= R2

0 + 2aR0 cos t, (44)

Z = κa
R0

R
sin t. (45)

The poloidal flux takes its minimum value Ψ0 at the magnetic axis
R = R0, Z = 0, with Ψ0 given by

Ψ0 = −
κa2FB
2R0q0

. (46)

The safety factor at a given flux surface Ψ = Ψs can also be calcu-
lated exactly:

q(Ψ = Ψs) =
F
π

 Rmax

Rmin

dR

1 + (dZ/dR)2

R

(∂Ψ /∂R)2 + (∂Ψ /∂Z)2


Ψ=Ψs

=
FB
π

 Rmax

Rmin

dR
R|∂Ψ /∂Z |


Ψ=Ψs

(47)

=
2q0R3

0

π

 Rmax

Rmin

dR

R2

(R2 − R2

min)(R2
max − R2)

(48)

=
2q0
π

R3
0

R2
minRmax

E(k), (49)

where Rmax and Rmin are the solutions of Eq. (43) for Ψ = Ψs and
Z = 0 satisfying Rmax > Rmin > 0 and R2

max + R2
min = 2R2

0. Here,
E(k) is the complete elliptic integral of the second kind with mod-
ulus k =


1 − (Rmin/Rmax)2. E(0) = π/2 and the integral formula

6 in Section 3.156 of Ref. [51] were used to derive Eq. (49). For sim-
plicity, we define themagnetic shear ŝ(Ψ ) in terms ofΨ , giving the
exact formula

ŝ(Ψ ) =
Ψ

q(Ψ )
dq(Ψ )
dΨ

=
Ψ

q(Ψ )
d
dΨ


2q0
π

R3
0

R2
minRmax

E(k)


(50)

=
Ψ

q(Ψ )
8q20
πκFB

R6
0

R2
minR5

max

1
k4

×


2
1 − k2 + k4

1 − k2
E(k)− (2 − k2)K(k)


, (51)

where K(k) is the complete elliptic integral of the first kind. In
ECOM, this Solov’ev case is computed when the namelist variables
are chosen such that IPTYPE = 0, IFTYPE = 0, and IBTYPE = 0.
Fig. 3. Convergence of Ψ , its first and second radial derivatives, and the safety
factor q as a function of the number of grid points in one directionN = nr = nϑ . The
exact equilibrium solution is given by Eq. (43), and R0 = 1.0, a/R0 = 0.32, κ = 1.7,
FB = 1.0 and q0 = 1.0. The number of flux contours constructed in postprocessing
is nf = 16.

Fig. 3 shows the error in the L∞ norm between the numerical
values of Ψ , ∂Ψ /∂R, ∂2Ψ /∂R2, and q calculated with ECOM and
the exact values computed from Eqs. (43) and (49), for the param-
eters R0 = 1.0, a/R0 = 0.32, κ = 1.7, FB = 1.0 and q0 = 1.0. The
expression ‘‘on grid’’ means that the error is evaluated at the (R, Z)
points of the grid on which ECOM solves the G–S equation. The
curves labeled ‘‘at contours’’, on the other hand, also include the
error induced by the postprocessing steps described in Section 3.
Specifically, for all the flux contours constructed in the postpro-
cessing phase, we compute the error between the value of Ψ at
the contour and the actual value of Ψ at this location according to
Eq. (43). The largest of these errors over the whole domain Ω is
used to plot the curve we call ‘‘Ψ at contours’’. The curve labeled
‘‘q at contours’’ represents the maximum error between q at the
contours as computed by ECOM according to Eq. (28) and the exact
value of q at these locations as given by Eq. (49). Fig. 3 demonstrates
the exponential convergence of the maximum error as the num-
ber of grid points is increased, as pointed out in the introduction.
The green dashed line in Fig. 3 indicates that the convergence rate
is approximately 1.05−N . Fig. 3 is also a proof that the derivatives
of Ψ have a convergence rate that is similar to that of Ψ . Note fi-
nally that the numerical methods used in the postprocessing steps
to compute contours of constant flux lead to similar convergence
rates and accuracy for Ψ and q on the contours.

At equal grid size, ECOM is much faster than CHEASE, as shown
in Fig. 4. The run time complexity of the solver is O(nrnϑ log nϑ )
instead of O(n2

r n
2
ϑ ) for typical finite element based codes solving

the G–S equation. Note that the ‘‘solver’’ part of ECOM represented
by the solid line in Fig. 4 includes the run times of both the
conformal mapping and the Poisson solver. The run time of the
Poisson solver is the major contributor to the total run time in
ECOM for typical grid sizes, because the Poisson solver is typically
called 20 to 30 times during an equilibrium calculation while
the conformal mapping routine is called at most a few times.
The operation count of postprocessing depends on the number of
contours nf , which is typically smaller than the number of radial
grid points: nf = 10 − 30 < nr . The run time of postprocessing is
relatively short because most computations are one dimensional,
as described in Section 3.2.

Before comparing the accuracy of ECOM and CHEASE, it is
instructive to look at the consequences of the grid crowding effect
due to the conformal map on the accuracy of ECOM for shaped
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Fig. 4. Run time of the codes ECOM and CHEASE as a function of the number of
grid points for the same Solov’ev equilibrium as Fig. 3. The solid lines represent the
elapsed time until the convergedΨ is obtained, and the dashed lines correspond to
the postprocessing time for nf = 16 flux surfaces. For the data in this figure, each
ECOM run computed the conformal map only once, with n1 = nϑ .

Fig. 5. Maximum error in Ψ and in q for the Solov’ev equilibrium studied in
Section 4.1 as a function of the elongation parameter κ . The error in Ψ is measured
on the (R, Z) grid used to solve the G–S equation, while the error in q is measured
at the nf contours constructed during the postprocessing. Here, the grid resolution
is n1 = nr = nθ = 256 and nf = 16.

plasma equilibria. For fusion applications, a key question is how
fast the numerical error evolves as the egg-shaped plasma cross
section gets more and more elongated. Fig. 5 provides an answer
to that question for the Solov’ev equilibrium studied in this section,
showing a significant deterioration of the accuracy of ECOM as
the elongation of the last closed flux surface is increased. The
consequence of this result is that for elongations corresponding to
modern tokamaks and spherical tokamaks, κ ≃ 1.5−2, ECOMwill
often require a denser grid than FEM based G–S solvers to achieve
the same accuracy. Since ECOM ismuch faster than these solvers in
terms of work per grid point, and computes derivatives with high
accuracy, ECOM remains very oftenmore desirable that FEM based
solvers, as we will show next. However, ECOM is not an attractive
option to compute highly elongated equilibria, such as those in
Field Reversed Configurations (FRCs) [52], with κ ∼ 10.

We have just shown that ECOM is much faster than CHEASE for
a given grid size, but that for elongated plasma shapes ECOM may
need a densermesh to achieve a desired accuracy, due to crowding
effects. In this context, a fair comparison of the performance of
the two codes is done by evaluating the accuracy of each solver
for a given run time on the same machine. This is precisely the
purpose of Fig. 6, which shows the numerical error in the safety
factor q and the magnetic shear ŝ as a function of the normalized
radius ρ =
√
(Ψ − Ψ0)/(Ψb − Ψ0) for the Solov’ev equilibrium

considered in this section and κ = 1.7.We have chosen to focus on
q and ŝ because MHD stability and turbulent transport are known
to depend sensitively on these quantities. We compare ECOM (red
markers) and CHEASE (blue markers) for three different run times.
In Fig. 6(a), the run time is 1 s, corresponding to a grid resolution of
nr = 32 in CHEASE and nr = 96 in ECOM; in Fig. 6(b), the run time
is 3 s, corresponding to a grid size of nr = 52 in CHEASE and nr =

192 in ECOM; in Fig. 6(c), the run time is 5 s for a grid resolution
of nr = 64 in CHEASE and nr = 256 in ECOM. One can see that
for small grids, CHEASE computes the safety factor with a better
accuracy than ECOM, a direct consequence of the crowding effect.
However, even if in that case CHEASE calculates qmore accurately,
the accuracy for the magnetic shear are comparable in ECOM and
CHEASE. One reason for this is that in ECOM, we constructed the nf
flux contours so that they would coincide with a global Chebyshev
grid of size nf on the interval ψ = 0 and ψ = 1. ECOM can
thus use spectral differentiation to compute ŝ, leading to a more
limited loss of accuracy between q and ŝ. The construction of such
a Chebyshev grid for the flux variable is particularly convenient in
ECOM because the piecewise Chebyshev grid used by the Poisson
solver to discretize the radial direction in D1 is well refined near
the end pointsψ = 0 andψ = 1 of the interval. Radial derivatives
of flux functions (e.g. ŝ, dV/dρ and dψ/dρ) are therefore calculated
without significant loss of accuracy in ECOM.

As the grid size and computation time are increased, ECOM
outperforms CHEASE, which is a direct result of the geometric con-
vergence demonstrated in Fig. 3. For a run time of 3 s, q is com-
puted with similar accuracy in ECOM and CHEASE, but the error
on ŝ is more than 100 times smaller in ECOM. For a run time of
5 s, the error on both q and ŝ with ECOM is orders of magnitude
smaller than the error obtained with CHEASE. Note that these par-
ticular run time thresholds depend sensitively on the elongation.
For κ > 2, the thresholds are significantly higher.

Although memory aspects rarely lead to severe constraints on
G–S solvers in fusion applications, it is interesting to note that
memory requirements are much smaller in ECOM than they are
in CHEASE. As an empirical illustration of this, we observed that
because of the memory limitations of the computer we used for
our comparison studies, we were limited to grids smaller than
nrnϑ . 2 × 104 in CHEASE, whereas we computed equilibria in
ECOM with grids nrnϑ ≥ 106 without any difficulty.

4.2. Example 2: Nonlinear Grad–Shafranov equation

For the second example, we choose pressure and current pro-
files in such a way that the G–S equation is an eigenvalue par-
tial differential equation given by Eq. (3). Specifically, we set the
namelist variables IPTYPE and IFTYPE to 1, and specify the profile
constants according to pin = 2, pout = 1, F0ψ = −1, Fin = 2, and
Fout = 1. In the three equilibria we study in this section, we will
vary p0ψ : for the first equilibrium, we set p0ψ = −0.01/µ0, lead-
ing to a very small Shafranov shift, and we set p0ψ = −1/µ0 for
the next two equilibria, which consequently have a much larger
Shafranov shift. To describe the last closed flux surface of the equi-
librium, we set the namelist variable IBTYPE to 1, corresponding to
the Miller parametrization:

R = Rm0 + a cos(t + sin−1 δm sin t), (52)
Z = Zm0 + aκ sin t, (53)

where the parameter t goes from0 to 2π , κ is the elongation and δm
is the triangularity. For the purpose of comparison, we specify the
same profiles and parametrization of the plasma boundary in the
input file of CHEASE, and for both codeswe look at the convergence
of the poloidal magnetic field energy Wp, given by Eq. (27). This
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(a) Run time ≃ 1 s. (b) Run time ≃ 3 s. (c) Run time ≃ 5 s.

Fig. 6. Comparison of the error in ECOM and in CHEASE for the safety factor profile and the magnetic shear profile ŝ = (ψ/q)(dq/dψ) corresponding to the Solov’ev
equilibrium studied in Section 4.1 with κ = 1.7 as a function of the normalized radius ρ =

√
(Ψ − Ψ0)/(Ψb − Ψ0). Panel (a) was obtained for grids leading to a total run

time of 1 s, panel (b) to a total run time of 3 s, and panel (c) to a total run time of 5 s. Here, n1 = nr = nϑ and nf = 16.
global, 0-D quantity has often been used to measure the conver-
gence properties of CHEASE [49]. For the equilibrium under con-
sideration, the analytic expression for ψ is not known, and there
does not exist a formula for Wp. We thus use the value of Wp(nref )
calculatedwith a large number of grid points as the reference point
for the convergence studies.

Figs. 7–9 show the convergence of Wp in CHEASE and in ECOM
as a function of the number of grid points and as a function of run
time, for three different plasma shapes. Fig. 7 corresponds to a cir-
cular tokamak equilibrium with a small Shafranov shift. Since the
domainΩ is a disk, ECOM computes such equilibria without con-
formal mapping, and this case allows us to focus on the error that
is not due to the conformal mapping part of the solver. We observe
that for a very small number of grid points, N ≤ 16, CHEASE com-
putes Wp with higher accuracy than ECOM. This is somewhat arti-
ficial in that CHEASE uses a grid that is refined near the magnetic
axis [18], whereas in the absence of conformal mapping the center
of the (r, θ) grid in ECOMdoes not coincidewith themagnetic axis.
The convergence rate of the poloidal magnetic energy in CHEASE is
N−6 as found in [49], while the convergence rate in ECOM is found
to be 2.6−N . As a result, for grids with N > 16 ECOM quickly be-
comes much more accurate than CHEASE. Finally, if we fix the run
time instead of the grid size, we find that for this particular case
in which the plasma cross section is circular, ECOM is always more
accurate than CHEASE, as shown in Fig. 7(b).

In Fig. 8, we consider an equilibrium with a larger Shafranov
shift, a significant triangularity but with no elongation. Comparing
Figs. 7 and 8, we can see that the crowding effect inherent to con-
formal mapping results in a strong loss of accuracy, with a relative
error inWp which is up to 104 times larger at low grid resolutions.
It also results in a reduction of the convergence rate from 2.6−N to
1.23−N . Even if so, for this equilibrium with κ = 1, ECOM remains
more accurate than CHEASE at fixed run time, as shown in Fig. 8(b).
Fig. 9 corresponds to an ITER-like equilibrium,with the same trian-
gularity and pressure profile as Fig. 8, but with elongation κ = 1.7.
To be more specific, by ‘‘ITER-like’’ we mean a smooth, up–down
symmetric plasma domain specified by Eqs. (52)–(53), with an in-
verse aspect ratio ϵ, an elongation κ and a triangularity δm equal to
those in the ITER design [53]: ϵ = 0.32, κ = 1.7 and δm = 0.33.
As wewould expect from Fig. 5, elongation amplifies the crowding
effect, leading to further degradation of the accuracy. The conver-
gence rate is reduced from 1.23−N to 1.05−N . The strong depen-
dence of the convergence rate on the plasma geometry and on
crowding is an undesirable aspect of ECOM. In contrast, Figs. 7–9
show that convergence in CHEASE is fairly insensitive of the shape
of the plasma boundary. Despite this weakness, ECOM computes
Wp more accurately than CHEASE for run times longer than 8 s.

To conclude this section, we take a closer look at the equilib-
rium considered in Fig. 9, and compare the accuracy of CHEASE
and ECOM for the safety factor and magnetic shear profiles. We do
not have explicit analytic formulas for q and ŝ for this equilibrium,
so we compute the relative errors |q − qref | and |ŝ − ŝref |, where
qref and ŝref are the profiles calculated with a large number of grid
points nr = 136 for CHEASE and nr = 528 for ECOM. In Fig. 10(a),
the run time is 1 s, corresponding to a grid resolution of nr = 32
in CHEASE and nr = 128 in ECOM; in Fig. 10(b), the run time is 7 s,
corresponding to a grid size of nr = 64 in CHEASE and nr = 256
in ECOM; in Fig. 10(c), the run time is 18 s for a grid resolution of
nr = 86 in CHEASE and nr = 512 in ECOM. The results are shown
in Fig. 10 and confirm the trend seen throughout the paper. Beyond
a threshold run time, 7 s in this particular case, ECOMcomputes the
q and ŝ profiles more accurately than CHEASE.

5. Equilibria with toroidal flows

Large equilibrium flows are observed in tokamak experi-
ments [54–56], and flows and flow shear are thought to have a
strong influence on the stability and transport properties of the
plasma [57–60,55,61–63,56,64–66]. When the flow speed is of the
same order as the sound speed, the inertial term in the pressure
balance relation can no longer be ignored, and MHD equilibrium
force balance is given by

ρu · ∇u + ∇p = J × B, (54)

where ρ = min, mi is the ion mass, n the ion density, and u the
plasma flow. The plasma flow u in Eq. (54) must also satisfy the
steady-state version of Faraday’s law in the ideal MHD model [9]:

∇ × (u × B) = 0. (55)

Several numerical solvers have been written to compute MHD
equilibriawith a flowu that has both a toroidal and a poloidal com-
ponent [67,20,68]. However, poloidal flows are damped by neo-
classical viscosity and expected to be much smaller than the ion
sound speed in toroidally axisymmetric equilibria, except perhaps
near the edge [69–71]. It is therefore a good approximation to
only retain the effect of toroidal flows in Eq. (54). The most gen-
eral toroidal flow u = ueφ satisfying Eq. (55) can be written as
uφ = RΩφ(Ψ ). For a purely toroidal flow, MHD force balance thus
takes the form

−ρRΩ2
φ(Ψ )eR = J × B − ∇p, (56)



J. Lee, A. Cerfon / Computer Physics Communications 190 (2015) 72–88 83
Fig. 7. Relative error in the poloidal magnetic energyWp for a circular tokamak equilibrium as a function of (a) the number of radial grid points (nr = nϑ ) and (b) the total
run time. a/Rm0 = 0.32, κ = 1.0, δm = 0.0 and the pressure and current profiles areµ0dp̄/dψ = −0.01(1− (1−ψ)2) and 1/2(dF̄ 2/dψ) = −(1− (1−ψ)2), respectively,
and ISCALE = 0. For both CHEASE and ECOM, the reference values Wp(nref )were computed with a grid size N = nref = 48, and the difference between the reference value
ofWpE(nref ) of ECOM andWpC (nref ) of CHEASE is |WpE(nref )− WpC (nref )|/WpC (nref ) = 2.6 × 10−9 .
Fig. 8. Relative error in the poloidalmagnetic energyWp for a tokamak equilibriumwith triangularity as a function of (a) the number of grid points (N = nr = nϑ ) and (b) the
total run time. a/Rm0 = 0.32, κ = 1.0, δm = 0.33, and the pressure and current profiles areµ0dp̄/dψ = −(1− (1−ψ)2) and 1/2(dF̄ 2/dψ) = −(1− (1−ψ)2) respectively,
and ISCALE = 0.WpC (nref )was computed with a grid size N = nref = 136,WpE(nref )with a grid size N = nref = 256, and |WpE(nref )− WpC (nref )|/WpC (nref ) = 1.3 × 10−9 .
Each ECOM run computed the conformal mapping twice.
Fig. 9. Relative error in the poloidal magnetic energy Wp for a tokamak equilibrium with triangularity and elongation as a function of (a) the number of grid points
(N = nr = nϑ ) and (b) the total run time. a/Rm0 = 0.32, κ = 1.7, δm = 0.33 and the pressure and current profiles are µ0dp̄/dψ = −(1 − (1 − ψ)2) and
1/2(dF̄ 2/dψ) = −(1 − (1 − ψ)2) respectively, and ISCALE = 0. WpC (nref ) was computed with a grid size N = nref = 136, WpE(nref ) with a grid size N = nref = 528, and
|WpE(nref )− WpC (nref )|/WpC (nref ) = 7.6 × 10−10 . Each ECOM run computed the conformal map twice.
where eR = ∇R. In a general axisymmetric geometry, p only de-
pends on two variables. Since we know that for static equilibria p
is a function of Ψ only, we choose R and Ψ as the two indepen-
dent variables for the pressure profile in axisymmetric equilibria.
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(a) Run time ≃ 1 s. (b) Run time ≃ 7 s. (c) Run time ≃ 18 s.

Fig. 10. Relative error in the safety factor and magnetic shear profiles for three different run times: (a) 1 s, (b) 7 s and (c) 18 s. a/Rm0 = 0.32, κ = 1.7, δm = 0.33 and the
pressure and current profiles areµ0dp̄/dψ = −(1− (1−ψ)2) and 1/2(dF̄ 2/dψ) = −(1− (1−ψ)2) respectively, and ISCALE = 0. The reference values of qref and ŝref are
computed with a large number of grid points nr = 136 for CHEASE and nr = 528 for ECOM.
We then have ∇p = ∂p/∂R∇R + ∂p/∂Ψ∇Ψ , and dotting Eq. (56)
with B yields an equation for the R dependence of the pressure:

ρRΩ2
φ(Ψ ) =

∂p(R,Ψ )
∂R

, (57)

where we have used the fact that B · ∇Ψ = 0. When Eq. (57) is
satisfied, Eq. (56) can be written as

J × B =
∂p(R,Ψ )
∂Ψ

∇Ψ . (58)

By dotting this equation with J, it is easy to show that RBφ = F(Ψ )
as in the static case, and Eq. (58) becomes the following modified
G–S equation for the flux function Ψ in the presence of a toroidal
flow:

∆∗Ψ = −µ0R2 ∂p(R,Ψ )
∂Ψ

−
1
2
dF 2

dΨ
. (59)

There are three well known situations for which Eq. (57) can be
integrated analytically. The first situation corresponds to the as-
sumption that the entropy S ≡ pρ−γ is only a function of the
poloidal flux [61,9], the second situation corresponds to the as-
sumption that the density ρ is a flux function [61,62], and the
third situation corresponds to the assumption that the temper-
ature is a flux function because of the high thermal conductiv-
ity along the magnetic field lines in fusion plasmas [72,61,73,7].
Currently, ECOM only treats the latter case. Neglecting tempera-
ture anisotropy, we write p(R,Ψ ) = 2n(R,Ψ )T (Ψ ), with T (Ψ ) =

0.5[Ti(Ψ )+ Te(Ψ )] a species averaged temperature, and integrate
Eq. (57) to find [7]:

p(R,Ψ ) = p0(Ψ ) exp

pΩ(Ψ )
p0(Ψ )


R2

R2
0

− 1

, (60)

where p0(Ψ ) = p(R0,Ψ ) and pΩ(Ψ ) = n0(R0,Ψ )miΩφ(Ψ )
2R2

0/2
is the kinetic pressure due to the ion toroidal flow. ECOM uses the
numerical scheme described in Section 2 to solve the normalized
version of Eq. (59),

∆∗ψ = −λ


µ0R2 ∂ p̄(R, ψ)

∂ψ
−

1
2
dF̄ 2

dψ


(61)
with the normalized pressure term given by

p̄(R, ψ) = p̄0(ψ) exp

p̄Ω(ψ)
p̄0(ψ)


R2

R2
0

− 1

,

dp̄0
dψ

=
dp0
dΨ

. (62)

In ECOM, the profile p̄0(ψ) is specified in the same way as p̄(ψ) is
in the static case, with the same namelist variable IPTYPE, and the
same options. If IPTYPE = 1 or IPTYPE = 2 and IPTABLE = 0, inte-
gration is required to obtain p̄0(ψ) from its flux derivative. ECOM
uses Chebyshev–Gauss quadrature on the global Chebyshev grid
forψ to compute these integrals. There are several options to spec-
ify the kinetic pressure profile p̄Ω(ψ), with correspondingnamelist
parameter ITFTYPE. If ITFTYPE = 1, p̄Ω is such that the toroidal
Mach number M =

√
2p̄Ω/p̄0 has the same value at all radii. If

ITFTYPE = 2, p̄Ω is given by the explicit formula p̄Ω(ψ) = p̄Ω0(1−

(1 − ψ)pΩ in)pΩout . If ITFTYPE=3, p̄Ω is given as a numerical table in
terms of ψ , as is also done for the pressure and poloidal current
profiles.

Among the expressions ECOM uses in postprocessing to eval-
uate flux functions and figures of merit, only a few need to be
modified in the presence of an equilibrium toroidal flow. Eq. (20)
becomes

dIA
dψ

= −λ


µ0

dp̄0
dψ

IB1(ψ)+ µ0
dp̄∆
dψ

IB2(ψ)+
1
2
dF̄ 2

dψ
IC (ψ)


(63)

where dp̄∆/dψ = dp̄Ω/dψ − (p̄Ω/p̄0)dp̄0/dψ , and IB1(ψ) and
IB2(ψ) are defined by

IB1(ψ) =

 2π

0
dθ J exp


p̄Ω(ψ)
p̄0(ψ)


R2

R2
0

− 1

,

IB2(ψ) =

 2π

0
dθ J


R2

R2
0

− 1

exp


p̄Ω(ψ)
p̄0(ψ)


R2

R2
0

− 1

.

(64)

As a result, the intermediate step we use to derive Eq. (22) takes a
slightly different form, but Eq. (22) itself does not change: the re-
lation Iφ(ψ) = IA(ψ)/(λµ0) still holds. Finally, the expression for
the volume averaged pressure is now given by

⟨p⟩V = 2π

 0
1 dψ IB1(ψ)p̄0(ψ)

λV0
. (65)

Fig. 11 shows the flux contours of a stationary equilibrium with
toroidal flow computed with ECOM and the flux contours of the
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Fig. 11. Flux contours for an equilibrium without toroidal flow (black dashed line,
M = 0.0) and with toroidal flow (solid red line, M = 1.0). The shape of the
boundary is given by the Miller parametrization with κ = 1.7, a/RM0 = 0.32, δ =

0.33, and the normalized pressure and poloidal current profiles are µ0dp̄/dψ =

1 − (1 − ψ)2 and (1/2)(dF̄ 2/dψ) = 0.1(1 − (1 − ψ)2), giving Ip = 1.0 [MA] and
βP = 0.81.

corresponding static equilibrium also computed with ECOM. For
that example, we chose pΩ so that the toroidal Mach number is
uniform with value 1. The flux contours of the stationary equilib-
rium are the red lines, and the flux contours of the static equilib-
rium are the black dashed lines. We can clearly see the expected
outward shift of the magnetic axis [74,73].

6. Discussion

ECOM uses conformal mapping from the plasma domain to the
unit disk to decouple the numerical issues associated with the
plasma geometry from the rest of the problem. Once on the unit
disk, ECOM relies on fairly standard high order methods based on
the FFT for the angular dependence and Green’s functions formu-
lation for the radial dependence to solve themapped partial differ-
ential equation describing the plasma equilibrium. This approach
is not only conceptually elegant, it is also effective. By studying a
static equilibrium with Solov’ev profiles, we showed in this arti-
cle that the solution of the Grad–Shafranov equation as well as its
first and second derivatives converge exponentially as grid size is
increased. Furthermore, ECOM is much faster than finite element
based codes in terms ofwork per grid point, and requires lessmem-
ory at equal grid size. Finally, ECOM can be easily parallelized in
multi-core system since the solver on the unit disk uses separation
of variables and solves an independent radial ODE for each angular
grid point.

Because of the crowding effect inherent to the mapping of an
elongated shape to a disk, ECOMusually requires a denser grid than
FEMsolvers to achieve the same accuracy. For tokamak geometries,
this weakness is compensated by the speed of the solver unless
the elongation of the last closed flux surface is significantly
greater than 2. Beyond a threshold grid size, ECOM computes the
equilibrium quantities that play a key role in wave propagation,
stability and transport calculations with more accuracy than
CHEASE at equal run time. The threshold grid size depends on the
plasma geometry and on the quantity that is calculated. For an
ITER-like geometry and quantities that depend on first derivatives
of the flux, such as the safety factor and the poloidal magnetic field
energy, the threshold grid size is nr = nϑ ≃ 360. For plasma
shapes that are less elongated, the threshold grid size is smaller.
It is also smaller if the quantity of interest depends on second
derivatives of the flux, such as the localmagnetic shear for instance,
as a direct consequence of the exponential convergence of the
second derivatives in ECOM. We also find the threshold grid to be
smaller when the quantity of interest is a flux derivative of a flux
function, such as the flux averaged magnetic shear for instance.
This is because ECOM uses a Chebyshev grid for the flux contours
and spectral differentiation for the evaluation of flux derivatives.

ECOM has two important limitations. First, equilibria with κ >
3 require too dense a grid for ECOM to reach a high level of ac-
curacy in a reasonable amount of computing time. In these sit-
uations, particularly relevant to FRCs, ECOM is not an attractive
option. Second, ECOM can only compute equilibria whose bound-
aries are smooth. It can therefore not be used for equilibria with
a magnetic X-point. A promising idea to address these limitations
is to develop a Grad–Shafranov solver based on an integral equa-
tion formulation that avoids conformal mapping to treat the ge-
ometrical aspects of the problem. Approaches relying on the Fast
Multipole Method [75,76] may represent an attractive option, that
would lead to high order accuracy for the solution of the G–S equa-
tion as well as its derivatives. They are the subject of ongoing re-
search.

Note that there are additional options in ECOM that can be very
desirable for certain applications, but are not discussed in this ar-
ticle. For instance, ECOM can handle equilibria that are specified in
terms of the parallel current J∥(ψ) or the safety factor q(ψ) instead
of the poloidal current F(ψ). Any one of the three profiles can be
used in ECOM along with the specification of the pressure profile.
When either the J∥ profile or the q profile constrains the equilib-
rium, ECOM needs to evaluate the flux functions IA, IB, and IC in
Eq. (18) at each iteration. The fast and accurate numerical methods
implemented in ECOM to calculate these functions then become a
key strength of the solver, leading to fast convergence of the iter-
ations and accurate equilibria. For the sake of clarity and concise-
ness of the presentation, we did not describe these capabilities in
the present article. They will be presented in detail in forthcom-
ing articles, in which we explicitly use them to explore properties
of tokamak equilibria and to couple ECOM with wave propagation
and transport codes.

ECOM can also compute equilibria specified by an EFIT g-
file [39] containing the pressure profile, the poloidal current pro-
file, and the boundary shape of interest. Conversely, ECOM can
print the results of any equilibrium calculation according to the
format of an EFIT g-file, which includes the pressure, poloidal cur-
rent and q profiles, as well as the boundary and Ψ (RE, ZE) where
(RE, ZE) is a uniform grid in the range of Rmin < RE < Rmax and
Zmin < ZE < Zmax. Since ECOM is a fixed boundary solver, it cannot
compute Ψ on grid points that are inside the rectangle [Rmin, Rmax]

× [Zmin, Zmax] but outside the computational domain of the solver.
For this reason, in the EFIT g-file produced by ECOM, a fictitious
constantΨb −0.001(Ψ −Ψb) is printed for the values ofΨ (RE, ZE)
exterior to the boundary.
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Appendix A. Miller parametrization of the flux contours

Any flux contour of an up–down symmetric tokamak equilib-
rium can be approximated by a closed curve parametrized by the
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Table 2
ECOM input variables in the Fortran namelist. Variables whose names start with ‘I’, ‘N’ or ‘K’ are in integer format, and those whose names start with ‘file’ are in string format.
All other variables are in real format.

Variable Definition
Value Description

IECOM Profile specified along with the pressure profile in the G–S equation
0 (default) Poloidal current profile dF̄ 2/dψ
1 Parallel current profile J∥
2 Safety factor profile q

IPTYPE Specification of the pressure profile
0 µ0dp̄/dψ = −Cs for the Solov’ev solution given by Eq. (43)
1 (default) µ0dp̄/dψ = p0ψ (1 − (1 − ψ)pin )pout

2 Discrete values of dp̄/dψ or p in terms of ψ or ρ are given by a table in ‘file_prof’
3 Discrete values of dp̄/dψ in terms of ψ is given by the EFIT output ‘file_efit’
Cs = FB(κ + 1/κ)/(R3

0q
3
0) is determined by the namelist variables ‘F0’,‘q0’,‘rkappa’, and ‘R0’

The namelist variables for p0ψ , pin and pout are ‘p0psi’, ‘pin’ and,‘pout’, respectively

IFTYPE Specification of the poloidal current profile (activated for IECOM = 0)
0 dF̄ 2/dψ = 0 for the Solov’ev solution given by Eq. (43)
1 (default) (1/2)(dF̄ 2/dψ) = F0ψ (1 − (1 − ψ)fin )fout

2 Discrete values of (1/2)(dF̄ 2/dψ) or F in terms of ψ or ρ are given by a table in ‘file_prof’
3 Discrete values of (1/2)(dF̄ 2/dψ) in terms of ψ given by the EFIT output ‘file_efit’
The namelist variables for F0ψ , fin and fout are ‘ff0’,‘ffin’ and,‘ffout’, respectively

IJTYPE Specification of the parallel current profile (activated for IECOM = 1)
1 (default) J∥ = J∥0(1 − (1 − ψ)jin )jout

2 Discrete values of J∥ in terms of ψ are given by a table in ‘file_jprof’
3 J∥ as evaluated from ohmic and bootstrap current models at each iteration
The namelist variables for J∥0 , jin and jout are ‘jpar0’,‘jpin’ and,‘jpout’, respectively

IQTYPE Specification of the q profile (activated for IECOM = 2)
1 (default) q = q0(1 + qfac(1 − ψ)qin )qout

2 Discrete values of q in terms of ψ are given by a table in ‘file_qprof’
The namelist variables for q0 , qfacqin and qout are ‘q0’,‘qfac’,‘qpin’ and,‘qpout’, respectively

IBTYPE Specification of the plasma boundary ∂Ω
0 ∂Ω is given by Eqs. (44)–(45)
1 (default) ∂Ω is given by Eqs. (52)–(53)
2 (Rn , Zn) are given by a table in ‘file_bc’
3 (Rn , Zn) are given by the EFIT output file ‘file_efit’

ITFTYPE Specification of the toroidal flow pressure profile p̄Ω
0 No toroidal flow: p̄Ω = 0
1 p̄Ω = (M2/2)p̄0 where M is the constant Mach number
2 p̄Ω = p̄Ω0(1 − (1 − ψ)pΩ in )pΩout

3 Discrete values of p̄Ω in terms of ψ are given by a table in ‘file_tflow’
The namelist variables forM , p̄Ω0 , pΩ in and pΩout are ‘mach’,‘ptf0’,‘ptfin’ and,‘ptfout’, respectively

IPTABLE Type of pressure profile table in ‘file_prof’ (activated for IPTYPE = 2)
0 (default) 1-D arrays of ψ and dp̄/dψ are given
1 1-D arrays of ψ and p are given
2 1-D arrays of ρ and p are given

IRHO Definition for the normalized radius ρ
0 ρ(ψ) = (Ro(ψ)− Ri(ψ))/(Ro(ψ = 0)− Ri(ψ = 0))
1 (default) ρ(ψ) = (Ro(ψ)− R0)/(Ro(ψ = 0)− R0)

2 ρ(ψ) =
√
(Ψ − Ψ0)/(Ψb − Ψ0)

3 ρ =
√
(Φ(ψ)− Φ(ψ = 1))/(Φ(ψ = 0)− Φ(ψ = 1))

nt1 Number of grid points on the boundary used for the forward conformal mapping (n1)
nt2 Number of ϑ grid points in the unit disk (nϑ )
nt3 Number of θ grid points for contour integrals (nθD = nθE )
nsub Number of radial piecewise Chebyshev intervals in the unit disk (nL)
kcheb Number of Chebyshev points in a radial interval (nch)
nchq Number of flux surfaces in a Chebyshev grid of ψ for postprocessing (nf )
nflx Number of flux surfaces in uniform grid of ρ for postprocessing
kLag Order of Lagrange interpolation (kLag )
ksamp Oversampling factor for FFT padding used for contour integrals (ksamp)
R0 R coordinate of the point that is mapped to the center of D1 by the initial conformal mapping

R0 for IBTYPE = 0 and Rm0 for IBTYPE = 1
Z0 Z coordinate of the point that is mapped to the center of D1 by the initial conformal mapping

Z0 for IBTYPE = 0 and Zm0 for IBTYPE = 1
q0 Value of the safety factor at the magnetic axis q(Ψ = Ψ0)

F0 F(Ψ = Ψ0) for IFPOL = 0 or F(Ψ = ΨB) for IFPOL = 1
ISCALE Control parameter to scale the solutions. See Table 1 for further details
torcur Total toroidal current in [MA] for ISCALE = 2 or ISCALE = 3
reps Ratio of minor radius to major radius. a/R0 for IBTYPE = 0 and a/Rm0 for IBTYPE = 1
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Table 2 (continued)

Variable Definition
Value Description

rkappa Elongation of the boundary. κ for IBTYPE = 0 and IBTYPE = 1
delta Triangularity of the boundary. δm for IBTYPE = 1
epsiter Small constant to determine the convergence of iteration (δ)
nmaxiter Maximum number of iterations
epsmaxdist Maximum distance between mapping center and the magnetic axis
ISYMUD Index for up–down symmetry of Ψ and boundary about Z = 0 axis (0: asymmetric, 1: symmetric)
IPRINTSOL Printing an Ascii file of Ψ and its derivatives on the grid ofΩ (0: off, 1: on)
IPRINTMAP Printing Ascii files for conformal mapping results (0: off, 1: on)
IPRINTSOLDISK Printing an Ascii file of Ψ and its derivatives on the grid of the unit disk D1 (0: off, 1: on)
IPRINTCON Printing Ascii files of contours of nchq ψ values and nflx ρ values (0: off, 1: on)
IPRINTQS Printing an Ascii file of the safety factor and the magnetic shear in terms of nchq ψ and nflx ρ (0: off, 1: on)
IPRINTEFIT Printing an Ascii file in EFIT g file format (0: off, 1: on)
npsi Number of flux surfaces for EFIT g file format for iprintefit=1
ISTABILITY Evaluation of the Mercier criterion and Troyon limit (0: off, 1: on)
IBSCUR Evaluation of the bootstrap and ohmic currents (0: off, 1: on)
IJBSMODEL Bootstrap and ohmic current model (1: Hirshman model, 2: Sauter model)
nchy Number of pitch angle grid points to evaluate the bootstrap and ohmic currents
VLOOP0 Uniform loop voltage giving the ohmic current in unit of volt
VLOOP 1-D array of radially varying loop voltage in unit of volt
IFITMIL Fitting the flux surfaces using the Miller parametrization (0: off, 1: on)
Miller parametrization given by Eqs. (52)–(53) [26], which we re-
peat below for convenience:

RM(t) = Rm0 + a cos(t + sin−1 δm sin t) (A.1)
ZM(t) = aκ sin(t). (A.2)

ECOM has the option to compute the parameters Rm0, a, κ and δm
that provide a good approximation, in the least square sense, of a
flux contour chosen by the user, and does this as follows. Given
the numerical coordinates (Ri, Zi)i=1..nθE of the contour as a result
of Section 3.2, ECOM calculates the vector C = [C1, C2, C3] =

[Rm0, a, sin−1 δm] that minimizes the sum s of squared residuals

s =
1
2

nθE
i=1

(RM,i − Ri)
2 (A.3)

where RM,i = RM(t = ti) and the parameter values ti are chosen so
that Zm(ti) = Zi for all i in the integer interval [1..nθE]. The product
aκ is held fixed during the minimization, and defines κ once C2
is calculated. The value aκ is given by the condition Zm(π/2) =

maxi=1..nθE (Zi).
ECOM finds the vector C that minimizes s by searching for the

zero of |∇s| with the Newton–Raphson method. Specifically, the
sequence C(i) of improved approximations of the minimizer Cmin is
given by

C(i+1)
= C(i) − Ω−1ω (A.4)

where Ω−1 is the inverse of the Hessian matrix Ω defined by
(Ω)ij = ∂2s/∂Ci∂Cj, ω = ∂s/∂C is the gradient vector, and the
superscripts correspond to the iteration number. The iterative pro-
cedure stops when |s(i+1)

− s(i)| < ϵconv is satisfied, for some pre-
specified ϵ. For ϵconv = 10−14, the convergence criterion is typically
satisfied after 5− 10 steps. The components of the gradient vector
are

ω1 =

nθE
i

(RM,i − Ri),

ω2 =

nθE
i

(RM,i − Ri) cos(θi + C3 sin θi),

ω3 = −C2

nθE
i

(RM,i − Ri) sin(θi + C3 sin θi) sin θi.

(A.5)
The entries of the Hessian matrix are

Ω11 =

nθE
i

1 = nθE,

Ω12 = Ω21 =

nθE
i

cos(ti + C3 sin ti)

Ω13 = Ω31 = −C2

nθE
i

sin ti sin(ti + C3 sin ti) (A.6)

Ω22 =

nθE
i

cos2(ti + C3 sin ti),

Ω23 = Ω32 = −

nθE
i


C2 cos(ti + C3 sin ti)

+ RM,i − Ri

sin ti sin(ti + C3 sin ti),

Ω33 = C2

nθE
1

sin2 ti

C2 sin2(ti + C3 sin ti)

− cos(ti + C3 sin ti)(RM,i − Ri)

.

ECOM starts the iterative procedure with the following initial
guesses:

C1 =
1
nθE

nθE
i=1

Ri, C2 = Ri|max(Ri) − C1,

C3 =
C1 − Ri|max(Zi)

C2
.

(A.7)

Appendix B. Summary of namelist variables in ECOM

See Table 2.
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