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a  b  s  t  r  a  c  t

We  present  a computational  learning  method  for bio-molecular  classification.  This  method  shows  how  to
design  biochemical  operations  both  for learning  and pattern  classification.  As opposed  to prior work,  our
molecular  algorithm  learns  generic  classes  considering  the  realization  in  vitro  via  a  sequence  of  molecu-
lar biological  operations  on  sets  of DNA  examples.  Specifically,  hybridization  between  DNA  molecules  is
interpreted  as  computing  the  inner  product  between  embedded  vectors  in a corresponding  vector  space,
eywords:
NA computing
achine learning

earning in vitro
ernel methods
olecular algorithms

and  our  algorithm  performs  learning  of  a binary  classifier  in  this  vector  space.  We  analyze  the  thermo-
dynamic  behavior  of  these  learning  algorithms,  and  show  simulations  on artificial  and  real  datasets  as
well  as demonstrate  preliminary  wet  experimental  results  using gel  electrophoresis.

© 2015 Published  by  Elsevier  Ireland  Ltd.
. Introduction

Molecular computation offers the potential for computing
evices to be integrated seamlessly with biological systems
Benenson, 2012; Kahan et al., 2008). With molecular computation,

 machine can be placed inside living tissue to quantitatively mea-
ure DNA expression and perform pattern recognition in order to
dentify potential diseases before any physical symptoms emerge.
or this purpose, previous research devoted the effort to artic-
lating pattern recognition algorithms to be implemented by
iomolecular substrates.

However, most of the previous methods did not consider
earning patterns from training examples. For example, a simple
mplementation of logic gates is proposed for neural networks
sing metabolic regulation (Laplante et al., 1995), without the

mplementation of the learning property of neural networks. In Kim
t al. (2005), solving various dynamic neural network systems is
roposed from RNA transcription processes with the light of sim-
larity between two dynamical behaviors, where the realizability
f the idea is reported later (Kim et al., 2006; Zhang et al., 2007),
ut the the molecules are designed to perform a pre-determined

∗ Corresponding author. Tel.: +82 2 880 1833.
E-mail address: btzhang@bi.snu.ac.kr (B.-T. Zhang).

ttp://dx.doi.org/10.1016/j.biosystems.2015.06.007
303-2647/© 2015 Published by Elsevier Ireland Ltd.
network. Additionally, Qian et al. (2011) proposed a systematic
way of constructing feedforward and recurrent neural networks
by cascading node units operated by DNA hybridization. In Mills
et al. (2001) and Lim et al. (2010), a weighted sum operation on
DNA molecules is designed to realize a simple perceptron algo-
rithm. All these works have demonstrated the utility of molecular
computation for solving pattern recognition problems, many of
them exploiting the advantage of their inherently parallel inter-
actions. However, these studies were confined to implementing
pre-defined perceptrons and did not address the problem of learn-
ing. Any of these methods did not try to adapt the computational
weight parameters to the pattern of training examples.

In this work, we present a molecular learning algorithm that
can perform such pattern recognition in vitro directly on the bio-
logical molecules themselves, and provide simulations showing
the state-of-the-art recognition accuracy for biological pattern
recognition problems. We  show how to model DNA sequences as
embedded vectors in a vector space and the hybridization opera-
tion as a computation of the dot product between these vectors.
DNA hybridization can then be interpreted as computing the inner
product in the associated feature space via a Mercer kernel, i.e.

the well-known kernel trick in machine learning (Schölkopf and
Smola, 2001). Using the definition of inner product in a feature
space, state-of-the-art pattern recognition algorithms can be used,
which are simpler in both understanding and implementing than

dx.doi.org/10.1016/j.biosystems.2015.06.007
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2015.06.007&domain=pdf
mailto:btzhang@bi.snu.ac.kr
dx.doi.org/10.1016/j.biosystems.2015.06.007
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Here, we  use j* to represent the complementary sequence of j. With
this definition, the complementary sequence is analogous to the
notion of conjugacy when we  consider the inner product of |xi〉 and
4 Y.-K. Noh et al. / BioS

he conventional artificial neural networks algorithm. In this work,
 biomolecular computation process is modeled as a sequence
f computing various kernel matrices, resulting in a well-defined
earning and classification algorithm.

In our design, each computed kernel element is the pairwise
imilarity between two DNA molecules. The similarity is measured
n vitro through hybridization and can be explicitly defined via the
nteraction energies of complementary DNA base pairs. Our algo-
ithm manipulates populations of DNA sequences via hybridization
nd denaturing operations, modifying distributions of the associ-
ted vectors in the kernel feature space. After learning is performed
n data examples, an unknown DNA sequence molecule can be
irectly classified using the learned weights in the molecular popu-

ation. Our simulations with biological data show that the proposed
lgorithm achieves state-of-the-art performance, comparing favor-
bly with traditional support vector machines and kernel Fisher
iscriminant analysis algorithms.

We also analyze our algorithm using thermodynamics and
inetics for DNA hybridization. We  first obtain the thermody-
amic properties for DNA hybridization based on the previous work
Kim et al., 2008; Sahu et al., 2006; SantaLucia and Hicks, 2004).
NA thermodynamics explain how the hybridization probability

s determined by the change of energy and entropy as well as the
emperature. Based on this work, we design the experiment sched-
le where the learning is performed properly. We  provide a simple
inetic model explaining how the kernel matrix can be positive
efinite for appropriate temperature schedule. The suggested tem-
erature schedule during hybridization is a simple cooling schedule
ith a constant speed from high temperature to low temperature.
e  can also apply small variations of the schedule to have different

ositive definite kernels, where these variations can be com-
ared to the tuning parameters that control the sparsity of kernel
atrix.
Specific implementation methods on DNA molecules are also

roposed considering the constraint without traditional comput-
ng architectures such as semiconductor devices. We  designed a
mall experiment with real DNA molecules and present prelimi-
ary experiments demonstrating how our proposed methods can
e applied for real in vitro application.

The remainder of the paper is organized as follows: In Section 2,
e briefly explain how kernel methods are used for DNA sequence

nalysis in our work, and we show how the data are embedded into
 feature space of the associated kernel of hybridized molecules.
ection 3 explains the molecular learning and classification algo-
ithm as well as their geometrical interpretation in the associated
eature space. In Section 4, we explain how positive definiteness of
he kernel can be guaranteed, and in Section 5, we present simula-
ion results on both synthetic and benchmark datasets. In Section
, a discussion on the real implementation is provided, and prelim-

nary in vitro experiment is presented. Finally, we conclude with a
iscussion in Section 7.

. DNA kernel for molecular computation

Our definition of the kernel measures similarity between DNA
equences using similarities in biomolecular interaction. DNA
olecules interact as they diffuse in solution through Brown-

an motion (Bennett, 1982), and can generate thermodynamic
eactions by binding and unbinding complementary strands until
ynamic equilibrium is reached. The resulting quantity of double-
tranded sequences reflect biological similarity between DNA

equences, which can be viewed as coefficients of a novel kernel
atrix here. We  formally define this kernel matrix in this sec-

ion, and show how it can be used for learning and classification
ater.
Fig. 1. Each single stranded DNA sequence is mapped into a vector space by an
inner product, defined by the amount of resulting double-stranded product in the
hybridization reactions.

2.1. Kernel definition using hybridization

We  consider two-class training data composed of N single-
stranded DNA molecules. The sequences are the strings from
nucleotide alphabets � = {A, T, G, C}, and each sequence is labeled
with a binary class label y ∈ { +1, − 1}. Learning occurs on a dataset
{|xi〉, yi}N

i=1 where |xi〉 is a vector corresponding to the ith sequence,
and yi is its label. We  also consider the conjugate vector 〈xj| of a
sequence j, and we write a kernel element Kij as the inner product
of ith and jth data.

Kij = 〈xj|xi〉 (1)

The embedding of each |xi〉 in a feature space is specified by the
kernel matrix K, as illustrated in Fig. 1.

In our algorithm, pairwise similarity is defined via the
hybridization reaction. Hybridization is the process of binding two
single-stranded molecules together to make a double-stranded
molecule. For DNA molecules, hybridization affinity exists between
nucleotide pairs ‘A’ and ‘T’ and between ‘G’ and ‘C’, which are
known to have a complementary relationship. DNA sequences are
also directed, distinguished by the 5′ and 3′ ends of sequences.
Hybridization occurs by matching the 3′ side of one sequence with
the 5′ end of the other sequence. The complementary version of a
DNA sequence can be generated by replacing nucleotides according
to (A→T,  T→A, G→C, and C→G), and reversing the 5′–3′ direction.
For example, the complementary sequence of [5′-GCCATA-3′] is [5′-
TATGGC-3′] as shown in Fig. 2. Complementary pairs are sequences
having the greatest hybridization affinity.

Using this notion of complementarity, the definition of a kernel
element is straightforward. The kernel element Kij is the quantity of
hybridized double strands between sequence i and the complement
of sequence j starting from equal amounts of of single-stranded
sequences, when pairs i and j are mixed:

Kin vitro
ij = |dsDNA(j∗, i)| (2)
Fig. 2. One example of a complementary sequence. Nucleotides ‘A’ and ‘T’, ‘G’ and
‘C’  are exchanged, and the 5′–3′ direction is reversed.
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xj〉. Therefore, we also use the conjugate notation 〈x| to represent
he complementary sequence.

The definition of the DNA kernel in this section, however, does
ot imply the positive definiteness of the kernel matrix. Reaction
ynamics of hybridization are nonlinear and highly complex, and it

s difficult to directly control the hybridization process. However,
e will show later that if the hybridization procedure is annealed,

hat is starting from a high temperature and slowly cooling to low
emperature, then the resulting kernel matrix will be close to a
iagonally dominant positive definite matrix. With this guarantee
f positive definiteness, we can design a virtual in vitro algorithm
or learning a binary classifier from DNA molecular examples. In
he following section, our in vitro learning algorithm is presented
long with its geometrical interpretation.

. Learning with DNA kernels

Here, we show how learning on DNA molecules can be imple-
ented via specially designed biochemical processes. The learning

lgorithm yields a population of DNA molecules implicitly encod-
ng a weight vector that can be used to classify unknown DNA
xamples. Our interpretation of the learning algorithm utilizes the
upport vector machine (SVM) framework (Schölkopf and Smola,
001). In this context, learning has been considered as finding the
losest point within the convex hulls of the class-specific training
xamples in the feature space (Kowalczyk, 2000). Our in vitro algo-
ithm is similar, but instead learns the convex cones of the training
xamples, rather than the convex hulls.

We  show how convex cones can be learned via populations
f DNA molecules encoding kernel matrices using virtual in vitro
ybridization processes. These kernel matrices can then be used
o readout the class labels of unknown DNA examples again using
nly in vitro processes.

.1. Learning with hybridization

We  first consider the simplest algorithm, which is to classify an
nknown example |xi〉 according to which of two  class means is
loser (Schölkopf and Smola, 2001). When the two  class means are

+ = 1
N+1

∑
yj=+1

|xj〉 and �c− = 1
N−1

∑
yj=−1

|xj〉, (3)

he discriminating hyperplane is orthogonal to w = �c+1 − �c−1, and
he label yi of |xi〉 can be obtained using the inner product with w:

T |xi〉 = 1
N+1

∑
yj=+1

〈xj|xi〉 + 1
N−1

∑
yj=−1

〈xj|xi〉 (4)

1
N+1

∑
yj=+1

Kij + 1
N−1

∑
yj=−1

Kij (5)

Since the amount of hybridization is proportional to the number
f hybridizing molecules, we can monitor a mixture of conjugate
olecules of training examples from class +1 as well as from class
1 to compute the inner product with the means. Molecules of an
nknown example |xi〉 are hybridized, and the amount of double
tranded hybridized product is measured. This measurement can be
erformed in vitro using hybridization-induced fluorescence, and
he unknown molecular example is classified by the label with the

ost fluorescence calibrated by the relative amount of data N+ and

−.

This simple procedure shows an example of an in vitro classi-
er that can be interpreted in terms of computing kernel elements.
owever, this simple classifier uses only the class distribution
s 137 (2015) 73–83 75

means and does not incorporate knowledge about the full distri-
bution of training examples. Such a classifier may not give the
optimal discrimination boundaries and would also be susceptible
to the presence of outliers in the training set. In the following sec-
tion, we show how to design a more advanced in vitro process that
can learn more complex discrimination boundaries using the DNA
kernel matrices.

3.2. In vitro processes

We forge a two-phase process, where in the first phase dis-
criminative information from training examples is learned, and the
second phase determines the label of an unknown data example.
The first in vitro process learns and stores discriminative informa-
tion in the population of DNA molecules. In this phase, molecules
of data examples and complementary sequences are hybridized,
yielding two different kinds of double stranded molecules: dou-
ble strands having differently labeled (hetero-labeled) molecules
and double strands having identically labeled (homo-labeled)
molecules. Our algorithm iteratively considers the population of
hetero-labeled molecules 〈xj|xi〉 for yj /= yi. In this population,
the relative frequency of xi molecules are modified according to
the ratio between hetero-labeled molecules and all hybridized
molecules, given by the quantity

∑
yj /= yi

〈xj|xi〉/
∑N

m=1〈xm|xi〉. Each

step of the learning process results in a population of hetero-labeled
double-stranded molecules, which are then denatured, amplified,
and used for the next hybridization reaction as shown in Fig. 3. We
show that the relative distribution of data molecules |xi〉 in this pop-
ulation reaches a steady-state equilibrium that implicitly stores a
set of weight vectors that can be used for classification.

The classification process uses the learned population from
the first phase. An unknown data sequence is hybridized with
molecules from this population. The class label of the DNA exam-
ple is then determined by monitoring the relative amounts of
hybridized molecules from each class. Similar to the discrimina-
tion algorithm which compared class means, this readout can be
performed presumably via an in vitro fluorescence measurement.

3.3. Geometrical interpretation

The proposed learning process can be interpreted geometrically
as finding a weight vector in the DNA feature space that is normal
to the classification boundary. This weight vector is the difference
between the two  closest vectors w{+1} and w{−1} that are contained
in the convex cones of the two classes as shown in Fig. 4. Here
we prove that the proposed learning method converges to a pop-
ulation of DNA molecules representing this difference of the two
closest vectors. The discrimination phase then classifies unknown
DNA molecules by taking the inner product with this difference
vector.

We represent the weight vector as w =∑N
i=1˛i|xi〉, where ˛i

is the relative concentration of sequence i compared to the initial
population, and |xi〉 represents each datum vector in the feature
space. The initial ˛is are uniformly set to one, and a column vector
� = {˛1, . . .,  ˛N}T is used to represent the population concentrations
at a particular time.

Without loss of generality, the data are sorted with respect to
their labels yl ∈ { +1, − 1}, l = 1, . . .,  N, and we separate � ∈ R

N into
two vectors �{c} ∈ R

Nc , for class c ∈ { +1, − 1} and K ∈ R
N×N into

four matrices K{c1,c2} ∈ R
Nc1 ,Nc2 , c1, c2 ∈ { +1, − 1}, where Nc is the
number of data of class c, which satisfies Nc=+1 + Nc=−1 = N. The gen-
eration of double stranded DNA is bilinear in the number of single
stranded components ˛i and ˛j, so that

∣∣dsDNA(j∗, i)
∣∣ = ˛i˛jKij .

The following theorem shows how the concentrations converge by
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Fig. 3. Iterative update of population usi

teratively hybridizing and amplifying the hetero-labeled double
tranded DNA molecules.

heorem 1. If the selection of hetero-labeled molecules from step t
o t + 1 satisfies the following equation,

t+1
i

= ˛t
i

(∑
yj /=  yi

Kij˛
t
i
˛t

j∑N
m=1Kim˛t

i
˛t

m

)
= ˛t

i

(∑
yj /=  yi

Kij˛
t
j∑N

m=1Kim˛t
m

)
(6)

or i ∈ {1, . . .,  N}, the asymptotic distribution of � = {˛1, . . .,  ˛N}T

ptimizes the following objective function:

max
{i}∈RNi ,i=+1,−1

wT
{−1}w{+1}

‖w{−1}‖‖w{+1}‖ (7)

.t. w{−1} = 〈x{−1}|�{−1},

w{+1} = 〈x{+1}|�{+1}, for �{−1}, �{+1} ≥ 0.

Here, |x{c}〉, c ∈ { +1, − 1} is a f × Nc matrix satisfying K{c1,c2} =
x{c1}|x{c2}〉 where f is the dimension of the feature space, �{c} is a
olumn vector of dimension Nc, and the matrix 〈x{c}| is the transpose

f |x{c}〉.
roof. From Eq. (6), we  can consider the update rule as equiv-
lent to the power method of finding the eigenvector of the

ig. 4. Iterative updates of the hetero-labeled DNA molecules finds the two closest
ectors in the feature space which are contained in convex cones of different classes.
ero-labeled double-stranded molecules.

largest eigenvalue for the following generalized eigenvalue prob-
lem (Zwillinger, 1996):(

0 K{−1,+1}

K{+1,−1} 0

)
� = �

(
K{−1,−1} 0

0 K{+1,+1}

)
� (8)

Here, � = [�T
{−1} �T

{+1}]
T
. To show the equivalence between Eqs.

(7) and (8), we  first reformulate Eq. (7) as maximization of the
objective function L with Lagrange multipliers �{+1} and �{−1}:

L = wT
{−1}w{+1} − 1

2
�{−1}(1 − wT

{−1}w{−1}) − 1
2

�{+1}(1 − wT
{+1}w{+1})

= �T
{−1}〈x{−1}|x{+1}〉�{+1} − 1

2
�{−1}(1 − �T

{−1}〈x{−1}|x{−1}〉�{−1})

− 1
2

�{+1}(1 − �T
{+1}〈x{+1}|x{+1}〉�{+1})

= �T
{−1}K{−1,+1}�{+1} − 1

2
�{−1}(1 − �T

{−1}K{−1,−1}�{−1})

− 1
2

�{+1}(1 − �T
{+1}K{+1,+1}�{+1}) (9)

The derivatives of L with respect to �{−1} and �{+1} are zero at
the maximal points:(

∂L

∂�{−1}

)T

= K{−1,+1}�{+1} − �{−1}K{−1,−1}�{−1} = 0 (10)

(
∂L

∂�{+1}

)T

= K{+1,−1}�{−1} − �{+1}K{+1,+1}�{+1} = 0 (11)

If we  compare Eqs. (10) and (11) after multiplying �T
{−1} to the

left of (10) and �T
{+1} to the left of (11), we see �{−1} = �{+1} because

we constrained wT
{+1}w{+1} = wT

{−1}w{−1} = 1. Eq. (8) becomes
equivalent to (10) and (11), yielding the result � = �{−1} = �{+1} =
wT

{−1}w{+1}. Thus, the principal eigenvalue � becomes the maxi-
mum  value of wT

{−1}w{+1}, completing the proof. �

We consider the matrix |x{c}〉 in Theorem 1 as the collection of
column vectors |xi〉 in class c. Then, the optimized vectors w{−1}
and w{+1}, become the closest vectors where w{−1} is contained
within the positive cone of class −1, and w{+1} is contained within
the positive cone of class +1 as shown in Fig. 4.

The discriminative in vitro phase is then interpreted as deter-
mining whether a new test datum |xnew〉 is closer to w{−1} or
w{+1} in angle. The new DNA molecules are first hybridized
with the learned distribution of molecules, resulting in double

stranded DNA concentrations given by ˛iK(new, i). Comparison of
the amounts of hybridized molecules is equivalent to determining
whether

∑
yi=+1˛iK(new, i) = wT

{+1}|xnew〉 or
∑

yi=−1˛iK(new, i) =
wT

{−1}|xnew〉 is larger. This can be viewed as computing the inner
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roduct of the new test example with the vectors w{+1} and w{−1},
iving the binary class label:

new = sign

{∑
i

˛iyiK(new, i)

}

= sign{wT
{+1}|xnew〉 − wT

{−1}|xnew〉}. (12)

The classification decision boundary is given by an hyperplane
rthogonal to the difference vector w{+1} − w{−1}.

We have explained the learning and classification process on
NA molecules using simple in vitro operations. In the following

ection, we verify that positive definite kernel matrices can be
roperly formed using thermodynamic models of hybridization.

. Hybridization kernel and positive definiteness

When hybridized results are regarded as kernel elements for
lassification, a positive definiteness (Schölkopf and Smola, 2001)
r at least a near-positive definiteness (Haasdonk, 2005; Ong et al.,
004) of the resulting matrix should be achieved. In this section,
e discuss the positive definiteness of the proposed kernel using a

inetic model of hybridization with thermodynamics incorporated.
he kinetic model provides predictions for how the different kernel
atrix coefficients change as a function of temperature, and we

how how an appropriate positive definite kernel matrix can be
ormed under an annealed temperature schedule.

We consider hybridization between a primary sequence
olecule |xi〉 and a complementary molecule 〈xj|. When |xi〉 and 〈xj|

ybridize to make a double strand, the process is considered to be a
tochastic process of continuous hybridization and denature with
ransition probabilities ph and pd. These transition probabilities are
overned by the hybridization energy and entropy changes, written
s �E  (kcal) and �S  (kcal/K) respectively, as well as by the temper-
ture T (K), and we can understand hybridization a Monte Carlo
arkov Chain (MCMC) process with the transition probabilities

Kim et al., 2008),

ph =
{

exp(−G/ckT), G ≡ �E  − T�S  ≥ 0

1, G ≡ �E  − T�S  < 0

pd =
{

1, G ≡ �E  − T�S  ≥ 0

exp(G/ckT), G ≡ �E  − T�S  < 0.

(13)

hen two particular single stranded molecules of the same
mount hybridize, this MCMC  process will make a Boltzmann
istribution at equilibrium: the ratio between the concentration
f double strands and the square of single strands will be pro-
ortional to exp { − (�E − T�S)/ckT} with a Boltzmann constant
k = 3.2982 × 104 (kcal/K). However, in a modeling of complex
ybridization with many different molecules, the final distribution
oes not follow the Boltzmann distribution but stays in a different
quilibrium. In this situation, the kinetics of hybridization are more
mportant for explaining the population at equilibrium.

Previously, Britten and Kohne (1968) found that the amount of
ybridization is not primarily governed by the thermodynamics
ut follows the similar kinetics regardless of the kinds of bind-
ng, once the temperature is below a certain level. This is because
he frequency of collision becomes more important than the bind-
ng probability itself, if the binding probability is high enough. In
heir analysis on hybridization, it is claimed that the population of
s 137 (2015) 73–83 77

single stranded molecules C changes over time t when the initial
concentration of single stranded molecules is C0:

C

C0
= 1

1 + ˛C0t
. (14)

Here, the estimation results showed that the constant  ̨ is about the
same over various DNAs. Now, this equation can be approximated
with small t considering that the majority of the population change
occurs at the early stage when C is high:

C ≈ C0 − ˛C2
0 t. (15)

From this equation, we  can see that the amount of hybridized
molecules is approximately proportional to the hybridization time
and the square of the initial concentration of single stranded
molecules, while the hybridization speed is not governed by
the hybridization energy or entropy. Therefore, we can make a
hybridization model where the amount of hybridization is propor-
tional to the time of hybridization, when the temperature is within
a regime where hybridization can occur. From Eq. (13), we assume
that the regime is the temperature below T� ≡ �E/�S.

Now, we  consider hybridization with a cool-down schedule
from a high temperature Ti to a low temperature Tf with a constant
speed. Once the temperature passes the threshold temperature
T� ≡ �E/�S, the hybridization begins. Upon these settings, the
amount of hybridized molecules can be approximated as propor-
tional to the following terms:

〈xj|xi〉 ∝ [T�(i, j) − Tf ]+ − [T�(i, j) − Ti]+ (16)

Here [·]+ = max  [0, ·] is the rectification nonlinearity and the thresh-
old temperature for a pair of DNA molecules |xi〉, and 〈xj| is given by
�Eij − T�(i, j)�S = 0 with binding energy �Eij and entropy change
�S.

Eq. (16) can be interpreted to mean that the speed of accumu-
lation of double strands is assumed to be zero when the current
temperature is higher than the threshold temperature T� , and the
speed is constant when the temperature is lower than T� . In this
case, the hybridized amount is proportional to the hybridizing
time, and the hybridizing time is again proportional to either the
difference T� − Tf or Ti − Tf, whichever is smaller, when the final
temperature Tf is smaller than both T� and Ti. For example, when
the initial temperature Ti is greater than the threshold temperature
T� , Eq. (16) denotes T� − Tf, while the initial temperature Ti, which
is smaller than the threshold temperature T� , changes Eq. (16) to
Ti − Tf. Eq. (16) also considers the situation where the final temper-
ature Tf is not less than T� , which produces a zero amount. From
this consideration, we  obtained the amount of each double strand
Eq. (16) with initial temperature Ti and final temperature Tf.

Intuitively, the annealed hybridization is guaranteed to make
a positive definite kernel at the first stage when the temperature
is still higher than T� for any non-complementary hybridization.
In this case, the perfect complementary bindings will produce a
diagonal matrix where the diagonal elements simply become the
eigenvalues. However, we  doubt whether the matrix will keep the
positive definiteness after non-diagonal components start to accu-
mulate. The next discussion will provide more evidence of how
hybridization using a cooling schedule will make a positive definite
matrix.

Because the kernel element is a function of the threshold tem-
perature for binding T� , we can represent the kernel elements using
the binding energies. For simplicity of the analysis, we use a pre-
vious work showing that the hybridization energy and entropy are
simply well-described in terms of three different binding energies.

These three binding energies are between A and T, or �EAT, between
C and G, or �ECG, and the binding energy for other pairs, or �EOth
(Kim et al., 2008). Table 1 shows the experimentally determined
values for these binding energies.
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Table 1
Binding energy of the individual pairs (kcal/mole base pair (MBP)).

C-G &G-C �ECG = −9.0

A-T &T-A �EAT = −7.2
A-G &G-A

A-C &C-A �EOth = −5.3
T-G &G-T
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sequence is used. While the matrix is positive definite in this case,
T-C &C-T

Using these binding energies, we show that a sufficient con-
ition for the matrix K to be positive definite. In the following
heorem, we consider hybridization of DNA molecules of length
, where all sequences share a common set of m nucleotides.

heorem 2. For sequences of length l, having length r of variable
ucleotides and length m of a common nucleotide fragment (l = r + m),
nd when common nucleotides have an average binding energy of �Eg,
he matrix K from Eq. (16) is positive semi-definite if Ti and Tf satisfy

i > − (r�ECG + m�Eg)/�S and Tf < − (r�EOth + m�Eg)/�S.

roof. We prove the positive semi-definiteness of matrix K by
roving the positive semi-definiteness of each matrix from the two
·]+s in Eq. (16) separately. First, the term T� − Tf can be represented
s

1
�S

{
−�Er

ij + r�EOth − r�EOth − m�Eg − Tf �S
}

, (17)

here �Er
ij

is the binding energy of varying sequences of length
 satisfying �Eij = �Er

ij
+ m�Eg . We  see that the matrix −�Er +

�EOth1N1T
N , where each element is the first two terms in (17), is

ositive definite. Here, 1N is a column vector whose N elements
re all unitary. Consequently, −�E/�S  − Tf 1N1T

N is positive def-
nite when the other terms in (17), −(r�EOth + m�Eg + Tf�S) are
ositive, which gives the condition Tf: Tf < − (r�EOth + m�Eg)/�S.
econd, if −�Eij/�S − Ti in the second [·]+ term are all negative,
hen the matrix remains positive definite. This yields the additional
ondition Ti > − (r�ECG + m�Eg)/�S. �

Theorem 2 shows that positive definiteness of the ker-
el matrix is ensured if it is annealed from a temperature
igher than −r�ECG + m�Eg/�S to a temperature lower than
r�EOth + m�Eg/�S. These bounds are also controlled by the aver-
ge binding energy �Eg of a common nucleotide fragment. This
alue �Eg is always between �ECG and �EAT, and the presence
f common nucleotides always decreases the lower bound on the
nitial temperature Ti and increases the upper bound on the final
emperature Tf.

For example, if we consider molecular sequences of length
 = 100, and if they have common nucleotide fragments of 50
A’s and 20 ‘T’s, then �Eg = −7.79 (kcal) according to Table 1, and

 = 70 and r = 30. We  also use �S  = csl where cs = 0.023 (kcal/K)
or the entropy calculation (Kim et al., 2008). In this case,
ccording to Theorem 2, the kernel satisfies positive defi-
iteness if Ti > (9 × 30 + 7.79 × 70)/(0.023 × 10)(K) = 81.33 (◦C) and
f < 33.07 (◦C), which is easily satified during the experimental DNA
ybridization process.

More complex DNA binding models relax the assumption
f independent binding energies per base pair. For example, a
ontext-dependent binding method can be used which considers
onsecutive pairs of neighborhood sites (Santalucia, 1998). Even

ith these more complex models, analytic calculations show that

he in vitro DNA kernel matrix will remain positive definite if the
roper annealing schedule is followed.
s 137 (2015) 73–83

5. Experimental results

In this section, we present several simulation experiments to
show how the proposed algorithm can perform classification tasks.
In the simulation, we first see that positive definiteness can be
achieved by using the appropriate temperature schedule. Then we
see how the kernel can change its sparseness according to dif-
ferent temperature schedules. Second, we simulate our learning
algorithm with real biological datasets and compare the results
against standard machine learning algorithms. The performance of
the proposed algorithm is compared to the well-known kernel clas-
sification algorithms, SVMs and kernel Fisher discriminant analysis
(kFDA), using the same kernel values.

In addition to the simulation results, we also present a
biomolecular DNA experiment implementing the DNA kernel
and hetero-labeled molecular selection. The experimental results
are obtained using one particular set of specially designed DNA
sequences.

5.1. Thermodynamic simulation

For the simulation of hybridization processes, it is common to
incorporate a dynamics equation representing the rate of change in
the amount of molecules (Gillespie, 1977, 2007; Kim et al., 2006). In
our first experiment, we incorporate the hybridization of strands
|xi〉, i = 1, . . .,  N and 〈xj|, j = 1, . . .,  N using the rate equation in Eq.
(18) and check whether the annealing with cooling schedule helps
generate a positive definite kernel.

∂|xi|
∂t

=
N∑

j=1

{kd(i, j)〈xj|xi〉 − kh(i, j)|xi||xj|}

∂〈xj|xi〉
∂t

= kh(i, j)|xi||xj| − kd(i, j)〈xj|xi〉

(18)

Here,
∣∣xi

∣∣ and 〈xj|xi〉 represent the amount of single and double

stranded molecules, respectively, where
∣∣xi

∣∣ is the amount of |xi〉,
and 〈xj|xi〉 is the amount of double-stranded molecules of |xi〉 and
〈xj|. The rate constants kh(i, j) and kd(i, j) are proportional to the
hybridization probability ph and the denaturing probability pd in
Eq. (13), determined by the hybridization energy and entropy of
the sequence i and the complementary sequence j, as well as the
temperature.

The system from Eq. (18) is nonlinear, where the population dis-
tribution can arrive more than one stationary distribution. Because
kd and kh are functions of the temperature, the final distribution of
single and double stranded molecules is determined by the sched-
ule of the temperature during hybridization. Here, we  generated
random six sequences and their complementary sequences and
tested how annealing process, proposed in Section 4, helps generate
a positive definite kernel. In Fig. 5, two  different annealing sched-
ules are used in Fig. 5(a) and (c), and the construction curves of one
diagonal (K11) element and one off-diagonal (K12) element are pre-
sented. When the annealing started from a higher temperature as
in Fig. 5(a), the difference between the diagonal and off-diagonal
elements is much larger than the annealing in Fig. 5(c), produc-
ing diagonal dominant kernel matrices. In this case, the matrix
tends to be positive definite as shown in Fig. 5(b), which can be
compared with the result with non-sufficient annealing in Fig. 5(d)
representing a non-positive definite matrix.

In Fig. 5(e) and (f), temperature schedule is the same as the
experiments in Fig. 5(a) and (b), while the less length of common
the off-diagonal elements become too sparse as in Fig. 5(e), pro-
ducing a non-informative kernel matrix, where every pair of data
are orthogonal in the feature space.
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Fig. 5. Simulation of kernel values. Six random primary sequences are hybridized together with their complementary sequences using Eq. (18). The primary sequences
include a common sequence where the relative length is also represented. In (a), (c), and (e), the temperature schedules and the resulting K11 and K12 are plotted over time
for  one example of random sequence. In (b), (d), and (f), the mean and the covariance of 6 eigenvalues of generated kernels are shown for experiments in (a), (c), and (e),
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espectively. In (c) and (d), annealing is not sufficient, and in (e) and (f), less commo

Once a positive definiteness can be achieved by annealing, a
parseness of the kernel can be further controlled by modifying
he temperature schedule. Conventional kernels tune their sparsity
sing kernel parameters, such as the width parameter in a Gauss-

an kernel. In our proposed kernel, we can use the temperature
chedule to tune the kernel as the width parameter does. For exam-
le, a sparse matrix can be generated by keeping the temperature
igh through hybridization. When the temperature is higher than

 particular temperature, only perfectly complementary sequences
an hybridize, so that the diagonal coefficients in the kernel matrix

ominate.

Another method for controlling sparseness is to use common
atterns in the DNA sequences as discussed with the results in
ig. 5(e) and (f). Inserting common subsequences encourage pairs of
uence is used than (a) and (b).

DNA sequences to hybridize more, resulting in a less sparse kernel
matrix.

5.2. Classification performance

Different temperature schedules produce different kernel val-
ues. In our classification results with the generated data shown
in Fig. 6, points in a two-dimensional space are labeled into two
classes shown in yellow and blue color. In this space, the binding
energy is given by the Euclidean distance between pairs of points.

The contours represent various hybridization amounts, and change
according to the annealing temperature schedules. This shows how
controlling the hybridization schedule influences both the positive
definiteness and sparsity of the resulting kernel matrices.
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Fig. 6. Two-class data are distributed in a two dimensional space and labeled as yellow and blue. Binding energy between pairs of points are determined by the Euclidean
distance and scaled so that the energy is within the range of −56 to −84(kcal). The length of binding nucleotides is set to l = 10 for the entropy calculation. The data are
learned with different temperature schedules; test results across the data space is presented as red and blue for the yellow and blue classes respectively. Temperatures for
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ybridization is (a) 80 C to 20 C, (b) 80 C constant, and (c) 30 C constant. The ke
olor  in this figure legend, the reader is referred to the web  version of the article.)

With sufficient annealing as shown in Fig. 6(a), the kernel satis-
es positive definiteness. In Fig. 6(c) with no annealing, the kernel
oes not satisfy positive definiteness, resulting in bad classification
esults. With high temperature hybridization in Fig. 6(b), the kernel
atrix is positive definite but very diagonally dominant and sparse.
n this case, the hybridization contours show that the decision sur-
ace depends more specifically on nearest neighbors as compared to
he decision surface in Fig. 6(a). Such a sparse kernel matrix would
e more vulnerable to noise in the training data.
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ig. 7. ROC (Receiver Operating Characteristic) curves. The classification is performed us
riterion  is not in general appropriate in this data. Interestingly, the proposed DNA learning
n  SVMs and the regularization parameter in FDA are scanned and optimized. In our DNA
n (c) does not satisfy positive definiteness. (For interpretation of the references to

Algorithm 3. Learning with in vitro kernels

Input: Sequences |xi〉 and complementary sequences 〈xi| for all i ∈ {1, . . .,
N}, and constants Tf , Ti , cs , and �.

Initialize Kij =
[
− �Eij

cs l
− Tf

]
+

−
[
− �Eij

cs l
− Ti

]
+

, ˛t=0
i

= 1, and t = 0

repeat (∑ ∑ )

˛t+1

i
= ˛t

i yj /= yi
Kij˛

t
j
/

N

m=1
Kim˛t

m

t = t + 1

until
∑

i
(˛t+1

i
− ˛t

i
)
2

< �
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ing our DNA learning, SVMs and kernel FDA using the same DNA kernel. The FDA
 method outperforms or is similar to SVMs in all cases. The slack variable parameter

 learning, the algorithm does not have any tunning parameters.
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Fig. 8. Learning curve (test performance) of AML/ALL data with respect to algorithm
iteration and the 2-dimensional embedding of training data on the feature space.
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orizontal axis of the insets represents the vector direction w{+1} − w{−1} . Vertical
xis  is the maximum variance direction of the orthogonal space to the discriminating
irection.

We  next evaluate the performance of the learning algorithm,
ummarized in Algorithm 3, on several benchmark datasets. One
ataset contains gene expression data collected from microarray
xperiments for discrimination of acute myelogenous leukemia
AML) and acute lymphoblastic leukemia (ALL) (Cheok et al., 2003).
he microarray data are preprocessed, and 1000 genes out of
2,600 genes are used which show maximum mutual information
etween expression levels and labels. Each gene expression value

s simplified by binary thresholding, and are encoded as ‘A’ and ‘G’
espectively for our experiment. Data are thus expressed as strings
f length 1000. We  used the kernel defined in Equation (16) using
i = 90◦C and Tf = 20◦C. The results are the average of 5-fold cross-
alidation. At each validation, 24 different examples are reserved
or testing, while the remaining 96 examples are trained.

The other dataset contains DNA sequences that need to be clas-
ified according to whether or not they contain a splice region.
hree different problems are contained in this set, concerning the
lassification of expressed sequence tag (EST) in C. elegans, EST in
rosophila, and synthesized sequences, with the details of data col-

ection and processing methods described in Rätsch et al. (2006).
n general, the number of negative samples is larger than positive
amples, and we used all the positive data and the same number
f random negative data. For the C.elegans set, the 15,507 posi-
ive samples are divided into 15 non-overlapping subsets randomly
ontaining 150 training and 700 testing samples. The Drosophila set
f 1583 positive samples is divided into 3 distinct subsets randomly
ontaining 100 training samples and 400 testing samples. The syn-
hetic set has 95 positive training samples and 905 positive testing
amples. Among the synthetic sets in Rätsch et al. (2006), we used
he sequences where five symbols are randomly replaced.

The classification performance of the algorithm is compared
ith the conventional SVM and kFDA classifier. The slack variable
arameter for the SVM algorithm and the regularization parame-
er for kFDA are optimized using cross-validation. The ROC curves
Fig. 7) shows that the classification performance of our proposed

ethod is superior to kFDA and performs better than the SVM
lgorithm on the AML/ALL, Drosophila, and synthetic sequences.
We  also present a sample learning curve for the AML/ALL data
n Fig. 8. Within a few iterations of the learning algorithm, the test
erformance increases sharply indicating that the algorithm con-
erges rapidly enough for practical implementation. The resulting
s 137 (2015) 73–83 81

embedding in feature space shows that the performance increase
is indeed due to increasing the margin of the training data.

6. Biomolecular implementation

The implementation of the algorithm on actual biomolecular
DNA molecules requires concatenation of various DNA operations.
Such operations can include hybridization, denaturing, polymerase
chain reaction (PCR, for amplification), and gel electrophoresis (for
selection). In this section, we present one example of preliminary
implementation using these operations of in vitro classification sys-
tem. The experiments will show the possibility of implementation
in the future, where the actual implementation needs additional
complex constraints of DNA operational design.

6.1. Implementation procedure

One example of a real implementation of the proposed algo-
rithm is presented in this section. First, we start by mixing all the
oligonucleotides with data and their complementary sequences.
In order to separate the homo-labeled double stranded molecules
from the hetero-labeled double stranded molecules, we can use dif-
ferent lengths of molecules for the different classes. In Table 2, we
show our example of DNA coding with six data of 21 mer, added by
a common sequence of 16 mer  which is divided into 8 mer  on both
sides, as well as a dummy  sequence on the 3′ side to control the
total length of the molecule. Here, three data are labeled as class
+1 and the other three as class −1, and the total lengths of different
classes are differentiated to be 46 mer  and 54 mer  respectively. The
sequences are expected to be hybridized as shown in Fig. 9.

Hybridizing between these molecules will produce the homo-
labeled double strands in class +1, homo-labeled strands in class
−1, and hetero-labeled double strands between class +1 and class
−1, all having different masses and lengths. After hybridization,
we will have three different double-stranded molecules with three
different masses. Now, we  separate the double strands into three
different bands using gel electrophoresis. The band including the
hetero-labeled double strands can be collected and amplified for
subsequent iterations of the learning algorithm.

In this coding example, a common sequence of 16 mer  is added
to all primary sequences (sequence 1, 2, and 3) and the comple-
mentary of the common sequence is added to all complementary
sequences (sequence 1-C, 2-C, and 3-C) at the same location. The
examples of common sequences and data sequences are presented
and marked in Fig. 9 for the sequence 1 and the sequence 4-C.
In our analysis, we showed that recruiting a common sequence
allows the system to improve the reliability of the results from
various perspectives. First, mismatch of sequences is less likely
with the increase of common sequences. This property can be eas-
ily confirmed by a hybridization analyzer, such as NUPACK (Zadeh
et al., 2011). However, because the cost increases with the length
of sequence, the incorporation of a long common sequence is
restricted in reality. Second, the common sequence helps make the
matrix be positive definite as shown in Theorem 2 and Fig. 5 from
the classification accuracy perspective. The dummy  code of 9 mer
on the 3′ side of class +1 and 17 mer  of the class −1 also can be
designed as a sticky end, where there is room to design for more
selection operations using these dummy  sequences.

After enough hybridization, hetero-labeled double strands are
selected to update the population as in Theorem 1. In Eq. (6), the
total number of double strands containing one particular sequence

corresponds to the denominator and the number of hetero-
labeled double strands among them corresponds to the nominator.
Therefore, iterative hetero-labeled selection will lead the distri-
bution having the weight in Theorem 1. After the selection, an
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Table 2
Six different data are represented using twelve kinds of molecules. Each pair i and i-C represent one datum containing the data sequence and its complementary sequence.

Class Index Sequence

1 5′AGCAGACTTTAATGTTAATGTTATTATTACTACATCGCACGACTGA3′

1-C 5′CGATGTAGTAATAATAACATTAACATTAAAGTCTGCTCACGACTGA3′

Class +1 (46mer length) 2 5′AGCAGACTATGATGTTATTATTATTATTACTACATCGCACGACTGA3′

2-C 5′CGATGTAGTAATAATAATAATAACATCATAGTCTGCTCACGACTGA3′

3 5′AGCAGACTATGATGTTATTAATGTTATTACTACATCGCACGACTGA3′

3-C 5′CGATGTAGTAATAACATTAATAACATCATAGTCTGCTCACGACTGA3′

4 5′AGCAGACTTTATTATTAATGATGTTAATGCTACATCGACAGCAAGCACGACTGA3′

4-C 5′CGATGTAGCATTAACATCATTAATAATAAAGTCTGCTACAGCAAGCACGACTGA3′

Class −1 (54mer length) 5 5′AGCAGACTTTAATGTTATTAATGATGTTACTACATCGACAGCAAGCACGACTGA3′

5-C 5′CGATGTAGTAACATCATTAATAACATTAAAGTCTGCTACAGCAAGCACGACTGA3′

6 5′AGCAGACTTTATTATTAATGATGATGATGCTACATCGACAGCAAGCACGACTGA3′

6-C 5′CGATGTAGCATCATCATCATTAATAATAAAGTCTGCTACAGCAAGCACGACTGA3′

tween molecules 1 and 4-C in Table 2.
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Fig. 10. Gel electrophoresis results from mixtures in Table 2. This figure shows the
results of three experiments; the first one (second lane) shows the result of all

distribution can be any attractor making all equations on the right
hand side in Eq. (18) be zero. Therefore, the final distribution is

Table 3
Fig. 9. Expected hybridization be

mplification process such as PCR can be used to avoid losing the
olecules. In this process, we do not have to consider a specific

ain, but it is enough to keep the ratio of the population because
he classification result is unaffected once the ratio is kept.

In the discriminative phase, when we use the fluorescence
ntensity of two different binded fluorophores to measure the rel-
tive amount of hybridized strands, we should make sure that the
istance is fixed between the fluorophore and the quencher within

 hybridized molecule. Otherwise, the intensity is affected by the
istance, and the intensity could not reliably measure the number
f double strands. In our method, we considered only the specific
ybridization as in Fig. 9 and tried to disallow any hybridization
ther than at a pre-determined position by adopting a comple-
entary common sequence throughout all sequences. By allowing

nly the pre-defined hybridization configurations, we can know
n advance the relative fluorescence intensities of different classes

hen they have the same number of hybridizations, and we  can
ccordingly calibrate the reading of fluorescence intensity of each
lass.

.2. Hybridization implementation

In Fig. 10, we show the gel electrophoresis result with the
ybridized molecules using all sequences presented in Table 2.
ere, all species of the oligonucleotide were mixed with the same
oncentration in a 1.5 mL  microcentrifuge tube (final 60 �M each
nder 0.5 M NaCl salt conditions). After heating the mixture at
5 ◦C for 3 minutes, we gradually cooled the temperature down

n a heat block, after which the tube was incubated overnight
ith constant rotation (60 rpm) in a 37 ◦C incubator. Five micro-

iter products were mixed with 1 �l of 6× loading buffer, and the
ixture was loaded into a Spreadex EL300 gel (Elchrom Scientific,

witzerland). Electrophoresis was performed at 120V for 3 h in a
EA 2000 electrophoresis apparatus (Elchrom Scientific). Temper-
ture of the running buffer (TAE) was kept constant at 20 ◦C. The
el was stained with SYBR Gold, and visualized using Bio-Rad gel
oc 2000 (Bio-Rad, USA).
We also estimated the quantity of molecules in the three
ands. The average and standard deviation for 15 trials are pre-
ented in Table 3. As expected, when we consider the resulting

 × 2 matrix representing the amount of double strands of four
sequence mixtures, and the second and third experiments (third and fourth lanes)
are the results of class +1 molecules and class −1 molecules, respectively.

possible class combinations of the primary and complementary
strands, the matrix for this experiment is positive definite as a
necessary condition for the positive definiteness of the kernel.

Another expectation is the linear relationship of the amount
with respect to the binding energy. In Section 4, we  explained that
the distribution of the differently hybridized molecules will not
follow the Boltzmann distribution with many molecules. According
to our kinetic model, the amount of molecules will be proportional
to the energy at first, and the distribution will stay in one nearby
local attractor distribution at equilibrium. Here, the equilibrium
Hybridized amount (IDV).

Homo (class +1) 209.2 ± 13.8
Hetero 200.5 ± 15.1
Homo (class −1) 206.4 ± 15.0
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R.M., Pierce, N.A., 2011. NUPACK: analysis and design of nucleic acid systems. J.
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lose to linear rather than exponential which is the case when the
opulation follows a Boltzmann distribution.

. Conclusions

We  introduced a biomolecular algorithm for learning with DNA
oleculesInterpreted within the context of kernel machines, the

esulting algorithm can be viewed as learning a weight vector
ssociated with the convex cones of the data in the associated fea-
ure space. Simulations show that the proposed molecular learning
lgorithm is competitive with state-of-the-art machine learning
lgorithms.

We also showed the possibility of exploiting the algorithm to
eal in vitro implementation. In particular, the thermodynamic
imulation of constructing kernel matrix shows that a simple
ooling schedule of hybridization guarantees the positive definite-
ess of the resulting matrix. Given the promising nature of these
esults, we hope that experimental groups will consider additional
xperiments building upon our proposed molecular algorithm and
nalysis. Future work needs to consider how to optimize yield in
uch biomolecular processes. We  hope that with such work, learn-
ng and classification will be implemented seamlessly in a living
ell.
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