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Abstract: Efficient unconditionally stable FDTD method is developed
for the electromagnetic analysis of dispersive media. Toward this pur-
pose, a quadratic complex rational function (QCRF) dispersion model is
applied to the alternating-direction-implicit finite-difference time-domain
(ADI-FDTD) method. The 3-D update equations of QCRF-ADI-FDTD are
derived using Maxwell’s curl equations and the constitutive relation. The
periodic boundary condition of QCRF-ADI-FDTD is discussed in detail.
A 3-D numerical example shows that the time-step size can be increased
by the proposed QCRF-ADI-FDTD beyond the Courant-Friedrich-Levy
(CFL) number, without numerical instability. It is observed that, for refined
computational cells, the computational time of QCRF-ADI-FDTD is
reduced to 28.08 % of QCRF-FDTD, while the L2 relative error norm of a
field distribution is 6.92 %.
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1. Introduction

The finite-difference time-domain (FDTD) method [1] has been popularly applied for a wide
range of electromagnetic (EM) problems including lossy materials [2], plasmonic structures [3],
magnetic photonic crystals [4], metamaterials [5], and organic solar cells [6]. FDTD is accurate
and robust, and also it can obtain wideband EM responses by performing a single simulation. In
FDTD, due to the time-domain approach, a proper dispersion model is required for analyzing
materials with frequency-dependent characteristics. Recently, the quadratic complex rational
function (QCRF) dispersion model was successfully employed for the FDTD analysis of dis-
persive media, such as human tissues [7], concrete materials [8], and silicon solar cells [9].
The QCRF dispersion model has higher degree of freedom than Debye [10], Drude [11], or
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Lorentz [12] models and also its coefficients can be obtained by a simple matrix calculation.
Due to the explicit solution of differential equations, the time-step size of FDTD is limited

by the Courant-Friedrichs-Levy (CFL) stability limit [1] which is a function of minimum spa-
tial grid sizes determined by the highest frequency and/or a given structure. When objects are
much smaller than the wavelength of interests (e.g., thin film devices [13], subwavelength struc-
tures [14], or nanostructures [15]), a FDTD analysis is highly demanding. To overcome the CFL
stability limit of FDTD, the alternating direction implicit (ADI)-FDTD can be used [16–18].
Since it involves an semi-implicit scheme, time-marching update equations can be calculated
unconditionally stably by using a large time-step size beyond the CFL stability limit.

In this work, we apply the QCRF dispersion model to the ADI-FDTD algorithm to efficiently
analyze optical wave propagation in dispersive media. The periodic boundary condition (PBC)
is employed for the lateral computational cells to excite the plane wave with enhanced com-
putational efficiency and the complex frequency-shifted (CFS) perfectly matched layer (PML)
is used for the longitudinal direction to minimize spurious reflections from the computational
boundary. Finally, a 3-D numerical example is used to illustrate the computational accuracy and
efficiency of the proposed QCRF-ADI-FDTD.

2. Methodology

Before proceeding with the formulation of QCRF-ADI-FDTD, we briefly review the formula-
tion of QCRF-FDTD [7]. We assume the ejωt time convention in what follows, where j=

√−1.

2.1. Formulation of QCRF-FDTD

In QCRF-FDTD, the relative permittivity part of a dispersive medium is expressed as

εr(ω) =
A0 +A1(jω)+A2(jω)2

1+B1(jω)+B2(jω)2 (1)

where A0, A1, A2, B1, B2 are the real coefficients which can be simply obtained by a 5×5
matrix calculation [7]. In order to obtain the update equations of QCRF-FDTD, we consider
the constitutive relation as follows

D(ω) = ε0

(
A0 +A1(jω)+A2(jω)2

1+B1(jω)+B2(jω)2

)
E(ω). (2)

By applying the inverse Fourier transform and the central difference scheme (CDS), we have

Dn+1+2Dn+Dn−1

4 +B1
Dn+1−Dn−1

2Δt +B2
Dn+1−2Dn+Dn−1

Δt2
(3)

= ε0A0
En+1+2En+En−1

4 + ε0A1
En+1−En−1

2Δt + ε0A2
En+1−2En+En−1

Δt2
.

With some manipulations, final update equation for E can be obtained as follows

En+1 =CaEn +CbEn−1 +CcDn+1 +CdDn +CeDn−1 (4)

where Ca =−2(α0−α2)/(α0 +α1 +α2), Cb =−(α0−α1 +α2)/(α0 +α1 +α2), Cc = (β0 +
β1 + β2)/(α0 +α1 +α2), Cd = 2(β0− β2)/(α0 +α1 +α2), and Ce = (β0− β1 + β2)/(α0 +
α1 +α2). Note that α0 = A0(Δt)2, α1 = 2A1Δt, α2 = 4A2, β0 = (Δt)2/ε0, β1 = 2B1Δt/ε0, and
β2 = 4B2/ε0. In above, the superscript refers to the time-step indexing. The update equations
of D and H can be obtained by applying the CDS to time-dependent Maxwell’s curl equations.
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2.2. Formulation of QCRF-ADI-FDTD

The ADI scheme requires updating EM field components from the time step n to n+1 through
two sub-iterations. Therefore, QCRF-ADI-FDTD update equations of E can be written as

First sub-iteration:

En+1/2 =CcDn+1/2 +φφφ n (5)

φφφ n+1/2 =CaEn+1/2 +CbEn +CdDn+1/2 +CeDn (6)

Second sub-iteration:

En+1 =CcDn+1 +φφφ n+1/2 (7)

φφφ n+1 =CaEn+1 +CbEn+1/2 +CdDn+1 +CeDn+1/2. (8)

Note that Ca, Cb, Cc, Cd , and Ce are same as in FDTD but with different variables: α0 =
A0(Δt)2/4, α1 = A1Δt, α2 = 4A2, β0 = (Δt)2/(4ε0), β1 = B1Δt/ε0, and β2 = 4B2/ε0. Simi-
lar to E update equations, the update equations of D and H at each time step is divided into
two sub-iterations and they can be obtained from time-dependent Maxwell’s curl equations.

For example, the first sub-step update equations of the Dn+1/2
x and Hn+1/2

z are derived as

Dx|n+1/2
i+1/2, j,k = Dx|ni+1/2, j,k +

Δt
2Δy

(Hz|n+1/2
i+1/2, j+1/2,k−Hz|n+1/2

i+1/2, j−1/2,k) (9)

− Δt
2Δz

(Hy|ni+1/2, j,k+1/2−Hy|ni+1/2, j,k−1/2)

Hz|n+1/2
i+1/2, j+1/2,k = Hz|ni+1/2, j+1/2,k−

Δt
2μ0Δx

(Ey|ni+1, j+1/2,k−Ey|ni, j+1/2,k) (10)

+
Δt

2μ0Δy
(Ex|n+1/2

i+1/2, j+1,k−Ex|n+1/2
i+1/2, j,k)

where the subscript refers to the spatial grid indexing. Note that we cannot solve Dn+1/2
x and

Hn+1/2
z directly from Eqs. (9) and (10), because field values at the simultaneous time (n+1/2)

are involved. Therefore, plugging Eq. (5) into Eq. (10) and then putting the resulting equation
into Eq. (9), we have

−C0D0Cc

(Δy)2 Dx|n+1/2
i+1/2, j−1,k +

[
1+2

C0D0Cc

(Δy)2

]
Dx|n+1/2

i+1/2, j,k−
C0D0Cc

(Δy)2 Dx|n+1/2
i+1/2, j+1,k (11)

= Dx|ni+1/2, j,k +
C0

Δy

(
Hz|ni+1/2, j+1/2,k−Hz|ni+1/2, j−1/2,k

)

−C0

Δz

(
Hy|ni+1/2, j,k+1/2−Hy|ni+1/2, j,k−1/2

)

−C0D0

ΔyΔx

(
Ey|ni+1, j+1/2,k−Ey|ni, j+1/2,k−Ey|ni+1, j−1/2,k +Ey|ni, j−1/2,k

)

+
C0D0

(Δy)2

(
φx|ni+1/2, j−1,k−2φx|ni+1/2, j,k +φx|ni+1/2, j+1,k

)

where C0 =Δt/2 and D0 =Δt/(2μ0). Note that Eq. (11) can be efficiently solved by the Thomas
algorithm [19]. Overall, the 3-D QCRF-ADI-FDTD procedure in the first sub-iteration is sum-
marized as
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1. Implicitly update Dn+1/2 (e.g., Eq. (11))

2. Explicitly update En+1/2 (e.g., Eq. (5))

3. Explicitly update φφφ n+1/2 (e.g., Eq. (6))

4. Explicitly update Hn+1/2 (e.g., Eq. (10)).

An analogous procedure can be applied for deriving the update equations of QCRF-ADI-FDTD
in the second sub-iteration. In this work, the CFS-PML [20] is employed to minimize spurious
reflection from the outer grid boundaries along the longitudinal (z) direction. By using a com-
plex stretched coordinate technique [21], the CFS-PML implementation of QCRF-ADI-FDTD
can be straightforwardly obtained and thus details are omitted in this paper. On the other hand,
we employ the PBC [22] on the lateral (x and y) direction to efficiently excite the plane wave
and details on the PBC implementation of QCRF-ADI-FDTD will be discussed in the next
section.

2.3. Periodic boundary condition of QCRF-ADI-FDTD

When applying the PBC to QCRF-ADI-FDTD, the update equations of D do not have a tridiag-
onal matrix form anymore. Without loss of generality, we consider the y directional periodicity.
We can write the update equation of Dx in the first sub-iteration as a cyclic tridiagonal matrix
form [M]x = r

[M] =

⎡
⎢⎢⎢⎢⎢⎣

b0 c0 0 0 aN−1

a1 b1 c1 0 0

0
. . .

. . .
. . . 0

0 0 aN−2 bN−2 cN−2

c0 0 0 aN−1 bN−1

⎤
⎥⎥⎥⎥⎥⎦
, x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dx|n+1/2
i+1/2,0,k

...

Dx|n+1/2
i+1/2, j,k

...

Dx|n+1/2
i+1/2,N−1,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r =

⎡
⎢⎢⎢⎢⎢⎢⎣

r|n0
...

r|nj
...

r|nN−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (12)

Let us consider the PBC at j=0. As seen from Eq. (11) and Fig. 1(a), to update Dx|n+1/2
i+1/2,0,k,

we need Hz|ni+1/2,−1/2,k, Ey|ni+1,−1/2,k, Ey|ni,−1/2,k, and φx|ni+1/2,−1,k. They are not allocated in the
computer memory and thus we use alternative field values using the periodicity:

Hz|ni+1/2,−1/2,k← Hz|ni+1/2,N−1/2,k (13)

Ey|ni+1,−1/2,k← Ey|ni+1,N−1/2,k

Ey|ni,−1/2,k← Ey|ni,N−1/2,k

φx|ni+1/2,−1,k← φx|ni+1/2,N−1,k.

When updating Dx|n+1/2
i+1/2, j,k at j=N (see Fig. 1(b)), we can simply use the filed value at j=0:

Dx|n+1/2
i+1/2,N,k← Dx|n+1/2

i+1/2,0,k. (14)

For updating Dz|n+1/2
i,0,k+1/2, we need Hx|ni,−1/2,k+1/2 and we can use the following relation:

Hx|ni,−1/2,k+1/2← Hx|ni,N−1/2,k+1/2. (15)
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(a) (b)

Fig. 1. Field location in the computational cell. (a) updating Dn+1/2
x at j=0. (b) updating

Dn+1/2
x at j=N.

Also, we replace Dz|n+1/2
i, j,k+1/2 at j=N as

Dz|n+1/2
i,N,k+1/2← Dz|n+1/2

i,0,k+1/2. (16)

Note that, in the y directional periodicity, no special PBC treatments are needed for other field

components (En+1/2, φφφ n+1/2, Hn+1/2, and Dn+1/2
y ). Similar PBCs are straightforwardly applied

for the x directional periodicity and the second-sub-step update equations. It is worthwhile to
note that the cyclic tridiagonal matrix [M] in Eq. (12) can be applied for the case of a �= c,
differently from the previous literature (see Eq. (13) in [22]). To solve Eq. (12), the Sherman-
Morrison algorithm [19, 23] is applied as what follows. Let us consider Eq. (12) as a perturba-
tion of matrix [N] by the by following relation

[M] = [N]+wzT , (17)

[N] =

⎡
⎢⎢⎢⎢⎢⎣

2b0 c0 0 0 0
a1 b1 c1 0 0

0
. . .

. . .
. . . 0

0 0 aN−2 bN−2 cN−2

0 0 0 aN−1 bN−1 +(c1aN−1/b0)

⎤
⎥⎥⎥⎥⎥⎦
,

w =
[−b0, 0, · · · , 0, c0,

]T
, z =

[
1, 0, · · · , 0, −aN−1/b0

]T
.

Then, we use the Thomas algorithm to evaluate two auxiliary vectors (x1 and x2)[
N
]
x1 = r, (18)[

N
]
x2 = w. (19)

After solving x1 and x2, the final update equation of Dx can be obtained via

x = x1 +Bx2, (20)

where

B =− zT x1

1+ zT x2
.
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Fig. 2. (a) Geometry of the numerical example. (b) Convergence test of space-step sizes.

3. Numerical example

As a proof of concept of QCRF-ADI-FDTD, we analyze optical wave interaction with a square
periodic array of Ag nanospheres (the Ag radius of 10 nm and the center-to-center distance
of 40 nm) surrounded by SiO2 under a normal incident x-polarized plane wave excitation (see
Fig. 2(a)). The observation point is located at the center on a transverse plane and 5 nm below
from the plane wave source plane. Ten CFS-PML layers are used for the z direction and the
PBC is used for the x and y directions. The total physical domain is 40 nm × 40 nm × 60
nm. We set A0 = 112.62, A1 = 7.224× 10−16, A2 = 1.364× 10−30, B1 = 3.108× 10−18 and
B2 = 7.590× 10−31 for the QCRF coefficients of Ag. Note that we use a constant relative
permittivity of 2.25 for SiO2. We define the CFL number (CFLN) as CFLN = Δt/ΔtFDTD, max

and we use cubic cells (Δs=Δx=Δy=Δz). Before proceeding, we first perform a convergence test
by varying the space-step sizes in FDTD simulations. The space-step sizes larger than 2 nm lead
to high staircasing errors and the space-step sizes smaller than 0.25 nm lead to overwhelming
computational costs. Therefore, we consider Δs=2 nm, 1 nm, 0.5 nm, and 0.25 nm for the
convergence test. Figure 2(b) shows the relative error of Ex field against the reference data
(extracted from Δs=0.25 nm) defined by

[
Ex(t)−Ex,re f (t)

]
/|Ex,re f (t)|max [1]. The maximum

relative error is 10.44%, 3.28%, and 1.14% for Δs=2 nm, 1 nm, and 0.5 nm respectively.
We first employ computational cells with Δs=0.5 nm. Figure 3(a) shows the time response

of Ex field and good agreement is observed between QCRF-FDTD and QCRF-ADI-FDTD up
to CFLN=8. Figure 3(b) represents the relative error using QCRF-FDTD as reference, show-
ing that the maximum relative error of QCRF-ADI-FDTD is 4.6%, 6.79%, and 14.09% for
CFLN=4, 8, and 16 respectively. Next, we employ computational cells with Δs=0.25 nm. Figure
4(a) shows the time response of Ex field and good agreement is observed between QCRF-FDTD
and QCRF-ADI-FDTD up to CFLN=16. Figure 4(b) represents the relative error using QCRF-
FDTD as reference, showing that the maximum relative error of QCRF-ADI-FDTD is 2.6%,
4.29%, and 7.45% for CFLN=4, 8, and 16 respectively. Figure 5 shows the snapshots of Ex

field on the xy-plane at the center of the Ag nanosphere at the time instant of 0.0034795 ps, ob-
tained from QCRF-FDTD with CFLN=1 and QCRF-ADI-FDTD with CFLN=16 for Δs=0.25
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Fig. 3. (a) Ex field for Δs=0.5 nm. (b) Relative error of Ex field for Δs=0.5 nm.
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Fig. 4. (a) Ex field for Δs=0.25 nm. (b) Relative error of Ex field for Δs=0.25 nm.

nm. Overall, the field distribution of QCRF-ADI-FDTD agrees well with that of FDTD. We also
calculate the L2 relative error norm ‖ δ ‖2 [24] of the field against the reference data (extracted
from QCRF-FDTD) by

‖ δ ‖2=
√√√√∑40nm

y=0 ∑40nm
x=0 (Ex,ADI−Ex,FDTD)

2

∑40nm
y=0 ∑40nm

x=0 (Ex,FDTD)
2 . (21)

It turns out that ‖ δ ‖2= 6.92 %. Finally, we compare the computational time of QCRF-ADI-
FDTD normalized by the QCRF-FDTD counterpart in Fig. 6. Note that the CPU time of QCRF-
ADI-FDTD with CFLN=8 is 56.17 % and that of QCRF-ADI-FDTD with CFLN=16 is 28.08
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(a) (b)

Fig. 5. Snapshot of Ex field for Δs=0.25 nm. (a) QCRF-FDTD with CFLN=1. (b) QCRF-
ADI-FDTD with CFLN=16.

Fig. 6. Normalized CPU time of QCRF-ADI-FDTD.

%, compared to the QCRF-FDTD counterpart.

4. Conclusion

The QCRF dispersion model has been successfully applied to ADI-FDTD for the efficient opti-
cal analysis of dispersive media. In this work, the formulations of update equations and the PBC
are derived in detail. The computational accuracy and efficiency of the proposed QCRF-ADI-
FDTD is validated through the 3-D numerical example. For computational cells with Δs=0.25
nm, the QCRF-ADI-FDTD with CFLN=16 agrees well with the QCRF-FDTD counterpart,
with the speedup enhancement of 3.56. QCRF-ADI-FDTD can be applied for the efficient
optical analysis of electrically refined structures, such as nanowires, nanoholes, or plasmonic
organic solar cells. It is also noting that the QCRF dispersion model can be extended to the
pseudo-spectral time domain (PSTD) method [25–27].
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