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Abstract
AIM
To validate the effects of receptor interacting protein 
kinase-3 (RIP3) deletion in non-alcoholic fatty liver 
disease (NAFLD) and to clarify the mechanism of 
action.

METHODS
Wild-type (WT) and RIP3 knockout (KO) mice were 
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fed normal chow and high fat (HF) diets for 12 wk. 
The body weight was assessed once weekly. After 
12 wk, the liver and serum samples were extracted. 
The liver tissue expression levels of RIP3, microsomal 
triglyceride transfer protein, protein disulfide isomerase, 
apolipoprotein-B, X-box binding protein-1, sterol 
regulatory element-binding protein-1c, fatty acid 
synthase, cluster of differentiation-36, diglyceride 
acyltransferase, peroxisome proliferator-activated 
receptor alpha, tumor necrosis factor-alpha (TNF-α), and 
interleukin-6 were assessed. Oleic acid treated primary 
hepatocytes from WT and RIP3KO mice were stained 
with Nile red. The expression of inflammatory cytokines, 
including chemokine (C-X-C motif) ligand (CXCL) 1, 
CXCL2, and TNF-α, in monocytes was evaluated.

RESULTS
RIP3KO HF diet fed mice showed a significant gain in 
body weight, and liver weight, liver to body weight ratio, 
and liver triglycerides were increased in HF diet fed 
RIP3KO mice compared to HF diet fed WT mice. RIP3KO 
primary hepatocytes also had increased intracellular 
fat droplets compared to WT primary hepatocytes 
after oleic acid treatment. RIP3 overexpression 
decreased hepatic fat content. Quantitative real-time 
polymerase chain reaction analysis showed that the 
expression of very-low-density lipoproteins secretion 
markers (microsomal triglyceride transfer protein, 
protein disulfide isomerase, and apolipoprotein-B) was 
significantly suppressed in RIP3KO mice. The overall 
NAFLD Activity Score was the same between WT and 
RIP3KO mice; however, RIP3KO mice had increased fatty 
change and decreased lobular inflammation compared 
to WT mice. Inflammatory signals (CXCL1/2, TNF-α, and 
interleukin-6) increased after lipopolysaccharide and pan-
caspase inhibitor (necroptotic condition) treatment in 
monocytes. Neutrophil chemokines (CXCL1, and CXCL2) 
were decreased, and TNF-α was increased after RIP3 
inhibitor treatment in monocytes.

CONCLUSION
RIP3 deletion exacerbates steatosis, and partially 
inhibits inflammation in the HF diet induced NAFLD 
model. 

Key words: Necroptosis; Receptor interacting protein 
kinase-3; Mixed lineage kinase domain-like protein; 
Non-alcoholic fatty liver disease; Steatosis

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Receptor interacting protein kinase-3 (RIP3) 
deletion was associated with increased fatty change, 
hepatic tissue triglycerides, body weight, and serum 
aspartate aminotransferase and alanine aminotransferase 
levels. Very-low-density lipoproteins secretion markers, 
including apolipoprotein-B, microsomal triglyceride 
transfer protein, and protein disulfide isomerase, were 
suppressed with RIP3 deletion. High fat diet fed RIP3KO 

mice had reduced expressions of tumor necrosis factor 
alpha and neutrophil chemokines [Chemokine (C-X-C 
motif) ligands: CXCL1, and CXCL2] compared to high 
fat diet fed wild-type mice. In vitro  analysis suggests 
that necroptotic stimulation [lipopolysaccharide + 
N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl 
ketone] increased CXCL1/2 expression in monocytes. 
Treatment with RIP3 inhibitor (GSK’843) decreased the 
expression of CXCL1/2 as well as interleukin-6.

Saeed WK, Jun DW, Jang K, Ahn SB, Oh JH, Chae YJ, Lee 
JS, Kang HT. Mismatched effects of receptor interacting 
protein kinase-3 on hepatic steatosis and inflammation 
in non-alcoholic fatty liver disease. World J Gastroenterol 
2018; 24(48): 5477-5490  
URL: https://www.wjgnet.com/1007-9327/full/v24/i48/5477.htm  
DOI: https://dx.doi.org/10.3748/wjg.v24.i48.5477

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) comprises 
one of the major liver disease burden in the developed 
world. In the United States, the prevalence of NAFLD 
is up to 25%[1]. NAFLD, the hepatic component of 
metabolic syndrome, is a multifactorial wide spectrum 
disease ranging from simple steatosis to steatohepatitis 
and further progressing to fibrosis and hepatocellular 
carcinoma. In NAFLD, increased lipid accumulation 
in hepatocytes leads to steatosis, inflammation, and 
fibrosis. NAFLD could also be hinting towards decreasing 
heart function[2]. In younger patients, NAFLD is also 
associated with decreased sleep, decreased quality and 
frequency of food intake, and a sedentary life-style[3]. 
The lifestyle modifications directed towards reduced 
steatosis in NAFLD would not only improve NAFLD but 
also cardiac function[2]. Although the prevalence of 
NAFLD is increasing, there are still numerous diagnostic 
and treatment issues associated with NAFLD. For 
instance, liver biopsy remains the gold standard method 
for NAFLD diagnosis, but currently no diagnostic method 
can correctly distinguish between simple steatosis 
and steatohepatitis. Moreover, there is still a lack of a 
satisfactory treatment strategy for NAFLD[4]. 

In NAFLD, the ‘first hit’ comprises of accumulation of 
fatty acids in hepatocytes facilitated by increased fatty 
acid synthesis and increased insulin resistance. Later, the 
multiple ‘parallel hits’ mainly comprising of endoplasmic 
reticulum stress, mitochondrial dysfunction, oxidative 
stress, and inflammatory cytokines further facilitate 
hepatocyte dysfunction and death[5]. Cell death is the 
fundamental step leading to steatohepatitis from benign 
steatosis. The increased steatosis and inflammation 
can trigger hepatocyte death by either apoptosis or 
necrosis[6-8]. Recently, the significance of inhibiting 
alternate cell death pathways including necroptosis has 
been extensively reported[9].
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Necroptosis, which is a receptor interacting protein 
kinase 1 and 3 (RIP1/RIP3) and mixed lineage kinase 
domain like pseudokinase (MLKL) dependent, apoptosis 
alternative, and necrosis like cell death pathway, has 
been evaluated in various hepatic pathologies[10-17]. The 
increased expression of RIP3 and MLKL observed in 
human NASH, type II diabetes, and obese patients[11-13] 
highlights the significance of necroptosis in human 
metabolic disease conditions. Moreover, human 
metabolic disease serum markers, including HbA1c 
and insulin, are also correlated with RIP3 and p-MLKL 
expression[13]. 

Previously, several studies reported varying results 
on necroptosis inhibition in animal NAFLD models[11-13,18]. 
To evaluate the role of necroptosis inhibition, the 
studies utilized methionine choline deficient (MCD) 
diet, high fat (HF) diet, and choline-deficient HF diet 
(CD-HFD) induced-NAFLD models[11-13,18]. In the HF 
diet-induced NAFLD model, RIP3 inhibition led to 
increased steatosis and glucose intolerance[13,18]. The 
global RIP3 deletion led to increased body weight and 
hepatic steatosis in the HF diet-induced NAFLD model, 
while in the MCD diet-induced NAFLD model, RIP3 
deletion showed protective effects on both hepatic 
steatosis and inflammation[11,12]. Interestingly, HF diet 
fed RIP3KO mice also had increased hepatic apoptosis, 
inflammation, and fibrosis[18]. Moreover, adipose tissue 
apoptosis and inflammation were also increased in 
RIP3KO mice compared to WT mice[13,18]. An additional 
in vivo signaling pathway was suspected which led 
to increased steatosis[13,18], adipocyte apoptosis, 
and inflammation[13]. On contrary, in the MCD diet-
induced NAFLD model, RIP3KO mice had decreased 
inflammation, steatosis, and fibrosis compared to WT 
mice[11,12]. Although the previous studies evaluated the 
effect of RIP3 deletion in the HF diet-induced NAFLD 
model, the detailed mechanism of increased steatosis 
associated with RIP3 deletion was not clear. 

Therefore, by using HF diet-induced NAFLD in 
RIP3KO mice, we aimed to validate and evaluate 
the precise underlying mechanism of steatosis and 
inflammation in hepatocytes and inflammatory cells. 

MATERIALS AND METHODS
Animal experiments
C57BL/6 wild-type (WT) (8-9 wk old) and RIP3-KO 
mice (8-9 wk old) were randomly divided into following 
groups (n = 8); WT- normal chow (NC), WT-HF, 
RIP3KO-NC, and RIP3KO-HF. To evaluate the effects of 
RIP3 inhibition on HF diet-induced NAFLD development, 
NC and HF (60% kcal) diets were fed for 12 wk to the 
assigned groups. Four animals were kept per cage and 
animals were maintained in a temperature-controlled 
room (22 ℃) on a 12:12 h light-dark cycle. The body 
weight was recorded once weekly. After 12 wk, the 
animals were sacrificed. The liver weight and liver to 

body weight ratio were measured. All the experimental 
procedures were approved by the Hanyang University 
Institutional Animal Care and Use Committee of (HY-
IACUC-16-0075). RIP3-KO animals were generously 
provided by Newton et al[19] Genentech (San Francisco, 
CA, United States). 

Histological assessment of liver biopsy samples
For histological assessment, paraformaldehyde fixed, 
paraffin embedded liver tissue samples were sectioned 
(4 µm) and stained with hematoxylin & eosin. The 
stained liver biopsy samples were analyzed by a single 
pathologist. The NASH clinical research network scoring 
system was used to histologically grade the NAFLD 
in mice liver[20]. Briefly, steatosis degree, hepatocyte 
ballooning, and lobular inflammation were graded semi-
quantitatively. The NAFLD Activity Score (NAS) was 
assessed by a combination of each score. Based on the 
NAS score, the commutative score of (0-2), control; 
(3-4), NAFLD; and (> 5), NASH was assigned. 

Triglyceride quantification
To quantify liver triglycerides (TG) content, a TG 
quantification kit (Abcam, Cambridge, MA, United 
States) was used. Briefly, snap-frozen livers tissues (50–
100 mg) were homogenized in 5% NP-40, and then 
slowly heated to 80 ℃ for 5 min and cooled down. The 
process was repeated twice. The samples were then 
centrifuged for 5 min, and supernatants were diluted 
20-fold with distilled water and analyzed calorimetrically 
according to manufacturer's instructions.

HepG2 cells culture and maintenance
HepG2 cells were seeded on 6-well plate using 
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, 
Grand Island, NY, United States) containing 10% fetal 
bovine serum (FBS) and 1% penicillin/streptomycin 
(P/S). After 24 h, the media was removed, and the cells 
were washed with Dulbecco’s phosphate-buffered saline 
(DPBS) followed by treatment with oleic acid (OA; 400 
µmol/L; Sigma-Aldrich, St Louis, MO, United States), 
palmitic acid (PA; 400 µmol/L; Sigma-Aldrich), and GSK’
843 (5 µmol/L; AOBIOUS INC, Gloucester, MA, United 
States). After 24 h, the RNA was isolated using the 
RNeasy mini kit (Qiagen, Hilden, Germany) according to 
manufacturer’s instructions.

Primary hepatocytes isolation and culture
Primary hepatocytes from WT and RIP3-KO mice were 
isolated by a two-step collagenase perfusion method as 
described previously[21]. Briefly, mice were anesthetized 
using Zoletil and Rompun 1:1. The liver was perfused 
using calcium and magnesium-free Hanks’ Balanced Salt 
Solution (HBSS; Welgene, Gyeongsan, South Korea) 
supplemented with 25 mmol/L, 4-(2-hydroxyethyl)-
1-piperazine ethanesulfonic acid (HEPES; Amresco, 
Solon, OH, United States) and 0.5 mmol/L, ethylene-
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Nile red staining 
For lipid droplet staining, primary hepatocytes and 
HepG2 cells were seeded on a coverslip and maintained 
for 4 and 24 h, respectively. After adherence, the media 
were removed and cells were co-treated with OA (400 
µmol/L) and GSK’843 (5 µmol/L). The control groups 
were treated with equal volumes of DMSO. After 24 h, 
the media were removed, and the cells were washed 
twice with DPBS, fixed with 4% paraformaldehyde in 
PBS for 30 min at room temperature, rinsed twice with 
DPBS, and incubated with fluorescence dye Nile red 
(0.5 mg/mL in acetone). The confocal imaging was 
performed using a Leica TCS SP5 confocal microscope 
(Leica Microsystems, Wetzlar, Germany). 

RIP3 non-viral vector construction
The human RIP3 (NM_006871) coding regions were 
amplified by polymerase chain reaction (PCR) using 
TrueORF cDNA Clones (Origene, Rockville, MD, United 
States) for genes. The fragments were cloned into the 
pECFP (enhanced green fluorescent protein)-C1 vector 
(Clontech, Palo Alto, CA, United States). Later, RIP3 PCR 
products were subcloned into the pGEM-T easy vector 
(Promega, Madison, WI, United States) and then cloned 
into the EcoRI - BamHI sites of the pECFP-C1 vector.  

RIP3 overexpression in primary hepatocytes
The primary hepatocytes were isolated and maintained 
as previously described. RIP3 was overexpressed in 
primary hepatocytes using JetPEI DNA transfection 
reagent (Polyplus-transfection SA, Illkirch, France) 
according to the manufacturer’s instructions. Briefly, 
1 × 105/mL primary hepatocytes were seeded on 
collagen-coated cover slides in 24-well plates. After 4 
h, the media were replaced with fresh culture media 
supplemented with 10% FBS. RIP3 DNA (3 µg/well) 
was diluted in 100 µL NaCl (150 mmol/L) and was 
gently vortexed and spun down. Six microliters per 
well JetPEI reagent was diluted in 100 µL NaCl (150 
mmol/L) and was gently vortexed and spun down. The 
diluted reagent was mixed and vortexed with diluted 
DNA and incubated for 30 min at room temperature. 
After 30 min, 50 µL JetPEI/DNA mix was added to each 
well of a 24-well plate. After 12 h, the transfection was 
confirmed by visualizing green fluorescence of EGFP-C1 
using a Leica DMI 14000B inverted microscope (Leica 
Microsystems). 

RNA isolation and quantitative real-time PCR 
Total liver RNA was isolated from liver tissue using 
the TRIzol Reagent (Invitrogen, Carlsbad, CA, United 
States) according to the manufacturer’s instructions. 
The isolated RNA samples were converted to cDNA 
using reverse transcriptase (SuperScript III; Invitrogen) 
and oligo (dT) primers. All PCR reactions were 
performed on the LightCycler 480 system (Roche 
Diagnostics, Mannheim, Germany) using LightCycler480 

glycol-bis-(β-aminoethylene)-N,N,N’,N’-tetraacetic acid 
(EGTA; Sigma-Aldrich), followed by perfusion with low 
glucose DMEM supplemented with 15 mmol/L HEPES 
and Collagenase Type IV (100 U/mL; Worthington 
Biochemical Corporation, Lakewood, NJ, United States) 
(pH 7.4, 37 ℃). After perfusion, the liver was carefully 
removed and gently minced in 20 mL ice-cold William’
s E medium (Gibco) supplemented with 10% heat-
inactivated FBS, 10 mL/L insulin-transferrin-selenium 
(ITS; Gibco), and 10 mL/L P/S. The homogenized liver 
suspension was filtered using a 70 µm cell strainer. The 
cell suspension was centrifuged at 50 × g for 5 min. 
The pellet was re-suspended in 10 mL William’s Medium 
supplemented with 10% FBS, ITS (10 mL/L), P/S (10 
mL/L), and 10 mL buffered Percoll (Sigma-Aldrich). The 
resultant cell suspension was centrifuged at 50 × g for 5 
min, and the pellet re-suspended in William’s E medium 
supplemented with 10% FBS, ITS (10 mL/L), and 1 
µmol/L dexamethasone and P/S (10 mL/L). The cell 
viability was determined using the Trypan Blue exclusion 
method and was generally > 85%. After isolation, 
primary hepatocytes were plated on rat-tail collagen I 
(Corning Inc., Corning, NY, United States) coated culture 
dishes (Thermo Fisher Scientific Inc., Waltham, MA, 
United States) at 3 × 105 cells/mL. The hepatocytes 
were maintained at 37 ℃ in a humidified atmosphere 
of 5% CO2 for 4 h. After 4 h, the media were removed, 
and cells were treated with OA (400 µmol/L) in serum-
free William’s E medium containing ITS (10 mL/L), 1 
µmol/L dexamethasone, and P/S (10 mL/L). The control 
group was treated with equal volumes of dimethyl 
sulfoxide (DMSO). After 24 h, the hepatocytes were 
processed as per experimental protocols.

Macrophage cell culture and maintenance
The macrophage U937 cell line was used. The cells were 
seeded on 6-well plates using DMEM supplemented 
with 10% FBS and 1% P/S. After 24 h, the media 
were removed, and the cells were washed with DPBS 
followed by incubation with tumor necrosis factor alpha 
(TNF-α) (10 ng/mL; R&D Systems, Minneapolis, MN, 
United States), N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) 
fluoromethyl ketone (zVAD) (30 µmol/L, R&D Systems), 
lipopolysaccharide (LPS) (25 ng/mL; Sigma-Aldrich), 
and GSK’843 (5 µmol/L). After 24 h, the RNA was 
isolated using the RNeasy mini kit (Qiagen) according to 
manufactures instructions.

Serum biochemical analysis
The whole blood samples collected in Becton Dickinson 
serum separation tubes (Franklin Lakes, NJ, United 
States) were centrifuged at 3000 rpm at 4 ℃ for 10 
min. The serum samples were collected and stored at 
-80 ℃ until analysis. Serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), and TG 
were measured with an automatic chemical analyzer 
(Hitachi-747; Hitachi, Tokyo, Japan).
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Figure 1  Receptor interacting protein kinase-3 deletion exacerbates HF diet induced steatosis. A: Following 12-wk HF diet, the liver tissue hematoxylin & eosin 
staining showed increased steatosis in RIP3KO-HF group compared to WT-HF group. B-F: Liver TG contents were significantly increased in the RIP3KO-HF group 
compared to the WT-HF group. RIP3KO-HF group had increased steatosis and decreased lobular inflammation. G-L: HF diet fed RIP3KO mice had increased liver 
weight and liver/body weight ratio compared to HF diet fed WT mice. The RIP3KO-HF group had increased serum AST and ALT but decreased serum TG compared 
to the WT-HF group. aP < 0.05 by Mann-Whitney U test, compared to NC diet fed WT group; bP < 0.05 by Mann-Whitney U test, compared to NC diet fed RIP3-
KO group; cP < 0.05 by Mann-Whitney U test, compared to HF diet fed WT group. HF: High fat; NC: Normal chow; WT: Wild-type; KO: Knockout; RIP3: Receptor 
interacting protein kinase-3; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; TG: Triglycerides.
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SYBRGreen I Mastermix (Roche Diagnostics) in standard 
10 µL reaction volumes as follows: 4 µL (100 ng) cDNA, 
0.5 µL of 10 pmol/L sense primer, 0.5 µL of 10 pmol/L 
antisense primer, and 5 µL LightCycler 480 SYBRGreen 
I Mastermix (Roche Diagnostics). To guarantee the 
reliability of the obtained results, all samples were 
processed in triplicate and performed using a negative 
control. The values obtained were normalized to the 
control and expressed as fold changes. 

Statistical analysis
The values are expressed as mean ± standard 
deviation. Statistical analysis was performed using SPSS 
for Windows version 21.0 (IBM Corp., Armonk, NY, 
United States). All experiments were performed three 
times. One-way analysis of variance and the Mann-
Whitney U test were performed to compare the mean of 
different groups, and a P-value < 0.05 was considered 
significant.

RESULTS
Exacerbated intrahepatic fat amount but attenuated 
hepatic inflammation in HF diet fed RIP3KO mice
RIP3KO mice showed increased hepatic fat deposition 
on histological and hepatic tissue TG contents analysis 
compared to WT mice (4.58 nm/µL vs 6.92 nm/µL, P = 
0.000) when fed with 60% HF but not with normal chow 
diet (Figure 1A and C). Body weight was significantly 
increased in HF diet fed RIP3KO mice compared to WT 
mice. Overall, NAS score was not significantly different 
between the both WT-HF and RIP3KO-HF groups; 
however, fatty change was significantly increased (2 vs 
3, P = 0.000) and lobular inflammation was decreased 
(1.5 vs 0.75, P = 0.007) in HF fed RIP3KO mice (Figure 

1B, D-F). Liver weight (1.87 g vs 2.43 g, P = 0.001) 
and liver to body weight ratio (5.09 vs 3.91, P = 
0.000) were also increased in HF diet fed RIP3KO mice 
compared to WT mice (Figure 1H and I). Serum ALT 
was increased in HF diet fed RIP3KO mice (Figure 1K). 

Effect of RIP3 ablation on hepatic fat regulation 
RIP3 expression increased with the HF diet (Figure 
2A), as previously observed[18]. The expression of other 
genes involved in lipid homeostasis, including those 
for sterol regulatory element-binding protein-1c, fatty 
acid synthase, cluster of differentiation-36, diglyceride 
acyltransferase, and peroxisome proliferator-activated 
receptor alpha, were not definite (Figure 2F-J). The 
genes involved in very-low-density lipoprotein (VLDL) 
secretion were analyzed to evaluate increased hepatic 
tissue TG contents. The mRNA analysis showed that 
RIP3KO mice had significantly decreased VLDL secretion 
markers, including microsomal triglyceride transfer 
protein (MTTP), protein disulfide isomerase (PDI), and 
apolipoprotein-B (ApoB). VLDL secretion markers were 
further suppressed in HF diet fed RIP3KO animals (Figure 
2B-D). 

Next, to confirm whether the effect of RIP3 deletion 
could also be observed in vitro, primary hepatocytes 
from WT and RIP3KO mice were isolated. Following 
treatment with OA, Nile red staining was increased in 
both WT and RIP3KO primary hepatocytes. However, 
OA treated RIP3KO primary hepatocytes had increased 
Nile red staining compared to WT primary hepatocytes 
(Figure 3A). Next, to confirm further, RIP3 was 
overexpressed in primary hepatocytes using an RIP3 
overexpression system. If RIP3 ablation exacerbates 
hepatic lipid storage, then RIP3 overexpression should 
decrease lipid storage. As expected, RIP3 overexpressed 
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Figure 2  Effect of receptor interacting protein kinase-3 deletion on fat synthesis. A-J: Quantitative real-time PCR analysis showed an increased expression 
of RIP3 the WT-HF group after HF diet feeding. Interestingly, very-low-density lipoprotein secretion markers including apolipoprotein-B, microsomal triglyceride 
transfer protein, protein disulfide isomerase, and X-box binding protein-1 were decreased in the RIP3KO-HF group compared to the WT-HF group. The differences in 
SREBP1c, FAS, CD36, DGAT, and PPAR-α were not definite. aP < 0.05 by Mann-Whitney U test, compared to NC diet fed WT group; bP < 0.05 by Mann-Whitney U 
test, compared to NC diet fed RIP3-KO group; cP < 0.05 by Mann-Whitney U test, compared to HF diet fed WT group. HF: High fat; KO: Knockout; NC: Normal chow; 
WT: Wild-type; RIP3: Receptor interacting protein kinase-3; VLDL: Very-low-density lipoproteins; ApoB: Apolipoprotein-B; MTTP: Microsomal triglyceride transfer 
protein; PDI: Protein disulfide isomerase; XBP1: X-box binding protein-1; SREBP1c: Sterol regulatory element-binding protein-1c; FAS: Fatty acid synthase; CD36: 
Cluster of differentiation-36; DGAT: Diglyceride acyltransferase; PPAR-α: Peroxisome proliferator-activated receptor alpha.
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primary hepatocytes had decreased Nile red staining 
compared to control (Figure 3B). Next, we evaluated 
whether RIP3 inhibition using GSK’843 would also 
yield similar results in HepG2 cells. However, GSK’843 

treated HepG2 cells did not show an increase in Nile red 
staining, a decrease in MTTP, PDI, and ApoB expression 
(Figure 3C and D), and changes in sterol regulatory 
element-binding protein-1c, fatty acid synthase, and 
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Figure 3  RIP3 deletion increases hepatic fat storage. A and B: The primary hepatocytes from WT and RIP3KO mice were treated with DMSO and OA. The 
RIP3KO primary hepatocytes had increased Nile red staining compared to WT primary hepatocytes. RIP3 overexpression decreased Nile red staining compared 
to the vector group treated with OA. C and D: HepG2 cells treated with GSK'843 did not show increase Nile red staining. The expression of MTTP, PDI, and ApoB 
was also not decreased in GSK'843 treated HepG2 cells. E: GSK'843 treatment did not increase the expression of SREBP1c, FAS, and SCD-1 in HepG2 cells. aP < 
0.05 by ANOVA, Duncan post hoc analysis, compared to control; bP < 0.05 by ANOVA, Duncan post hoc analysis. WT: Wild-type; RIP3: Receptor interacting protein 
kinase-3; KO: Knockout; DMSO: Dimethyl sulfoxide; OA: Oleic acid; ApoB: Apolipoprotein-B; MTTP: Microsomal triglyceride transfer protein; PDI: Protein disulfide 
isomerase; XBP1: X-box binding protein-1; SREBP1c: Sterol regulatory element-binding protein-1c; FAS: Fatty acid synthase; SCD-1: Stearyl-CoA desaturase-1; 
ANOVA, Analysis of variance.
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Figure 4  RIP3 reduces inflammation in liver tissue. Following HF diet feeding, RIP3KO mice had reduced expression of TNF-α, CXCL1, and CXCL2 compared to 
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stearyl-CoA desaturase (SCD-1) expression (Figure 3E). 

RIP3 partially regulated macrophage activation
HF diet fed RIP3KO mice had reduced expression of 
TNF-α, CXCL1, and CXCL2 compared to HF diet fed 
WT mice (Figure 4A-D). In vitro analysis suggested 
that necroptotic stimulation (LPS + zVAD) increased 
CXCL1/2 expression in monocytes. RIP3 inhibitor (GSK’
843) decreased the expression of CXCL1/2 as well as 
IL-6, but GSK’843 did not reduce TNF-α expression. The 
levels of neutrophil chemokines (CXCL1, and CXCL2) 
were decreased with GSK’843 (Figure 5A and B).

DISCUSSION
Our results suggest that RIP3 inhibition is associated 
with suppression of VLDL secretion markers and partial 
inhibition of macrophage activation via inhibiting CXCL1 
and 2 expressions.

Previously, varying results of RIP3 inhibition in HF 
and MCD diet-induced animal NAFLD models were 
observed. In HF diet-induced NAFLD model[18], RIP3 
deletion was associated with increased fatty change, 
hepatic tissue TG, body weight, and serum AST and 
ALT. Another study, however, reported that in the 
MCD diet-induced NAFLD model, RIP3 deletion did 
not affect lipidosis score in the early phase (2-wk) 
but did decrease it in the late phase (8 wk)[11]. The 
MCD diet-induced NAFLD studies did not extensively 
evaluate for hepatic steatosis[11,12]. None of the previous 
studies examined the precise mechanism of hepatic 
fat accumulation and the interaction with hepatocytes 
pathways of lipid de novo synthesis, transportation, 
and metabolism. Our results also showed that VLDL 
secretion markers, including ApoB, MTTP, and PDI, were 
suppressed with RIP3 deletion (Figure 2). The primary 
hepatocytes isolated from WT and RIP3KO mice were 

treated with DMSO and OA. Similar to increased hepatic 
TG contents in RIP3KO mice, OA treated RIP3KO 
primary hepatocytes had increased Nile red staining 
compared to OA treated WT primary hepatocytes. 
Correspondingly, primary hepatocytes overexpressing 
RIP3 also showed decreased Nile red staining compared 
to control (Figure 3). However, we did not observe a 
decrease in the expression of MTTP, PDI, and ApoB 
following treatment with GSK’843 in HepG2 cells.

Similar to previous findings[13], our results showed 
that the overall NAS score was the same between 
HF diet fed WT and RIP3KO mice; however, lobular 
inflammation was decreased in our study. Moreover, 
in contrast to the MCD diet-induced NAFLD model, 
RIP3 deletion associated reductions in serum AST and 
ALT were not observed in our study. On the contrary, 
in HF diet-induced NAFLD model, RIP3 induction was 
thought to protect hepatocytes against further steatosis 
and, thus, the RIP3 deletion might have led to more 
deleterious effects[18]. Moreover, RIP3 deletion was 
also associated with exacerbated inflammation in the 
HF diet-induced NAFLD[18]. Interestingly, RIP3 deletion 
reduced ethanol induced steatosis[22]. In our study, 
following HF diet feeding, CXCL1/2 expression increased 
in liver tissue. The expressions of CXCL1/2 were 
reduced in RIP3KO mice compared to corresponding 
controls. In vitro, TNFα/LPS + zVAD induced CXCL1/2 
expressions. GSK’843 treatment reduced CXCL1 and 
CXCL2 expression in U937 macrophages and HepG2 
cells, but TNF-α expression was not reduced (Figures 5 
and 6). 

Our study has the following limitations. First, we did 
not evaluate the long-term effects of RIP3 deletion on 
the exacerbated response in HF diet-induced NAFLD 
model. Moreover, we did not evaluate the previously 
highlighted contribution of increased hepatic and 
adipose tissue apoptosis associated with RIP3 deletion 
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in NAFLD. RIP3 ablation in adipose tissue leads to 
the metabolic phenotype in RIP3KO mice. Moreover, 
RIP3 has a role in maintaining white adipose tissue 
homeostasis and systemic RIP3 ablation leads to insulin 
resistance and glucose intolerance. RIP3 overexpression 
is thought to balance caspase-8 mediated increase in 
apoptosis. Following RIP3 deletion, a switch towards 
increased apoptosis in both liver and adipose tissues 
was observed, and increased adipocytes apoptosis was 
thought to mediate the systemic effects[13]. Therefore, to 
elaborate the detailed mechanism of additional in vivo 
signaling, a further in depth analysis is needed. Second, 
examination of hepatocyte specific RIP3 knockout and 
RIP3 kinase dead mice would be useful to understand 
HF diet-induced NAFLD. The pathogenic context, 
initiating stimulus, and compartment specific RIP3 
regulation[12,13] might reveal why such diverse results of 
RIP3 deletion are observed in the NAFLD models. Other 
studies also reported that the expression of regulated 
necrosis molecules could be different according to the 
trigger, disease pathogenesis, organs involved, and 
species[23]. Moreover, studies have also suggested that 
different cell types could be responding differentially to 
necroptosis stimuli[13].

In conclusion, our results show that RIP3 deletion 
aggravates hepatic steatosis in the HF diet-induced 
NAFLD model. RIP3 deletion was also associated with 
suppression of VLDL secretion from hepatocytes. 
Moreover, targeting RIP3 could have deleterious 
systemic consequences. Future research should consider 
the diverse and unwanted systemic consequences of 
RIP3 deletion in NAFLD. The role of RIP3 could be a 

double-edged sword in NAFLD. Although RIP3 has a 
crucial role in necroptosis, RIP3 showed diverse effects 
in metabolic disease. Therefore, careful attention and 
more extensive studies are needed to further elaborate 
the interactions between RIP3 and NAFLD associated 
signaling pathways.

ARTICLE HIGHLIGHTS
Research background 
The receptor interacting protein kinase-3 (RIP3) inhibition in various non-
alcoholic fatty liver disease (NAFLD) models has shown varied results. The 
underlying mechanism associated with these diverse outcomes is still not clear. 
The evaluation of necroptosis signaling molecules in NAFLD might provide a 
useful therapeutic target.

Research motivation 
Previous studies report that in high fat (HF)-induced NAFLD, RIP3 deletion 
exacerbated fatty change, inflammation, fibrosis, and apoptosis. However, in 
the methionine choline deficient diet-induced NAFLD model, these changes 
were not observed. The reason for the varied results associated with RIP3 
deletion in different NAFLD models is unknown. 

Research objective 
To validate the effects of RIP3 deletion in NAFLD and to clarify the mechanism 
of action.

Research methods
Wild-type and RIP3 knockout mice were fed HF and normal chow diets for 12 
wk. The body weight was assessed weekly. After 12 wk, the liver and serum 
samples were analyzed for changes. Hematoxylin & eosin staining, NAFLD 
Activity Score evaluation, and triglyceride quantification were performed. The 
changes in very-low-density lipoproteins (VLDL) secretion and inflammation 
markers were recorded. Primary hepatocytes were evaluated for lipid contents. 
HepG2 cells and U937 cells were evaluated for changes in inflammatory 
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Figure 6  Conceptual diagram. GSK'843 treatment decreases neutrophil recruitment markers, including CXCL1 and CXCL2, thereby reducing neutrophil recruitment 
to the tissue. However, RIP3 inhibition increases de novo fat synthesis while decreasing VLDL secretion. RIP3: Receptor interacting protein kinase-3; CXCL1: 
Chemokine (C-X-C motif) ligand-1; CXCL2: Chemokine (C-X-C motif) ligand-2; VLDL: Very-low-density lipoproteins. 
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markers.

Research results
Our results show that RIP3 deletion is associated with exacerbated hepatic 
lipid contents, suppressed VLDL secretion markers, and partially suppressed 
inflammation. 

Research conclusion
In HF diet-induced NAFLD, RIP3 deletion is associated with increased hepatic 
steatosis and partially suppressed inflammation 

Research perspective
Necroptosis signaling molecules, especially mixed lineage kinase domain-like 
proteins, should be further explored for its therapeutic potential in NAFLD. 
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