
Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

On the Optimality of Trust Network Analysis
with Subjective Logic

Yongsu PARK
Division of Computer Science and Engineering, Hanyang University, Korea

yongsu@hanyang.ac.kr

1Abstract—Building and measuring trust is one of crucial

aspects in e-commerce, social networking and computer
security. Trust networks are widely used to formalize trust
relationships and to conduct formal reasoning of trust values.
Diverse trust network analysis methods have been developed so
far and one of the most widely used schemes is TNA-SL (Trust
Network Analysis with Subjective Logic). Recent papers
claimed that TNA-SL always finds the optimal solution by
producing the least uncertainty. In this paper, we present some
counter-examples, which imply that TNA-SL is not an optimal
algorithm. Furthermore, we present a probabilistic algorithm
in edge splitting to minimize uncertainty.

Index Terms—Trust, Reputation, Subjective logic, Trust
networks, Identity management system

I. INTRODUCTION

Nowadays smartphones are widely being used in our
society and traditional off-line social activities are being
merged into the on-line computing environments, e.g., social
networking or e-commerce.

Meanwhile, continuous growth of complex on-line
networking activities can arouse security concerns. Trust is a
key aspect of relationship between entities and measuring
trust is one of the most important prerequisites for
establishing the safe and reliable e-society. However, it is
considered that measuring trust is still yet complex and little
understood [2].

A trust metric is a measurement of the degree to which
one entity trusts another. For measuring trust, empirical
metrics use surveys or game-like scenarios to capture values
of trust. Formal metrics focus on formal trust representation
and modelings, and furthermore formal reasoning about
trust, by using algebra, probability or logic.

A trust network is used to formalize trust relationships
and to conduct formal reasoning of trust values [2-4]. Trust
networks consist of nodes to represent peers and directed
links to represent trust-relationships.

Up to now, a considerable number of trust management
systems and reputation (that is closely related to trust but not
exactly the same) management systems have been proposed
[5]: PageRank [6], Eigentrust [7], Mocatrust, KeyNote,
TBAC, Subjective Logic, [8], [9], etc. Among them this
paper focuses on Subjective Logic [10-11] and TNA-SL [3]
trust network, which is one of widely and actively used for
analyzing social networking services, e-commerce,
approximate reasoning, etc.

The main purpose of TNA-SL is modeling transitive trust

relationship between entities using subjective logic and
finding/calculating the most confident combined trust values
[3]. [1] claimed that experimental results of edge splitting
and TNA-SL coincide with each other and that TNA-SL
always finds the optimal solution by producing the most
confident value (a.k.a. the lowest uncertainty value).
However, in this paper we present some counter-examples,
which imply that TNA-SL is not an optimal algorithm.
Furthermore, we present an efficient probabilistic algorithm
to calculate the near-optimal parameters in edge splitting.

1 This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MEST) (No.
2012R1A1A2007263).

 This paper is organized as follows. Section 2 describes
related work, overview of trust networks, and structured
notation. Section 3 briefly explains subjective logic and
some operators used in subjective logic. Section 4 describes
network simplification methods in trust networks with
subjective logic. Section 5 shows some counter-examples
for the TNA-SL algorithm and then presents the proposed
scheme in edge-splitting, which is based on Nelder-Mead
method. Section 6 concludes the paper.

II. OVERVIEW OF TRUST NETWORKS

As mentioned in Section 1, recently a large amount of
distributed trust/reputation management schemes have been
published in which each peer organizes an initial trust group
and gradually extends the group and updates trust
information [6-7],[12-15] to provide personalized trust
information in distributed environments. However, such
schemes seem infeasible since the underlying relation graph
cannot be used for general cases or they have an exponential
order of time complexity [16]. We omit description of each
work due to lack of space (please refer to [5] for summary
of some major schemes). This paper focuses on Subjective
Logic [10-11] and TNA-SL [3] trust network, which is one
of widely and actively used.

Before describing TNA-SL, Section 2.1 describes trust
graph with subjective logic and Section 2.2 explains
structured notation.

A. Trust graph with subjective logic

Recall that trust networks consist of nodes to represent
peers and links to represent trust-relationships [17]. TNA-
SL (Trust Network Analysis using Subjective Logic) uses
subjective logic to represent trust relation. In TNA-SL, there
are two types of trust relation: transitive trust and parallel
trust combination.

Transitive trust is the case where someone, Alice, trusts
another person, Carol, by the judgments of the already
established trust relationships, i.e., from Alice to Bob and
from Bob to Carol. Fig. 1 shows an example of transitive
trust. In this case, trust relation between Alice and Bob is

 49

Digital Object Identifier 10.4316/AECE.2014.03006

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

different from that between Bob and Carol where the former
is closely related to recommendation. We call the former
referral trust and the latter functional trust. Transitive trust
can be considered as an indirect trust where the degree of
indirection can be extended multiple times.

Figure 1. An example of transitive and parallel trust combination.

In the trust network, if there is a path from a node A to
another B, we can think that there is a transitive trust from A
to B. However, generally transitive trust is not always
applied because trust scope is different, e.g., if A trusts B for
taking care of a baby and B trusts C for fixing a car, trust is
not transitive. Transitive trust is considered to be important
to improve quality of trust/recommendation because even
for millions of users direct trust is made only among limited
users [17].

In the trust network, trust can be combined from
information of different sources to make better decisions.
This can be modeled as parallel trust combination. Suppose
that A trusts both B and D and that B recommends C to A
(for something), A may would like to get the second opinion
for C, e.g., get another D's recommendation for C. If, both
recommendations are positive, A can trust more on C.
Otherwise, if A receives conflicting recommendations, A
may trust less on C. We will use subjective logic to combine
trust values, which handles for all these cases.

B. Structured notation

Transitive trust networks can be expressed some notations
called structured notation [3]. First, the direct edge from A
to B is expressed as [A,B]. The symbol “:” is used to denote
the transitivity, e.g., if A trusts B and B trusts C, ([A,C]) =
([A,B]:[B,C]). For combining trust, we use “”symbol, e.g.,
in the previous example, if there is an additional path from A
to D and from D to C, ([A,C]) = ([A,B]:[B,C]) ([A,D]:
[D,C]).

III. SUBJECTIVE LOGIC

Subjective logic is a belief reasoning calculus which is an
extension of probabilistic logic to modelize uncertainty,
incomplete knowledge and different views. In subjective
logic, opinions express subjective beliefs. There are two
types of opinions: binomial opinion for a single proposition
and multinomial opinion for multiple propositions. In this
paper we focus on only binary opinions for lack of space.

Suppose that x be a proposition. A binomial opinion wx on
the truth of x is (b, d, u, a) where b (belief) is the belief that
x is true, d (disbelief) is the belief that x is false, u

(uncertainty) is the amount of uncommitted belief, and a
(base rate) is the a priori probability in the absence of
evidence. These components satisfy 0 b,d,u,a 1 and
b+d+u=1. An opinion with b=1 is equivalent to binary logic
TRUE and that with d=1 is equivalent to FALSE. If b+d=1,
the opinion is equivalent to the traditional probability and if
b+d<1 it expresses degree of uncertainty.

 The trust opinion of subjective logic is compatible with
the reputation representation of Bayesian reputation
systems, which are being widely used [3]. By using this fact,
we can use Bayesian reputation systems to determine trust
opinions, which is described in detail in [1],[3].

A. Transitivity [3],[18]

Suppose that wA
B=(bA

B, dA
B, uA

B, aA
B) and wB

C=(bB
C, dB

C,
uB

C, aB
C) are the opinion from peer A to B and that from B to

C, respectively. Then, the transitive opinion from A to C,
wA:B

C, which is denoted as wA
B wB

C, is calculated as
follows: wA:B

C =(bA:B
C, dA:B

C, uA:B
C, aA:B

C) where bA:B
C = bA

B
bB

C, dA:B
C = bA

B dB
C, uA:B

C = dA
B + uA

B + bA
B uB

C, aA:B
C = aB

C.

B. Cumulative fusion [3]

Assume that there are two peers A and B who have
observed C and their opinions are denoted by wA

C and wB
C,

respectively. Then, cumulative opinion wAB
C = wA

C wB
C is

calculated as follows: bAB
C = (bA

C uB
C+ bB

C uA
C)/(uA

C + uB
C -

uA
C uB

C), dAB
C = (dA

C uB
C+ dB

C uA
C)/(uA

C + uB
C - uA

C uB
C),

uAB
C = (uA

C uB
C)/(uA

C + uB
C - uA

C uB
C), aAB

C = aA
C, where it

is assumed that aA
C= aB

C. For uA
C= uB

C =0, limits can be
computed (for more details, refer to [1],[3]).

IV. NETWORK SIMPLIFICATION IN TNA-SL

Recall that structured notation contains 2 operators: “:, .”
Since subjective logic can support both, if the transitive
network is expressed by structured notation and all direct
trust opinions are predefined, we can calculate the combined
trust opinion using transitivity and cumulative function.

Figure 2. An example of the trust graph.

However, there is a problem to represent trust networks
using structured notation, which is illustrated in Fig. 2. If we
convert the network in this figure into structured notation,
([A,D])=(([A,B]:[B,D]) ([A,C]:[C,D]) ([A,B]:[B,C]:
[C,D])) because it contains 3 paths from A to D.

 The problem in this equation is that edges [A,B] and
[C,D] appear twice. If we use this equation to compute the
combined trust opinion [A,D], trust opinions of [A,B] and
[C,D] are used twice while the others are used only once.
Some trust models allow multiple usages of the same edge
(i.e. computed results are the same regardless of multiple
usages) but unfortunately subjective logic does not allow
that.

Hence, to use subjective logic, structured notation should
be canonicalized [1],[3]. An expression of a trust graph in

 50

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

structured notation where every edge only appears once is
called canonical.

Unfortunately, a large amount of cases including Fig. 2
cannot be canonicalized. Hence, diverse graph
simplification/modification techniques can be used for
canonicalization.

[3] presents two algorithms for canonicalization. Both use
the property that if the trust network is DSPG (Directed
Series-Parallel Graph) [19], it is canonical [3]. The first one
is called the optimal DSPG. The optimal DSPG focuses on
computing the highest confidence level of the combined
trust opinion, not computing the most positive/negative trust
value. The most confidence level is achieved by finding the
combined trust opinion such that it has the least uncertainty
u [3].

First, it computes the set containing all the paths from the
source node to the destination node. Then, for every subset it
checks whether the subset can be represented as DSPG. If
so, the combined trust opinion is computed using subjective
logic. (Otherwise, that subset is ruled out.) Finally, it
produces the subset containing the highest confidence (i.e.,
the lowest uncertainty of the trust opinion). This algorithm is
called optimal because it always produces the subset
containing the highest confidence. However, since the
number of subsets is exponentially huge, the computation
cost is too high.

The second algorithm is a near-optimal algorithm, called
near-optimal DSPG. It is a heuristic-based algorithm where
detailed description is out of scope of this paper (please
refer to [3]). For clarity, in this paper we call the first
algorithm as the algorithm of TNA-SL hereafter.

A. Edge splitting [1]

Recently, [1] presents the new method that is called edge
splitting where for every pair of paths from the source node
to the destination node, if they have the common edge(s),
we insert virtual node(s) and split edge(s), i.e., one for the
original node and the other for the virtual node. An example
is shown in Fig. 3.

Figure 3. The results of edge splitting of Fig.2.

In edge splitting, the trust opinion w for each common
original edge should be split into 2 opinions: w1 and w2.
Equations for calculating w1 and w2 from w are as follows:
wi = (bi = (ib)/(i(b+d)+u)), di = (id)/(i(b+d)+u)), ui =
u/(i(b+d)+u), ai = a), where 0 1, 2, 1 and 2 = 1-1. For
simplicity, we call 1 as hereafter.

It can be verified that w1w2=w, as expected. is called
the fission factor that determines the proportion of evidence
assigned to each independent opinion part.

V. ON THE OPTIMALITY OF TNA-SL

Section 5.1 describes some counter-examples for the
optimality of TNA-SL and Section 5.2 presents the proposed

edge-splitting scheme to minimize fission factors.

A. Counter-examples for the optimality of TNA-SL

[1] claims that when edge splitting is used in the trust
network analysis, if we compute value such that the
combined opinion has the lowest uncertainty value (i.e., the
highest confidence), is always either 0 or 1. In this case,
the path containing the corresponding edge (w1 for =0, w2
for =1) is ruled out because its combined opinion has the
least confidence (i.e. the maximum uncertainty). Hence, the
result is identical to that of the optimal DSPG algorithm [3]
in TNA-SL. Hence, [1] claims that the optimal DSPG
algorithm in TNA-SL is in fact the optimal algorithm.

However, we found some counter-examples that is
neither 0 or 1. Moreover, we found the cases such that the
uncertainty is strictly lower than the optimal DSPG, which
implies that TNA-SL is not an optimal algorithm.

Figure 4. An example of the trust graph.

Fig. 4 shows such counter-examples. We set the trust
opinion for each edge as in Fig. 4. In this figure, totally there
are 3 paths: ([A,B]:[B,D]), ([A,C]:[C,D]),
([A,B]:[B,C]:[C,D]). Since there are two common edges:
[A,B], [C,D], we split these and get the result as:
([A,B]:[B,D]), ([A,C]:[C,D]), ([A,B']:[B',C']:[C',D]).

We tested for various A
B and C

D values and calculated u
of the combined opinion of (A,D), some of experimental
results are shown in Fig. 5 (we show only =C

D=A
B cases

for better understanding). In this example, the optimal is
0.25 and the uncertainty value is 0.28 where the trust
opinion of ([A,D]) is (0.72, 0, 0.28, 0.5). The sub-optimal
DSPG and optimal DSPG produce the results having only 2
paths, i.e., C

D=A
B=1 and in this case the uncertainty value

is over 0.4.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.2 0.4 0.6 0.8 1

C
on

fid
en

ce

Fision factor
Figure 5. The case where is neither 0 nor 1.

To examine carefully, we conducted the experiments,
where experimental environments are as follows: CPU,
RAM, Operating system, and Programming language are
Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, 8 GBytes,
SMP Debian 3.14.12-1 (2014-07-11) x86_64 GNU/Linux,

 51

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

and gcc version 4.9.0. We used the network described in
Fig. 4, where there are 5 edges. For subjective logic opinion
w values for these edges, we assume that the value a in
w=(b,d,u,a) is the same for all edges to apply
transitivisity/fusion operations. To analyze under which
conditions TNA-SL is optimal, we consider the following
different cases:
 CASE 1: for each edge, (b,d,u,a) are randomly

generated from uniform distribution [0,1], where
restriction is b+d+u=1.

 CASE 2: for each edge, (b,d,u,a) are randomly
generated from uniform distribution [0,1], where
restriction is b+d+u=1 and u=0.

 CASE 3: for each edge, (b,d,u,a) are randomly
generated from uniform distribution [0,1], where
restriction is b+d+u=1 and d=0.

 CASE 4: for each edge, (b,d,u,a) are randomly
generated from uniform distribution [0,1], where
restriction is b+d+u=1 and b=0.

 CASE 5: for all edges, we set the b=1 for opinions
(which implies d, u are 0).

 CASE 6: for all edges, we set the d=1 for opinions
(which implies b, u are 0).

 CASE 7: for all edges, we set the u=1 for opinions
(which implies b, d are 0).

For each trial, we changed C

D and A
B values, from 0.00

to 1.00 at the step of 0.01, respectively, to find the minimal u
value of the combined opinion of (A,D). If the lowest
uncertainty u value is computed when C

D and A
B are either

0 or 1, respectively, for this case TNA-SL is optimal.
Otherwise, we regard that for this case TNA-SL is not
optimal. For each CASE (CASE 1~7), we repeated
experiments for 1,000,000 times. Table I summarizes the
experimental results.

TABLE I. EXPERIMENTAL RESULTS.

CASE Description The
probability
that TNA-
SL is NOT

optimal.

The
probability
that TNA-

SL is
optimal.

1 For all edges, w is randomly
generated from uniform
distribution [0,1], where
restriction is b+d+u=1.

22.61% 77.39%

2 The same condition as CASE
1 except for an additional

restriction: u=0.

57.10% 42.90%

3 The same condition as CASE
1 except for an additional

restriction: d=0.

16.52% 83.48%

4 The same condition as CASE
1 except for an additional

restriction: b=0.

92.33% 7.67%

5 For all edges, we set the b=1
for opinions (which implies d,

u are 0).

0% 100%

6 for all edges, we set the d=1
for opinions (which implies b,

u are 0).

0% 100%

7 for all edges, we set the u=1
for opinions (which implies b,
d are 0).

0% 100%

In CASE 5, 6, and 7, we could not found any count-

examples, which may imply that TNA-SL is optimal for

these cases.
For CASE 1, for randomly generated values w for edges,

the lowest uncertainty u is obtained where C
D and A

B are
not 0 or 1 with the probability of 22.61%.

For CASE 3, for randomly generated values w for edges,
the lowest uncertainty u is obtained where C

D and A
B are

not 0 or 1 with the probability of 16.52%, which is differ
from CASE 1. For CASE 2 and 4, the probability values are
57.10% and 92.33%, respectively. This may be due to
different distribution of opinion values (w); we could not
find the correct cause why they produce the different results.

Also, we repeated the same experiments for different a
values and get the same results for all CASEs, which implies
that the value a does not affect the experimental results for
all CASEs.

Additionally, we provide some counter-example cases
(from CASE 1) where the optimal C

D (or A
B) are not 0 and

1, which are shown in Table II. (we assume that a=0.5 in
opinion values for all edges.)

TABLE II. SOME CASES WHERE IS NEITHER 0 NOR 1 FOR FIG. 4.
bA

B bC
D bB

D bA
C bB

C A
B C

D
0.66 0.92 0.71 0.53 0.41
dA

B dC
D dB

D dA
C dB

C

Case
1

0.26 0.02 0.28 0.42 0.57

0.86 0.77

bA
B bC

D bB
D bA

C bB
C A

B C
D

0.96 0.63 0.23 0.37 0.26
dA

B dC
D dB

D dA
C dB

C

Case
2

0.03 0.29 0.65 0.58 0.31

0.92 0.62

bA
B bC

D bB
D bA

C bB
C A

B C
D

0.18 058 0.04 0.05 0.22
dA

B dC
D dB

D dA
C dB

C

Case
3

0.79 0.02 0.57 0.92 0.14

0.76 0.58

bA
B bC

D bB
D bA

C bB
C A

B C
D

0.20 0.36 0.45 0.63 0.61
dA

B dC
D dB

D dA
C dB

C

Case
4

0.66 0.53 0.02 0.17 0.24

0.64 0.93

bA
B bC

D bB
D bA

C bB
C A

B C
D

0.28 0.55 0.34 0.09 0.43
dA

B dC
D dB

D dA
C dB

C

Case
5

0.11 0.35 0.10 0.62 0.13

0.68 0.60

B. Efficient algorithm to find the minimal value

First, we precisely define the problem to find the optimal
 values as follows: given the trust graph for subjective
logic, the objective is to compute the combined opinion
from the source node s to the target node t with minimal u.
Assume that there are n paths from s to t. If some of these
paths share common edge(s), we call each of which e1, e2,
…, ek and corresponding fission factors as 1, 2, …, k’ to

use edge splitting (Note that k≠k' because for some cases

one edge should be split into multiple m (3) edges. In
these cases, we should apply edge splitting m-1 times
sequentially). Then, the goal is to find the values 1, 2, …,
k’ such that after edge splitting the uncertainty u of the
combined opinion from s to t is minimal.

This problem is called multi-dimensional minimization,
which is one of the widely known problems in optimization.
Among many algorithms [20][21][22][23], we use Nelder-
Mead method [20] since getting the derivative of the
function u is complex if the trust network is large. Because
getting the global minimum value is a very difficult
problem, we use probabilistic approach to iteratively find

 52

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

the local minimum with random seeds, which is described in
detail as follows.

Algorithm 1: the proposed algorithm finds x = (1, 2, …,

k’) (1 i k'+1) with the minimal uncertainty u.
STEP 1: Randomly generate xi = (1, 2, …, k’) (1 i

k'+1). Assume that {r,e, oc, ic}={1,2,1/2,-1/2}. x() is
defined as x()=(1+)x'-(xk'+1).

STEP 2: Sort xi that u(x1) u(x2) … u(xk’+1).
Set fcount = k'+1.

STEP 3: While u(xk’+1) - u(x1) > ,
STEP 3-a: Compute x'=(k’

i=1 xi)/k'. Compute x(r)
and fr=u(x(r)). fcount++. If fcount=kmax then
exit.

STEP 3-b (Reflect): If u(x1) fr < u(xk'), replace xk'+1
with x(r) and goto STEP 3-g.

STEP 3-c (Expand): If fr < u(x1) then compute
fe = u(x(e)). fcount++. fe < fr, replace xk'+1 with
x(e); otherwise replace xk'+1 with with x(r).
Goto STEP 3-g.

STEP 3-d (Outside Contraction): If u(xk') fr <
 u(xk'+1), compute fc=u(x(oc)). fcount++. If fc fr

,
 replace xk'+1 with x(oc) and goto STEP 3-g;
otherwise goto STEP 3-f.

STEP 3-e (Inside Contraction): If fr xk'+1 compute
fc = u(x(ic)). fcount++. If fc < u(xk'+1), replace
xk'+1 with x(ic) and goto STEP 3-g;
otherwise goto STEP 3-f.

STEP 3-f (Shrink): If fcount kmax - k', exit. For
2 i k'+1: set xi=x1-(xi - x1)/2; compute u(xi).

STEP 3-g: Sort the vertices such that u(x1) u(x2)
 … u(xk'+1).

STEP 4: Repeat STEP 1~3 for predefined times to get the
 global minimum x.

For better understanding, an example for this algorithm is
provided for Fig. 4, as follows.

Example 1. Assume that the trust graph is given as in Fig.
4. Suppose that the threshold =0.03 and kmax = 100. In
STEP 1 of Algorithm 1, k’=2 and following values are
randomly generated from uniform distribution between 0
and 1, e.g., x1 = (1=0.5, 2=0.4), x2 = (1=0.2, 2=0.7), x3 =
(1=0.4, 2=0.5). In STEP 2, u(xi), the overall uncertainty
value for xi, are computed: u(x1)=0.289, u(x2)=0.314,
u(x3)=0.400. Fortunately, they are already sorted in the
increasing order. Set fcount = 3. In STEP 3, because u(x3)-
u(x1)=0.400 – 0.289 > =0.03, in STEP 3-a, we compute
x’=((0.5+0.2+0.4)/3, (0.4+0.7+0.5)/3)=(0.367, 0.533). fr =
u(x(r)) = u(x(1))= u(2*x’-1*(x3)) = u((0.334, 0.366)) =
0.281. fcount=4. Because fr < u(x1), goto STEP 3-c
(Expand): fe = u(x(e)) = u(x(2)) = u(3*x’-2*(x3)) = u((0.301,
0.599)) = 0.296. fcount=5. Because fe > fr, we replace x3
with x(r). In STEP 3-g, sorted xi are as follows: x1 =
(1=0.334, 2=0.366), x2 = (1=0.5, 2=0.4), x3 = (1=0.2,
2=0.7). In STEP 4, we repeat this procedure and go to
STEP 3. Note that in the previous time of STEP 3 execution,
u(xi) are as follows: u(x1)=0.289, u(x2)=0.314, u(x3)=0.400.
This time, u(xi) are as follows: u(x1)=0.281, u(x2)=0.289,

u(x3)=0.314, which are smaller than those of previous
iteration. In the next iteration, x’=(0.345,0.489),
fr=u((0.489,0.277))=0.2871. Because u(x1) <= fr < u(x3), we
replace x3 with x(1) and goto STEP 3-g. Now x1 =
(1=0.334, 2=0.366), x2 = (1=0.489, 2=0.277), x3 =
(1=0.5, 2=0.4), where u(x1)=0.281, u(x2)=0.287,
u(x3)=0.289. In this way, after each iteration, u(xi) are
getting smaller. If u(x1)-u(x3) < which implies that we have
approached the minimum u() value very closely, or if fcount
>= kmax, which means we have already tried enough
iterations, this algorithm terminates.

Algorithm 1 is a probabilistic algorithm since in STEP 1,
we initialize xi with the random values and then start the
execution. If we are fortunate, this algorithm finds the global
minimum uncertainty value (and corresponding x = (1, 2,
…, k’)). Otherwise, it finds the local minimum uncertainty
value. Hence, we should repeat Algorithm 1 for enough
times to get the global minimum value with high probability.
(To the best knowledge, there is no algorithm to get the
global minimal value surely in the derivative-free multi-
dimensional minimization problem).

As for efficiency of Algorithm 1, it is based on Nelder-
Mead method. On multi-variables optimization, there exist
significant amount of algorithms, e.g., BFGS (Broyden–
Fletcher–Goldfarb–Shanno) [21], Flecher and Reeves [22],
L-BFGS-B [23], etc. BFGS [21], L-BFGS-B [23], or other
quasi-Newton methods require derivative of the target
function, which is difficult if the network size is large and
the network is complex. Flecher and Reeves [22] is an
algorithm for the numerical solution of particular systems of
linear equations.

Derivative-free methods can be classified into three:
directional-direct search methods, line-search methods
based on simplex derivative, and trust-region methods [24].
The second group requires partial derivatives while in the
third group we should design a model to approximate the
target function in the trust-region. In the first group, Nelder-
Mead is the most representative method [24]. Even though
there are variants for heuristics in Nelder-Mead,
performance (how fast to find the minimum value) may
differ from the structure of networks and opinion values of
edges, which is the future work of this research.

VI. CONCLUSION

Trust networks are widely used to formalize trust
relationships and to conduct formal reasoning of trust
values. Diverse trust network analysis methods have been
developed so far and one of the most widely used schemes is
TNA-SL (Trust Network Analysis with Subjective Logic).

Recently, [1] claimed that TNA-SL always finds the
optimal solution by producing the least uncertainty. In this
paper, we first present some counter-examples, which imply
that TNA-SL is not an optimal algorithm. Then, we present
a probabilistic algorithm in edge splitting, which is designed
to produce near-optimal fission factors by using Nelder-
Mead method.

REFERENCES
[1] A. Jøsang, T. Bhuiyan, “Optimal Trust Network Analysis with

Subjective Logic,” in Proc. of 2nd SECURWARE 2008, Aug. 2008,

 53

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 54

pp. 179-184. [Online]. Available:
http://dx.doi.org/10.1109/SECURWARE.2008.64.

[2] S. Adali, R. Escriva, M. K. Goldberg, M. Hayvanovych, M. Magdon-
Ismail, B. K. Szymanski, W. A. Wallace, G. Williams, “Measuring
Behavioral Trust in Social Networks,” in Proc. of IEEE ISI’2010,
2010, pp. 150-152. [Online]. Available:
http://dx.doi.org/10.1109/ISI.2010.5484757.

[3] A. Jøsang, R. Hayward, S. Pope, “Trust Network Analysis with
Subjective Logic,” in Proc. of 29th ACSC2006, Jan. 2006, pp. 85-94.

[4] L. Ding, P. Kolari, S. Ganjugunte, T. Finin, A. Joshi, “Modeling and
Evaluating Trust Network Inference,” In Proc. of 7th AAMAS’2004,
July 2004, pp. 21-32.

[5] P. Massa, P. Avesani, “Controversial users demand local trust
metrics: an experimental study on Epinions.com community,” in Proc.
of 20th national conference on Artificial intelligence –Vol.1, 2005,
pp. 121-126.

[6] L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Stanford InfoLab Technical
Report, SIDL-WP-1999-0120, 1999.

[7] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, “The Eigentrust
algorithm for reputation management in P2P networks,” in Proc. of
the 12th international conference on World Wide Web, 2003, pp. 640-
651. [Online]. Available: http://dx.doi.org/10.1145/775152.775242.

[8] O. Savas, G. Jin, J. Deng, “Trust management in cloud-integrated
Wireless Sensor Networks,” In. Proc. of CTS 2013, 2013, pp.334-341.
[Online]. Available:
http://dx.doi.org/10.1109%2FCTS.2013.6567251.

[9] J. Lopez, R. Roman, I. Agudo, C. Fernandez-Gago, “Trust
management systems for wireless sensor networks: Best practices,”
Computer Communications, Vol. 33, No. 9, pp. 1086–1093, 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2010.02.006.

[10] A. Jøsang, V. A. Bondi, “Legal Reasoning with Subjective Logic,”
Artificial Intelligence and Law, Vol. 8, No. 4, pp. 289-315, 2000.
[Online]. Available: http://dx.doi.org/10.1023/A:1011219731903.

[11] A. Jøsang, D. McAnally, “Multiplication and Comultiplication of
Beliefs,” International Journal of Approximate Reasoning, Vol. 38,
No. 1, pp. 19-51, 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.ijar.2004.03.003.

[12] U. Maurer, “Modeling a Public-Key Infrastructure,” in Proc. of
ESORICS-LNCS Vol. 1136, 1996, pp. 325-350.

[13] A. Gutscher, “A Trust Model for an Open, Decentralized Reputation
System,” in Proc. IFIPTM, 2007, pp. 285-300. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-73655-6_19.

[14] T. Sun, M. K. Denko, “A Distributed Trust Management Scheme in
the Pervasive Computing Environment,” in Proc. of CCECE 2007.,
April 2007, pp. 1219–1222, [Online]. Available:
http://dx.doi.org/10.1109/CCECE.2007.311.

[15] K. Sentz, S. Ferson, “Combination of Evidence in Dempster-Shafer
Theory,” SANDIA Tech. Report, SAND2002-0835, 2002.

[16] A. Gutscher, J. Heesen and O. Siemoneit, “Possibilities and
Limitations of Modeling Trust and Reputation,” in Proc. CEUR
Workshop, 2008.

[17] K. Nordheimer, T. Schulze, D. Veit., “Trustworthiness in Networks:
A Simulation Approach for Approx. Local Trust and Distrust
Values,” in Proc. of IFIP AICT, 2010, pp.157-171. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-13446-3_11

[18] T. Bhuiyan, A. Jøsang, Y. Xu, “An analysis of trust transitivity taking
base rate into account,” in Proc. of Ubiquitous, Autonomic and
Trusted Computing, 2009, pp. 34-39.

[19] P. Flocchini, F. L. Luccio, “Routing in Series Parallel Networks,”
Theory of Computing Systems, Vol. 36, pp. 137-157, 2003. [Online].
Available: http://dx.doi.org/10.1007/s00224-002-1033-y.

[20] C. T. Kelly, “Iterative Methods for Optimization (Frontiers in Applied
Mathematics)," pp. 135-136, Society for Industrial and Applied
Mathematics, 1st edition, Jan. 1987.

[21] D.F. Shanno, "Conditioning of quasi-Newton methods for function
minimization," Mathematics of Computation, vol. 24, no. 111, pp.
647-657, 1970.

[22] R. Fletcher, C. M. Reeves, “Function minimization by conjugate
gradients,” Computer Journal, vol. 7, no. 2, pp. 148-154, 1964.

[23] R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, "A Limited Memory Algorithm
for Bound Constrained Optimization," SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190-1208, 1995. Available:
http://dx.doi.org/10.1137/0916069.

[24] A. R. Conn, K. Scheinberg, L. N. Vicente, “Introduction to
Derivative-Free Optimization (Mps-Siam Series on Optimization),”
pp. 113-120, Society for Industrial and Applied Mathematics, 1st
edition, Jan. 2009.

[Downloaded from www.aece.ro on Thursday, March 17, 2022 at 07:43:36 (UTC) by 166.104.65.239. Redistribution subject to AECE license or copyright.]

