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We develop accurate finite-difference time-domain 
(FDTD) modeling of polymer bulk heterojunction solar 
cells containing Ag nanoparticles between the hole-
transporting layer and the transparent conducting oxide-
coated glass substrate in the wavelength range of 300 nm 
to 800 nm. The Drude dispersion modeling technique is 
used to model the frequency dispersion behavior of Ag 
nanoparticles, the hole-transporting layer, and indium tin 
oxide. The perfectly matched layer boundary condition is 
used for the top and bottom regions of the computational 
domain, and the periodic boundary condition is used for 
the lateral regions of the same domain. The developed 
FDTD modeling is employed to investigate the effect of 
geometrical parameters of Ag nanospheres on 
electromagnetic fields in devices. Although negative 
plasmonic effects are observed in the considered device, 
absorption enhancement can be achieved when favorable 
geometrical parameters are obtained. 
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I. Introduction 

Plasmonics [1] have received increasing attention for a 
variety of applications related to biosensing [2] and compact 
nanophotonics [3]–[5] due to their ability to produce large field 
enhancement and subwavelength field confinement. Recently, 
plasmonic light-trapping geometries using metal nanoparticles 
have been employed to improve the efficiency of solar cells [6]. 
Metal nanoparticles have been widely utilized for inorganic 
thin-films [7], organic thin-films [6], [8], [9], and dye-sensitized 
solar cells [10]. Among various solar cell technologies, organic 
photovoltaics (OPVs) have been of particular interest for their 
use in the production of large-area flexible modules [11] due to 
high-throughput, low temperature processes [12] for low-cost 
roll-to-roll manufacturing with an improved environmental 
stability [13].  

Plasmonic OPVs have been investigated both numerically 
and experimentally. Among the numerical techniques used, the 
finite-difference time-domain (FDTD) method [14]–[17] has 
been widely employed because of its accuracy, robustness, and 
matrix-free characteristics. Moreover, a single FDTD 
simulation can compute a wideband response by using a 
Fourier transform, since it is a time-domain method. In FDTD, 
the frequency-dependent permittivity of materials in plasmonic 
OPVs should be incorporated by an appropriate dispersion 
model. However, the previous FDTD analyses have not 
considered dispersive properties of OPV materials due to the 
difficulty involved in doing so. In fact, because the real part of 
the relative permittivity of Ag is negative, a dispersive FDTD 
algorithm should be applied to Ag so that the resulting FDTD 
algorithm does not suffer from instability. Without a proper 
FDTD dispersion model, one should perform many 
simulations over the wavelengths of interest by way of a 
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dispersive FDTD for Ag and a non-dispersive FDTD for other 
OPV materials (with the corresponding permittivity and 
conductivity at a specific wavelength), which leads to 
overwhelming computational costs. Therefore, it is of great 
interest to develop accurate FDTD dispersive modeling for the 
optical analysis of plasmonic OPVs. In this work, we develop 
— based on the Drude dispersion model — FDTD dispersive 
modeling for plasmonic OPVs. The perfectly matched layer 
(PML) [18]–[19] and the periodic boundary condition (PBC) 
[14] are used for the termination and lateral regions of the 
computational domain, respectively. We also employ the 
proposed FDTD algorithm to investigate the effect of the 
geometrical parameters of Ag nanospheres on electromagnetic 
fields in the photoactive layer. It is worth noting that the 
purpose of this paper is to develop FDTD dispersive modeling 
suitable for plasmonic OPVs, not to optimize plasmonic OPVs 
for improved performance. 

II. FDTD Modeling 

We consider polymer:fullerene bulk heterojunction (BHJ) 
solar cells. For the plasmonic structure, the self-assembled Ag 
nanospheres are formed between the indium tin oxide   
(ITO)-coated glass substrate and the poly(3, 4-ethylene 
dioxythiophene) polystyrene sulfonate (PEDOT:PSS) — the 
latter acting as the hole-transporting layer. The photoactive 
layer is poly(3-hexylthiophene) (P3HT) and  [6,6]-phenyl-C61-
butyric acid methyl ester (PCBM) blend film. The final 
structure considered here is ITO/Ag nanospheres/PEDOT:PSS/ 
P3HT:PCBM. The schematics of the side and top views of the 
considered structure are shown in Fig. 1. Here, we assume the 
hexagonal configuration of Ag nanospheres. 

As previously alluded to, FDTD has been widely used to 
study plasmonic structures [4]–[6], [20]–[22]. In this work, we 
develop broadband-accurate FDTD modeling of plasmonic 
polymer BHJ solar cells. For FDTD dispersion modeling, we 
apply the Drude dispersion model for Ag, PEDOT:PSS, and 
ITO as follows: 
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where ε∞ is the relative permittivity at the high-frequency limit, 
ωp is a plasma frequency, and Γ is a damping coefficient. These 
Drude parameters can be obtained by using a nonlinear 
optimization technique. The extracted Drude parameters and 
the corresponding root-mean-square errors (RMSEs) are listed 
in Table 1.  

It should be noted that the Drude dispersion model has been 
widely employed for Ag [5], [20]–[24]. More complex  

 

Fig. 1. Schematics of the simulated structure: (a) side view and 
(b) top view — centered on an Ag nanosphere. 
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Table 1. Drude parameters for Ag, PEDOT:PSS, and ITO. 

Material ε∞ ωp (PHz) Γ (PHz) RMSE (%) 

Ag 3.70 13.833 0.02736 9.159 

PEDOT:PSS 2.35 1.7933 1.42760 1.269 

ITO 4.50 1.8823 0.26700 6.417 

 

 
dispersion models (for example, multispecies Drude-Lorentz 
dispersion models) can improve computational accuracy [25] 
but tend to lead to heavy computational burdens. Therefore, 
the Drude dispersion model is employed in this work. To the 
best of our knowledge, the Drude dispersion model is 
successfully applied to PEDOT:PSS [26] and ITO [27] for 
the first time.  

Figure 2 shows the relative permittivity of PEDOT:PSS and 
ITO — both of which were under our Drude dispersion model  
and the corresponding experimental data. The Drude 
dispersion model agrees well with the experimental data for 
PEDOT:PSS, however, deviates a little from the experimental 
data for ITO. Albeit with this error, the Drude dispersion model 
for ITO is superior to that of the already widely-used Drude 
dispersion model for Ag (see Table 1). Note that the relative 
permittivity of P3HT:PCBM is set as 3.4, which is the same as 
in [28]. As previously alluded to, without our Drude dispersion 
model, many simulations should be performed over the 
wavelengths of interest under a sine-wave excitation, which 
leads to overwhelming computational costs. It is also noted that 
more complex dispersion models should be employed when a 
wider range of wavelengths is considered.  

Now, let us derive the FDTD update equations for the Drude 
dispersion model. Toward this purpose, we first consider  
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Fig. 2. Relative permittivity of PEDOT:PSS and ITO. Lines and 
symbols indicate Drude dispersion model and 
experimental data, respectively. 
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Maxwell’s Ampere’s law in the frequency domain as follows: 

( ) ( ) ( )0 .rjω ωε ε ω ω∇× =H E         (2) 

Inserting (1) into (2), we have 
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Introducing the equivalent current J(ω) [20] and then 
rearranging the resulting equation, we have 
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Applying the inverse Fourier transform to the above equations, 
we obtain  

0 ( ) ( ) ( ),t t t
t

ε ε∞

∂
+ = ∇ ×

∂
E J H         (6) 

2
0( ) ( ) ( ).pt t t

t
ε ω∂

+ Γ =
∂

J J E         (7) 

Applying the central difference scheme (CDS) to the 
temporal derivatives, we can obtain the FDTD update 
equations for En+1 and Jn+1 below 
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Note that An indicates a vector field component A at the time 
nΔt, where Δt is the FDTD step size [14]. Note that we cannot 
update directly En+1 and Jn+1 from (8) and (9), since field values 
at simultaneous times are involved. Therefore, we insert (9) 
into (8) and then manipulate the resulting equation, which leads 
to the final FDTD update equation for En+1, which is given as 
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with Cα = 2ε0ε∞/Δt. In the above equations, spatial 
discretization should be performed by applying the CDS to the 
curl operator. The FDTD update equation for Hn+1/2 can be 
simply obtained by using the standard difference scheme in 
Maxwell’s Faraday’s law. Note that in every time step we 
update Hn+1/2, En+1, and Jn+1 sequentially. 

In FDTD, it is necessary to apply appropriate boundary 
conditions to truncate the computational domains. In this work, 
the PML is used for the top and bottom regions to avoid 
spurious reflections from the external grid boundaries by 
employing the complex-coordinate stretching technique [18]–
[19]. In lateral regions, the PBC [14] is used to reduce 
computational burdens by using the periodicity of the structure. 

III. Numerical Results 

In this section, we apply our homemade FDTD modeling to 
analyze the optical responses of plasmonic OPVs. The step size 
is Δx = Δy = Δz = 0.2 nm to 1.6 nm, depending on the radius (r) 
of Ag nanospheres used to accurately model various 
nanospheres (that is, 10 cells per the radius of a sphere). The 
time step size is given by Δt = 0.95Δx/c0/√3 to satisfy the 
stability condition, where c0 is the vacuum light speed in m/s. 
An x-polarized uniform plane wave is uniform in the space 
domain, and a pulse is modulated by a sine-wave in the time 
domain. To obtain the spectral results (Ex(λ), Ey(λ), and Ez(λ)), a 
discrete Fourier transform is used for the temporal results (Ex(t), 
Ey(t), and Ez(t)) in the photoactive layer. Plasmonic effect is 
quantitatively estimated using a field intensity ratio (FIR) —  
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Fig. 3. Effect of r on FIR at d = 2r (single Ag nanosphere). 
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that is, the ratio of the square of the electric fields found (|E(λ)|2 

= |Ex(λ)|2+|Ey(λ)|2+|Ez(λ)|2) in the photoactive layer for the 
plasmonic device (with Ag nanospheres) and the control 
(without Ag nanospheres) structure.  

Before proceeding with plasmonic OPVs that are based on 
the hexagonal periodicity of Ag nanospheres in three-layered 
media, we analyze a plasmonic OPV based on a single Ag 
nanosphere in three-layered media. In this case, the plasmonic 
OPV is simulated by replacing the PBC by the two-stage PML 
[21] in the lateral regions. Figure 3 shows FIRs for various radii. 
For comparison, we also simulate the structure for r = 10 nm 
using a Drude dispersive FDTD for Ag and a non-dispersive 
FDTD for ITO and PEDDOT:PSS (with the corresponding 
permittivity and conductivity at five different wavelengths), the 
results of which are indicated by diamond-shaped symbols in 
Fig. 3. Please note that only a single simulation is performed 
for our proposed FDTD, however, five different such 
simulations should be performed for the comparative study. As 
shown in Fig. 3, the resulting graph plots agree with each other. 
As the radii of Ag nanospheres increase, the peaks and bases of 
the graph plots are clearly observed. For example, at r = 10 nm, 
a single peak (base) occurred at λ ≈ 422 nm (λ ≈ 401 nm), 
which is consistent with the existence of forward-direction 
enhancement at λ > λsp and backward-direction enhancement at 
λ < λsp [29]. In addition, red shifts are observed when r is 
increased.  

Now, let us consider a plasmonic OPV based on the 
hexagonal periodicity of Ag nanospheres in three-layered 
media, as shown in Fig. 1. First, we illustrate the effect of r on 
FIR at d/r = 2, where d is the particle-to-particle spacing of Ag 
nanospheres (see Fig. 1). Figure 4 shows FIR versus 
wavelength for various sizes of Ag nanospheres, revealing that 
FIR is highly dependent on r. As the radii of Ag nanospheres  

 

Fig. 4. Effect of r on FIR at d = 2r (periodic Ag nanospheres).
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Fig. 5. Effect of d/r on FIR at r = 10 nm (periodic Ag nanospheres).
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increase, FIR decreases. Differently from the single Ag 
nanosphere case, no red shifts are observed when r is increased, 
which is due to complicated coupling between neighboring Ag 
nanospheres. Note that the single Ag nanosphere case is shown 
in Fig. 3. Also note that ripples are observed and that they are 
more distinct for smaller r.  

Next, Fig. 5 illustrates the effect of d/r on FIR with a fixed 
radius of r = 10 nm. Similar to the size of Ag nanospheres, FIR 
depends on the particle-to-particle spacing of Ag nanospheres. 
As the particle-to-particle spacing decreases, smaller FIR is 
observed due to strong coupling between neighboring Ag 
nanospheres. As shown in Fig. 5, FIR ≈ 0 (that is, |E|2 ≈ 0) is 
observed. In other words, not much light can penetrate into the 
photoactive layer. This phenomenon may result from 
complicated coupling between neighboring Ag nanospheres. 
We also examine FIR for various simultaneous r and d/r. We  
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Fig. 6. Effect of r and d/r on FIR. 
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Fig. 7. Time-averaged |E|2 distribution in the plasmonic OPV 
with r = 10 nm and d/r = 2. ITO for 0 nm ≤ z < 80 nm, 
PEDOT: PSS for 80 nm ≤ z < 120 nm, and P3HT:PCBM 
for 120 nm ≤ z < 200 nm. (a) xy-plane at the center of the 
Ag nanosphere (z = 90 nm), (b) yz-plane at x = 0 nm, and 
(c) xz-plane at y = 0 nm. 

z (nm) z (nm) y (nm) 

200

120

80

120

80

200

0 0

10

–10

–10 10 –10 10 –10 10 
x (nm) y (nm) x (nm)

dB 
30

20

10

0

–10

–20

–30

(a) (b) (c) 

 
 
consider r = 2 nm to 16 nm and d/r = 0.55 nm to 4 nm. The 
maximum r is set as 16 nm because we assume that metal 
nanoparticles are embedded in PEDOT:PSS with some 
geometrical margins. Note that the thickness of PEDOT:PSS is 
40 nm for the device. Figure 6 shows FIR versus r and d/r. In 
this case, we integrate FIR over the considered spectrum  
(300 nm to 800 nm). As shown in Fig. 6, it is noted that larger r 
and smaller d/r lead to smaller FIR. It is worth noting that the 
absorbance of the photoactive layer is proportional to |E|2; thus, 
the short circuit current is also proportional to |E|2 for the ideal 
carrier transport condition (that is, the perfect internal quantum 
efficiency) [30]. 

Figure 7 shows the time-averaged |E|2 distribution in the 
considered plasmonic OPV, with r = 10 nm and d/r = 2 at the 

wavelength of 413 nm. Note that this time-averaged |E|2 
distribution is normalized by the time-averaged |E|2 distribution 
of the control structure (without Ag nanospheres). Three 
snapshots are depicted on the xy-plane at the center of the Ag 
nanosphere (z = 90 nm), the yz-plane at x = 0 nm, and the xz-
plane at y = 0 nm. Strong field intensity is observed near and 
between Ag nanospheres, but weak field intensity is shown 
inside the photoactive layer (120 nm ≤ z ≤ 200 nm). This 
explains why negative plasmonic effects are observed in the 
considered device.  

IV. Discussion  

It is well known that a single simulation cannot exactly 
emulate the experiment. In this section, we discuss the 
differences between our simulation and the experiment. These 
differences are summarized in Table 2. 

In our developed FDTD, we assume a perfect geometry. 
However, this is impossible in reality due to manufacturing 
errors, especially for Ag nanospheres. In addition, modeling 
errors are inherent to FDTD algorithms because of staircase 
approximations, but such errors can be alleviated by using a 
conformal-path model [14]. In our simulation, we have not 
considered the cathode of plasmonic OPVs, because of 
computational costs (memory and CPU time). In fact, the 
wave-guiding mode between the cathode and the 
P3HT:PCBM/PEDOT:PSS interface can increase the field 
intensity inside the photoactive layer. To fully consider a 
plasmonic OPV and optimize it, hardware-acceleration 
techniques, such as GPU-FDTD [14] or MPI-FDTD [31], can 
be employed. As explained previously, we have used the 
constant permittivity of P3HT:PCBM, as done in [28]. 
However, in reality the real part of the permittivity of the 
P3HT:PCBM is not constant and also the imaginary part of the 
permittivity of the P3HT:PCBM does in fact exist. To 
accurately consider dispersive characteristics of P3HT:PCBM, 
new complex dispersion models, such as the complex 
conjugate dispersion model [32] or the quadratic complex 
rational function dispersion model [17], [33], can be employed. 
The improvement of our dispersive FDTD algorithm is  
 

Table 2. Differences between our simulation and the experiment.

Item Our simulation Experiment 

Geometrical parameters
Perfect 

(no variation) 
Variation due to 

manufacturing errors

Cathode Not considered Considered 
Permittivity 

P3HT:PCBM Constant Dispersive 
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currently under investigation to overcome the above-mentioned 
limitations. 

V. Conclusion 

As a part of the development of a systematic design tool for 
optimizing plasmonic OPVs, broadband-accurate FDTD 
modeling has been developed for plasmonic polymer:fullerene 
BHJ solar cells. The Drude dispersion model has been applied 
for Ag, PEDOT:PSS, and ITO. To apply proper boundary 
conditions, the PML and the PBC are employed for the 
termination regions and the lateral regions, respectively. We 
have examined the effects of the size of Ag nanospheres and 
their inter-particle spacing on field intensity in the photoactive 
layer. Although negative plasmonic effects are observed in the 
considered device, the absorption enhancement in a 
photoactive layer can be achieved by optimizing the shape, size, 
and inter-particle spacing of Ag nanoparticles within the wide 
range of geometrical parameters available and also by 
changing the location of Ag nanoparticles [34]–[35]. We hope 
that our FDTD dispersive modeling can be a foundation stone 
of a design tool for optimizing plasmonic-enhanced OPVs. 
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