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ABSTRACT

Two-level parallelization is introduced to solve a massive block-tridiagonal matrix system. One-level
is used for distributing blocks whose size is as large as the number of block rows due to the spectral
basis, and the other level is used for parallelizing in the block row dimension. The purpose of the
added parallelization dimension is to retard the saturation of the scaling due to communication
overhead and inefficiencies in the single-level parallelization only distributing blocks. As a technique for
parallelizing the tridiagonal matrix, the combined method of “Partitioned Thomas method” and “Cyclic
0dd-Even Reduction” is implemented in an MPI-Fortran90 based finite element-spectral code (TORIC)
that calculates the propagation of electromagnetic waves in a tokamak. The two-level parallel solver
using thousands of processors shows more than 5 times improved computation speed with the optimized
processor grid compared to the single-level parallel solver under the same conditions. Three-dimensional
RF field reconstructions in a tokamak are shown as examples of the physics simulations that have been
enabled by this algorithmic advance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The numerical solution of partial differential equations in two
dimensions often produces a block-tridiagonal matrix system. This
tridiagonal structure generally appears by the discretization along
one coordinate in which only adjacent mesh points or elements are
coupled. If the coupling along the second dimension is in a local
basis, the resulting blocks can be sparse or banded. When a global
basis is used (e.g. Fourier spectral basis), the size of the blocks may
be comparable to the number of block rows and each block can
be massive. For larger problems, in-core memory may not be suf-
ficient to hold even a few blocks, and so the blocks must be dis-
tributed across several cores. Thus, the parallelization of the solver
for the “massive block”-tridiagonal system is required for not only
the scaling of the computation speed but also the distribution of
the memory.

The electromagnetic wave code (TORIC) [1] is an example of
a system producing a “massive block”-tridiagonal matrix that
solves Maxwell’s equations and calculates the wave propagation
and damping [2-4] which are important in magnetic confinement
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fusion research. We have shown in previous work [5] that signif-
icantly improved performance is achieved in solving this block-
tridiagonal system by introducing parallelism along the block rows
in addition to within the dense blocks. In this article, we ex-
plain in detail this two-level parallelization of the solver using a
three-dimensional (3-D) processor configuration and how opera-
tion counts and parallel saturation effects in different parts of the
algorithm explain the efficient scaling of the computation speed
that has been observed.

The TORIC code is written in MPI-Fortran90, and uses the
spectral collocation and finite element methods (FEM) to solve
Maxwell’s equations in Galerkin’s weak variational form,

- c? - - 4w~ -
/dVF*~{—2V><VXE+E+(]p—l—]A)}:O, (1)
10} ®
where c is the speed of light in a vacuum, Eis theglectric ﬁeld,jp
is the plasma current response to the electric field, J4 is the applied
antenna current, w is the prescribed frequency of the gpplied an-
tenna current, and dV is the differential volume. Here, F is a vector
function in the space sp{nned by the basis of E, satisfying the same
boundary condition as E. Eq. (1) is solved for three components
of the electric field vector (radial, poloidal and toroidal direction)
and their radial derivatives. The radial dimension is discretized
by finite elements expressed in the cubic Hermite polynomial


http://dx.doi.org/10.1016/j.cpc.2014.06.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.06.006&domain=pdf
mailto:jungpyo@cims.nyu.edu
mailto:jungpyo@psfc.mit.edu
mailto:jwright@psfc.mit.edu
http://dx.doi.org/10.1016/j.cpc.2014.06.006

J. Lee, J.C. Wright / Computer Physics Communications 185 (2014) 2598-2608 2599

basis,! and the poloidal and toroidal dimensions use a Fourier spec-
tral basis [1,5], as shown in

In Im
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where r is the radial coordinate, ¢ and 6 are the toroidal and
the poloidal angle, n and m are the toroidal and poloidal spectral
modes, and [, and I,;, are the maximum toroidal and poloidal mode
numbers considered, respectively.

While the toroidal spectral modes are decoupled due to the
toroidal axisymmetry of a tokamak, the poloidal spectral modes
are coupled by the dependence of the static magnetic field on the
poloidal angle. For a fixed toroidal spectral mode, the wave equa-
tion in Eq. (1) reduces to a two-dimensional (2-D) problem (radial
and poloidal). The constitutive relation between the plasma cur-
rent and the electric field for each poloidal mode (m) at a radial
position (r) is given by
Tn,m _ v — L pnm
== X B, (3)

where ¥ (w, n, m) is the susceptibility tensor that is anisotropic
in the directions parallel and perpendicular to the static magnetic
field (see [1,2] for the derivations of ). Here, the electric field,
E‘”’"’(r), is radially discretized by n; finite elements (i.e. r =r;
where the index of the elements arei =1, ..., ny).

Using Egs. (2)-(3) and the given boundary condition for jA,
Eq. (1) results in a master matrix that has a radial dimension of
n, block rows, and each row has three blocks, L;, D; and R; due to
the adjacent radial mesh interactions that are introduced through
the cubic Hermite polynomial basis set of the FEM representation.
The size of each block is n, x n,, and contains the poloidal Fourier
spectral information. The dimension n, is equal to six times the
poloidal spectral mode number (i.e. n, = 6(2l, + 1)), where
the factor of six is from the three components of the electric field
and their derivatives. The discrete block-tridiagonal system form of
Eq. (1) consists of the matrix equation,

E'}i—l'i'g'?{i"_&';(i—o—l:;i fori=1,...,nq, (4)

where each X; and y; is a complex vector, every element in L; and
R;, is zero, and ¥i is determined by boundary conditions. The total

master matrix size is (nqn,) x (nyny), with typical values of n; and
n, for a small size problem being about 200 and 1000 respectively
(see Fig. 1).

Many methods have been investigated to parallelize the solu-
tion of this block-tridiagonal system by considering it as either just
a “tridiagonal” system [6-9] or a “block” matrix system [10]. The
“tridiagonal” system is parallelized in the block row dimension,
and the “block” matrix system is parallelized by distributing the
blocks. In other words, in some cases the parallel algorithm for a
block tridiagonal system is adopted in which the rows of the mas-
ter matrix are divided among a one-dimensional (1-D) processor
grid and they are calculated with a “cyclic reduction method” [6]
or “partitioned Thomas method” [7,8] as in the simple tridiago-
nal problem. The “cyclic reduction method” of solution uses the si-
multaneous odd row elimination with logarithmic recursive steps,
O(log(nq)), “partitioned Thomas method” requires O(n/p;) elim-
ination steps in divided groups (see Table 1). The “block” matrix
system approach keeps the serial routine of the Thomas algorithm

1 The cubic Hermite polynomial is smooth in C? space, which is required to solve
Eq. (1) using integration by parts.
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Fig. 1. A schematic of the two-level parallelization using 3-D processor
configuration for a block-tridiagonal system. The size of each block, L, D and R is
ny x ny and there are n; rows of the blocks. The rows are divided into P; groups,
and the elements of each block are assigned to P, P5 processors. Thus, every element
has a 3-dimensional index corresponding to the assigned processor among the total
number of processors, Pyoy = P1P; Ps.

[11], and, for each block operation, uses a parallelized matrix com-
putation algorithm such as ScaLAPACK [12] in a two-dimensional
(2-D) processor grid.

These two parallelization methods have different scaling and
saturation characteristics at large number of processors. Com-
bining the methods for two-level parallelization in a three-
dimensional (3-D) processor grid overcomes their saturation lim-
itations and achieves better scaling. This dual scalability by
two-level parallelization has also been used in a solver [13] that
employs a cyclic reduction method for parallelizing block rows
and multithreaded routines (OpenMP, GotoBLAS) for manipulating
blocks. This BCYCLIC solver [13] and our solver have similar fea-
tures of algorithmic advantage for efficient dual scaling as will be
shown in Fig. 2, while they are suitable for application to different
sizes of block-tridiagonal systems since they have different mem-
ory management. In particular, the BCYCLIC solver is efficient for
systems where several block rows can be stored in a single node
for multithreaded block operations, while our solver does not have
alimitation on the use of out-of-core memory or multiple nodes for
splitting large block sizes that cannot be stored in the core memory
of a single node, since it uses ScaLAPACK instead of LAPACK/BLACS
with threads used in [13]. The block size of TORIC is typically too
large to store several block rows in a node because of the global
spectral basis.

A single-level parallel solver in TORIC was implemented with
the serial Thomas algorithm along the block rows and 2-D par-
allel operations for the blocks [14]. ScaLAPACK (using routines:
PZGEMM, PZGEADD, PZGETRS, PZGETRF) [12] was used for all ma-
trix operations including the generalized matrix algebra of the
Thomas algorithm. All elements in each block are distributed in the
uniform 2-D processor grid whose dimension sizes are the most
similar integers to each other. For efficient communication, the
logical block size used by ScaLAPACK is set by b x b and so the
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Comparison of the parallel algorithms for block-tridiagonal matrix with n; block rows where each block is size n, x n,. The total number of processors Pie = P1P, P3, 1y is
parallelized in P; groups and each block in a group is parallelized on the P,P; processor. Here, M, A, and D are the computation time for block multiplication, addition, and

division, respectively, which can be modeled in Egs. (5)

)-(7).
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Fig. 2. Estimation of the computation time per processor based on Table 1 for n; = 270 and n, = 1530. The time for two-level parallel algorithms (cyclic odd-even
reduction, partitioned Thomas method, and combined method) is estimated in terms of P,P; for various Py, and the time for the single-level parallel algorithm (serial
Thomas) is marked as an asterisk at P,P3 = Py,. The saturation effects are included by the model in Egs. (5)-(7) for M, A, and D.

number of processors (Py) is constrained to be less than (n,/b)?.
A small logical block size may be chosen to increase the number
of processors available for use at the cost of increased communica-
tion (e.g. b >~ 72). We have found through experimentation that
communication degrades performance even as this constraint is
approached. Only when (n;/b)? is much larger than Py, this
single-level solver implementation is efficient.

This limitation on the number of processors that can be used
efficiently with the single-level solver may present load balanc-
ing problems and result in many idle processors in a large, inte-
grated multi-component simulation such as those carried out in
the CSWIM Fusion Simulation Project [15] and the transport analy-
sis code TRANSP [16]. For a relatively small problem, n; = 270 and
n, = 1530 with 20 processors, the completion time to run TORIC
is about one hour. Our purpose is to reduce this time to the order
of minutes by the use of about 1000 processors through improved
scaling. We will demonstrate that the two-level parallel solver us-
ing 3-D processor configuration within the dense blocks (2-D) and
along the block rows (1-D) can achieve good scaling for small and
large problems.

The plan of this paper is as follows: In Section 2, we compare the
characteristics of several algorithms for parallelization along the
block rows. According to our semi-empirical model, the combined
algorithm of the partitioned Thomas method and cyclic reduction,
which was developed in [9], is selected for our solver because of the
efficient dual scalability and stability. In Section 3, the implemen-
tation of the combined algorithm as the two-level parallel solver is

explained, and in Section 4, we present test results of the compu-
tation speed for the two-level parallel solver and compare it with
the single-level parallel solver. We also discuss accuracy, stabil-
ity and memory management of the solver. Section 5 introduces
two examples for a physics problem to which the two-level paral-
lel solver can be applied: three-dimensional (in space) wave field
simulations in the ion cyclotron range of frequencies (ICRF) and
the lower hybrid range of frequencies (LHRF). The two-level paral-
lel solver makes these computationally intense problems feasible
to solve. Conclusions of this paper are given in Section 6.

2. Selection of the parallel algorithm

To select a parallel algorithm along the block rows adequate for
the two-level parallel solver, we compared the matrix operation
count and the required memory for the algorithms typically used
for block-tridiagonal matrix solvers in Table 1. The common paral-
lel block-tridiagonal solvers use a single-level parallelization using
1-D processor grid (i.e. P,,c = P7), because the algorithm, whether
it is the Partitioned Thomas method [7] or odd-even cyclic reduc-
tion [6], is easily applicable to a 1-D processor grid, and the usual
block size n, is much smaller than the number of blocks n;. How-
ever, for the massive block system such as produced with the cou-
pled FEM-Spectral method, n; is as big as ny. Storing several blocks
each of size n, x n, using in-core memory would be impossible
for such a massive system. Thus we parallelize each block as well,
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giving the two-level parallelization for the required memory and
desired calculation speed.

If the block operation time is ideally reduced by the number
of processors used in the operation, it is always most efficient in
terms of number of floating point operations and memory to use
the Thomas algorithm with a serial calculation in rows and paral-
lelized block operations on the 2-D processor grid (i.e. Py,s = P P3).
However, the additional operation for the parallelization and the
increased communication between the processors deteriorates the
improvement in speed from parallelization as the number of pro-
cessors increases and becomes comparable to the square root of
the size of a block divided by the logical block size (e.g. Pyor ~
(n2/72)?). Also, beyond this limit, additional processors have no
work to do and remain idle. A good way to avoid both memory and
speed problems and retain full utilization of processors is to add
another dimension for the parallelization, so the total processor
grid configuration becomes three dimensional (i.e. Pyt = P1P, Ps3)
in the two-level parallelization.

The partitioned Thomas method uses a “divide and conquer”
technique. The system (master matrix) is partitioned into P; sub-
system, which proceeds with eliminations by the Thomas method
simultaneously and results in “fill-in” blocks. The “fill-in” blocks
are managed to find a solution through the communications be-
tween the subsystems [7]. Conversely, the cyclic odd-even reduc-
tion algorithm [6] has no matrix fill-in step that requires significant
additional time in the partitioned Thomas method. The logarithmic
cyclic reductions of the algorithm are the most efficient when both
P; and nq are approximately a power of 2. When either P; or n; is
not a power of 2, the cyclic algorithm is still available by modify-
ing the distribution of processors and communicating each other as
shown in [13]. For “massive block”-tridiagonal system, P; is typi-
cally assigned to be less than ny /2 to treat the massive blocks using
some processors of P,P3. When P; is assigned to be less than ny/2,
itinduces ny /2Py + ny/4P1 + - - - + 2 = ny/P; — 2 additional se-
ries of operation to the logarithmic reduction process in the cyclic
reduction algorithm (see the first row of Table 1).

The combined algorithm of the partitioned Thomas method and
the cyclic reduction was introduced in [9]. This combined algo-
rithm was used in this case for the analysis of a solar tachocline
problem to enhance both the speed and the stability of the cal-
culation. It can alleviate the local pivoting instability problem of
the cyclic reduction method because it is based on the partitioned
Thomas method except that it uses cyclic reduction for dealing
with the matrix fill-in and for communication between the P;
groups. The computation time for the fill-in reduction process of
the partitioned Thomas method [7], P;(M +A+ 2D), is replaced by
the term from the cyclic reduction algorithm [6] in the combined
algorithm, (log, P; — 1) x (6M + 2A + D) (see Table 1). Here M, A,
and D are the computation time for block multiplication, addition,
and division respectively. The contribution of this paper is a gen-
eralization of the work in [9] to include parallelization of the block
operations and to characterize the performance properties of the
resulting two-level parallelization.

We have developed an execution time model for the block
operations, M, A, and D including the saturation effect in
Egs. (5)-(7), in order to compare the realistic speed of the algo-
rithms. From the observation that the deterioration of scaling by
parallelization in P, P; becomes severe as the number of processors
approaches the saturation point, we set the exponential model in
Eq.(8) as:

n2
M = My——=2— (5)
(P2P3) o
n

A=A)———
(P2P3) o

Sy ™)
- (P2P3) g
_ (P2P3) %(PaP3)
(P2P3) e = {(P2P3)sat * (1 —exp <_(PZP3)sat)>} ) (8)

The exponent parameter, ap,p,), represents the non-ideal scaling
because (P,Ps) s becomes about (P,P3)*®2P3) when P,P; is much
smaller than (P,P3),. Ideally, ap,p,) should be 1. However, from
actual tests of the run time in Section 4, we can specify the parame-
ters, ap,p;) = 0.41and (P;P3) = (n2/191)2 from Fig. 4(a). These
constants may not be generally true for all range of processors and
for all architectures, but it can explain the results well in our test
shown in Fig. 4. Also, we set the parameters, My = 0.5Dg = n,Ag,
because the general speed of matrix multiplication in a well op-
timized computation code is about two times faster than that of
matrix division based on experience when the matrix size is about
1000 x 1000.

No communication saturation model is used for the P; de-
composition in this comparison. For cyclic reduction steps in
the first and third rows of Table 1, they have a natural algo-
rithmic saturation from the log, P; term that dominates over
any communication saturation. Unlike the distribution of a ma-
trix block among P,P; processors, increase of P; does not frag-
ment matrix block among more processors but has the weaker
effect of increasing communication boundaries between block row
groups. Additionally, for the massive block system, we typically use
Py < nyinwhich there is little saturation in the parallelization due
to the communication.

The computation time per processor is estimated for the algo-
rithms in Fig. 2 for arelatively small size system problem, n; = 270
and n, = 1530. Both the combined algorithm and the cyclic re-
duction algorithm show the similar performance of the two-level
scaling and they have typically smaller computation time than the
partitioned Thomas algorithm. This model is demonstrated by the
real computation results in Fig. 6 that agree well with the models
in Fig. 2 (compare the blue asterisk and the black curve in Fig. 2
with Fig. 6). Among the algorithms, we selected the combined al-
gorithm because it is known to be more stable than the original
cyclic reduction algorithm [9]. Some stability issues of the original
cyclic reduction were also fixed in the Buneman version of cyclic
reduction with a reordering of operations [17-19].

3. Code implementations

One approach for implementing the 3-D grid for the two-level
solver is to use a context array in BLACS [21], in which each con-
text uses the 2-D processor grid as does the single-level solver [12].
In BLACS, a context indicates a group within a boundary of an MPI
communicator. Under the default context having the total num-
ber of processors, it is possible to assign multiple sub-contexts
(groups) by mapping each processor. Also, we can communicate
across sub-contexts when needed in a tridiagonal algorithm.

The combined algorithms of the partitioned Thomas method
and cyclic odd-even reduction [9] can be summarized as three for-
ward reduction steps and two back substitution steps. By parti-
tioning the whole system into P; groups and applying the Thomas
algorithm in each group, we can achieve a subsystem containing
P; rows to be communicated across the groups using the cyclic re-
duction. Once we achieve the solution for a row after the cyclic re-
duction, the solution is substituted to find another row solution
within the subsystem, and then finally substituted backward as in
the Thomas algorithm for each group.

3.1. Divided forward elimination and odd-even cyclic reductions

The three forward steps are described in Fig. 3. The first step
is for serial elimination of the L; block by the previous row
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Fig. 3. Description of the combined algorithm for the forward elimination (Step 1),
the block redistribution (Step 2), and the cyclic odd-even reduction (Step 3).

(i-1throw) as in the Thomas algorithm, but this process is executed
simultaneously in every group like a typical partition method. Dur-
ing the first step, the elimination processes create the fill-in blocks
“F' at the last non-zero column of the previous group except for
the first group (see Fig. 3step 1).

Step 2 is the preliminary process for step 3, the cyclic reduction
step which requires tridiagonal form. To construct the upper level
tridiagonal form composed of the circled blocks in the first row of
each group (see Fig. 3step 2), we need to move the blocks G” in
the first row to the column where the block E” of the next group is
located. Before carrying out the redistribution, the matrices in the
last row in each group must be transmitted to the next group. Then,
the received right block R’ is eliminated by the appropriate linear
operation with the following row, and the elimination by the next
row is repeated until the block G” moves into the desired position.

The block tridiagonal system formed by the E”, F” and G” blocks
from each processor group can be reduced by a typical odd-even
cyclic reduction in step 3 as shown in Fig. 3. This step is for the
communication of information between groups, so the portion of
the total run time for this step is increased as P; is increased.
This reduction is carried out in log,((P; + 1)/2) steps because
P; should be 2" — 1 instead of 2" where n is an integer, and it
requires the total number of processors to be several times (2" — 1)
(i.e. Pyt = P,P3(2" — 1)). This characteristic could be a weak point
of this algorithm in a practical computation environment, because
anode in a cluster consists of 2" processors typically. However, the
problem can be solved by assigning (2" — 1) nodes that have m
processors in a node, which results in no free processor on certain
nodes and has minimal communication across the nodes.

3.2. Cyclic substitutions and divided backward substitutions

In the end of the cyclic reduction in step 3 only one block E"”
remains, so we can obtain a part of the full solution by taking x; =
E”~'y;. This part of the solution is substituted to find a full solution
vector, X, in step 4 and step 5. In step 4, the cyclic back substitution
is executed in log,((P; + 1)/2) steps, the same as in the cyclic
reduction step. Then, in each group, the serial back substitution
continues simultaneously in step 5. In this step, each group P
except the first one should have the information of the solution in
the previous group P;_; to evaluate the terms contributed by the
fill-in blocks F” in the solution.

4. Result and discussions
4.1. Computation speed of the solver

The computation speed of the solver using the combined algo-
rithm is evaluated with various 3-D processor grids, [Py, P,, Ps],
for three different size problems as shown in Fig. 4. Each graph
shows the result for different decompositions of the processor grid.
The red line indicates the single-level solver scaling which satu-
rates due to large communication time well before the number of
processors is comparable to (n,/72)?, which is the ratio of block
size to the logical block size of ScaLAPACK. However, the graphs
for the two-level solver show fairly good and stable scaling. For
the large number of processors in Fig. 4(c), the two-level solver
with an optimized configuration is about 10 times faster than the
single-level solver. This test for wall-clock time was conducted
on the massively parallel Franklin computing system at the Na-
tional Energy Research Scientific Computing Center (NERSC). Each
of Franklin’s compute nodes consists of a 2.3 GHz quad-core AMD
Opteron processor (Budapest) with a theoretical peak performance
of 9.2 GFlop/sec per core. Each core has 2 GB of memory.

In the log-log graph of run time as a function of the number of
processors, an ideal scaling from parallelization has a slope of —1.
Although the ideal scaling is hard to achieve because of increas-
ing communication, the two-level solver shows a much steeper
slope than the single-level solver. We can consider the slope as
the average efficiency of the scaling. For the small size problem in
Fig. 4(a), we evaluate the speed-up? (=T (Prer) X Prer/T (Pror)) by se-
lecting the reference point as the first point (P,ef = 8) of the single-
level solver. For example, the two-level solver with P,P; = 16
(magenta line with plus symbols, slope = —0.55) shows that
the speed-up by the different total number of processors (P =
16, 48, 112, 240, 496, 1008, 2032) are respectively 10.4, 12.1,
24.6, 43.7, 64.3, 84.6, and 120.1. Their corresponding efficiencies
(=T (Pre) X Preg/(T(Pror) X Por)) are 65, 25, 22, 18, 12, 8.4, and
5.9%. For the medium size problem in Fig. 4(b), using the first point
(Pres = 64) of the single-level solver (red line) for the reference
point, the speed-up of the two-level solver with P,P; = 16 (light
blue line with diamond symbols, slope = —0.70) by the differ-
ent total number of processors (P, = 112, 240, 496, 1008, 2032)
are 69.0, 138.2, 250.2, 381.6, and 522.0. Their corresponding ef-
ficiencies are 61, 57, 50, 37, and 25%. We note for the cases in
Fig. 4(a) and (b) the processor number and speed-up are compa-
rable to those in [13] (see Fig. 4 in [13]). For the large size problem
in Fig. 4(c), we may use the first point (Pef = 1920) of the two-level
solver with P,P; = 128 for the reference point, because the single-
level solver (red line) shows saturation of the scaling already at this
point. Then, the speedup of the two-level solver with P,P; = 128
(green line with cross symbols, slope = —0.79) by the differ-
ent total number of processors (P,; = 3968, 8064, and 16 256)
are 3498, 6508, and 10 160. Their corresponding efficiencies of the
scaling are 88%, 80%, and 60%, respectively. As the results are rep-
resented as lines on a log-log graph, the efficiencies based on the
linear speed-up decrease with increasing number of processors.

The non-ideal scaling parameters for P,P; used in the model of
Section 2 can be inferred from the red graph in Fig. 4(a) in which all
processors are used for the parallelization in blocks (Pt = P; P3).
The exponent parameter, ap,p;) = 0.41, is obtained by the
average slope in the log-log graph before the saturation point. The
saturation point for n, = 1530 is around P,P; = 64 where the
graph begins to be flat, giving the parameter (P,P3),,, = (112/191)2.

2 A serial solver using a processor (Pef = 1) is an ideal reference point for the
scaling by the parallelization. However, in this test, the reference point Prer > 1is
used due to the constraint of the required memory for the massive system.
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Fig. 4. Comparison of the solver run time in terms of various 3-D processor grid configurations [Py, P, P3] with different size problem (a) [n,n] = (270, 1530),

(b) [n4, n2] = (480, 3066), and (c) [nq, n] = (980, 6138). The red graph corresponds to the single-level parallel solver that uses of the serial Thomas algorithm along the
block rows and 2-D parallel operations for blocks. The other graphs (blue, green, cyan, and black) correspond to the two-level solver that uses 1-D parallelization by the
combined algorithm in Section 2 along block rows and uses 2-D parallel operations for blocks. The slope values next to the lines indicate the average of the slopes of the
graphs, and the “slope*” indicates the average slope before the saturation point. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

The red graphs in Fig. 4(b) and (c) showing the full saturations
beyond P,P; = 256 and beyond P,P; = 1024, respectively, are also
consistent with the saturation points in Fig. 4(a). For the two-level
parallel solver using 3-D processor grid shows retardation of the
saturation because P; can be used to make P,Ps5 less than (P,P3)q;-
Also, as shown in Fig. 4(a)-(c), the slopes become generally steeper
for the larger size problem or for smaller processor number, as
they are far from the saturation point. These facts validate the
exponential form of the model used in Section 2.

Fig. 5 shows the allocated computation time for the steps of the
combined algorithm within the run time of the two-level solver.
As the number of groups P; is increased at a fixed number of block
rows ni, the dominant time usage is shifted from step 1 and 2
to step 3 in Fig. 3 due to fewer partitioned blocks per group and
more cyclic reductions. The graphs in Fig. 5 are in accordance with
the expected theoretical operation of the combined algorithm in
Section 2. Since the operation count of the partitioned Thomas part
in the step 1 and step 2 is proportional to ny /Py, the slope is about
—1. But the cyclic reduction part in step 3 results in a logarithmic
increase of the graph because the operation count is proportional
to log, Py, as indicated in Table 1. For large P; with a fixed P,Ps, the
run time of step 3 is dominant component of the total run time,
which implies the algorithmic saturation of the parallelization in
P;.This algorithmic saturation is shown in the reduced slope of the
black line in Fig. 4(a) when log, P; > n;/P;. Note that the flat slope
of all graphs except the red graph in Fig. 4(a) when Py > ny/2 is
not due to the algorithmic saturation but due to the constraint of
the parallelization by Py < ny/2.

Run time for step1,2,3 with P2P3=8

—¥— step1(divide)
—E&—step2(pass) I
step3(cyclic-reduc)

«— slope=-1.03

slope=-144—

Execution time(sec)
=

10' 1 1
10° 10
number of processors

Fig. 5. Run time of the forward reduction steps in the two-level solver with a
small size problem [nq, n;] = (270, 1530). Step 1 is a divided forward elimination
process. Step 2 is a preliminary process for making the tridiagonal form needed
for Step 3, which is a typical cyclic odd-even reduction process. Step 3 shows the
logarithmic increase as indicated in Table 1. The summation of the three run times of
steps 1, 2, and 3 corresponds to the yellow graph with triangle symbols in Fig. 4(a).

An enhanced improvement in speed-up relative to ideal scaling
(i.e. the steeper slope than — 1) is seen in Fig. 5 for step 2 for large P;.
The reason for this could be specific to the algorithm, i.e. the matrix
operations of the first row in each group are much smaller than for
the rest of the rows in the group, and some of the remaining rows
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Fig. 6. Comparison of the solver run time in terms of P,P; with a small size problem

algorithm (black line) and Thomas algorithm (blue asterisk) in Fig. 2.

become the first rows in a group as we divide into more groups
with increased P;.

This saturation of the single-level parallelization either in P; or
in P,P; implies the existence of an optimal 3-D processor configu-
ration for the two-level parallelization. We found that the optimal
3-D grid exists at the minimum total run time when P,P; & 16 for
n, = 1530 and n, = 3066, and P,P; ~ 128 for n, = 6138, pro-
vided the number of processors is big enough. Fig. 6 shows the run
time comparison in terms of P,P; for n, = 1530. As mentioned in
Section 2, the results of Fig. 6 are reasonably consistent with the
non-ideal scaling model we developed for the algorithm compari-
son. Thus, the optimal grid for the minimal computation time can
be estimated from the modeling in Section 2 without the full test
such as shown in Fig. 6.

It is important to point out that the two-level parallel solver
is not always faster than the single-level parallel solver because
the serial Thomas algorithm has fewer matrix operations and thus
works well with a small number of processors far before the satu-
ration point. For example, the single-level solver shows the faster
computation speed than any 3-D configuration of two-level solver
below P,y = 32 in Fig. 4(a).

From Table 2 obtained by the IPM monitoring tool [22] at
NERSC, we can compare the saturation effect from MPI commu-
nication for the two solvers. Although this tool does not measure
the communication time in a specific subroutine, it does monitor
the total run time including pre-processing and post-processing,
and we can see a remarkable difference between the single-level
parallel solver and the two-level parallel solver. As the total num-
ber of processors (P ) is increased, MPI communication time in-
creases at a much faster rate for the single-level solver than it does
for the two-level solver. When Py,; changes from 32 to 2048, the ra-
tio of the communication time to the total run time increases about
three times for single-level solver, while the ratio for the two-level
solver increases only about two times. Also, the drop of the average
floating point operation speed (Gflop/s) in terms of the total core
number for the single-level solver is more severe than the speed
drop-off for the two-level solver. Both of these observations
demonstrate the retarded saturation that can be credited for the
reduced communication of the two-level solver.

—E©— 3D (Combined method)

¥ 2D (Thomas P2P3=Pm)
4001 p =128
tot
*
203
0
1 10 100
P2P3
400 Pmt=512
*
200
01 10 100
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[ny, ny] = (270, 1530). Compare this result with the estimation for the combined

In the second column of Table 2, even before the saturation
point (e.g. P,y = 32), we can see about 3 times higher average
execution speed for the two-level solver than for the single-level
solver (compare Table 2(a) with (d)). This is also a significant
benefit of the use of the two-level solver. The difference of the
execution speed may depend on the efficiency of the calculation
by ScaLAPACK in a given block size with a different number of
processors (note that the single-level solver uses all cores whereas
the two-level solver uses the fraction P,P3/Py of cores for the
ScalLAPACK operations). Hence, the two-level solver algorithm
has more efficient data processing (e.g. fewer cache misses and
calculation in a larger loop) as well as less communication
overhead. Furthermore, from Table 2(e) and (f), we can see that the
scaling by ScaLAPACK is less efficient than that by the combined
algorithm along the block rows.

4.2. Other properties of the solver

The required in-core memory for the two-level solver is about
two times that for the single-level solver because of the block fill-
ins (see the second column of Table 1 and the third column of
Table 2). When the matrix size is ny = 270 and n, = 1530,
the allocated memory per core is about 2 GB using 16 processors
with the two-level solver, so it prevents us from using the two-
level solver with processors less than 16 and the single-level
solver with less than 8 processors (see Fig. 4(a)). An out-of-core
method would enable the two-level solver to work with a small
number of processors, and indeed we have observed no significant
degradation in computation speed in our testing of the out-of core
algorithm.

The memory management of this solver has a different charac-
ter than the multithreaded solver discussed in [13]. The optimiza-
tion of the memory management for fast computation depends on
architecture. Although threading is known to be faster than MPI
communication, it relies on uniform memory access on a node.
For some architecture, the effective memory access and number of
threads are limited to the memory and number of cores on only one
of the dies. For example, the Hopper machine at NERSC has a NUMA
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Table 2

2605

Measurement of the average MPI communication time percentage of the total run time
(the first column), the average floating point operation speed per core (the second
column), and the average memory usage per core (the third column) by IPM which is
the NERSC developed performance monitoring tool for MPI programs [22]. This result

is for a small size problem [ny, n,] = (270, 1530) in terms of various processor grid
configurations and solver types.
% comm gflop/s  gbyte
(a) Single-level solver (Pyot = P,P3 = 32) 26.2 0.719 0.522
(b) Single-level solver (P = P,P; = 128) 38.4 0.438 0.292
(c) Single-level solver (P = P,P; = 2048) 78.1 0.110 0.188
(d) Two-level solver (Pyot = 32, P,P3 = 1) 34.6 2.596 1.486
(e) Two-level solver (P, = 128, P,P3 = 1) 535 1.714 1.051
(f) Two-level solver (P = 128, P,P3 = 16) 48.7 1.158 0.392
(g) Two-level solver (Pyy = 2048, P,P3; = 16) 64.2 0.568 0.262

architecture and so only !/4 or 6 threads could be used on each node
out of 24 cores available and so only /4 of the memory could be
used as well. This places a constraint on the number of threads and
amount of memory that can be efficiently used for block decompo-
sition and limits the algorithm to SMP machines for solving large
blocks. In [13], this limitation is acknowledged and they indicate
plans to extend BCYCLIC to hybrid MPI to use more memory and
multiple nodes in block decomposition. However, threaded appli-
cations typically have a smaller memory footprint per process due
to sharing of parts of the executable and common data structures.

The combined algorithm of the two-level solver can handle
non-powers of two for the number of block rows and the number
of processors. For the combined algorithm using the original cyclic
reduction, n; can be arbitrary number times power of two. Also,
the total number of processors for two-level solver is constrained
to be Py = P,P3(2" — 1), which is more flexible than the single-
level solver for 1-D parallelization by the original cyclic reduction
having Py; = (2" — 1). The modifications? in the original cyclic re-
duction algorithm in [13] to remove the constraint on the number
of processors are useful and could be applied to this solver in the
cyclic reduction step as well to permit completely arbitrary pro-
cessor counts.

To demonstrate the accuracy of the solvers, we compare the
solutions, X; in Eq. (4), as well as a representative value of the
solution (e.g. a wave power calculation using the electric field
solution in TORIC). The values obtained by the two-level solver
agree well with the result of the single-level solver (to within
0.01%). Also, the two-level solver shows excellent stability of
the result in terms of the varying processor number (to within
0.01%). This precision may be a characteristic of the new algorithm.
Because the sequential eliminations in step 1 are executed in
divided groups, the accumulated error can be smaller than that of
the single-level solver which does the sequential elimination for
all range of radial components by the Thomas algorithm. However,
from another viewpoint, the local pivoting in the divided groups
of the two-level solver instead of the global pivoting in the serial
Thomas algorithm may induce instability of the solution. Many
people have investigated the relevant stability of the tridiagonal
system with the partitioned Thomas algorithm [23] and cyclic
reduction algorithm [17-19] and have developed techniques to
ensure numerical stability regarding the use of the pivoting [24,25].

Our solver uses the algorithm shown in Fig. 3, where no block
operations in the schematic depend on the right hand side. So
we can use this method for multiple right hand sides, if needed.
However, in the current solver, multiple right hand sides should

3 The cyclic reduction with arbitrary number of rows and processors may result in
anon-uniform work load over processors and a few percent (O(1/ log, P,)) increase
of the computation time than the perfect recursion with powers of two rows and
processors

be given altogether before the block operations since the algorithm
normalizes the diagonal block as identity and eliminates the lower
side band block during the solution. Therefore, the stored blocks in
the memory after the forward process cannot be used in the system
with a new right hand side. If we repeat all the block operations
from the beginning for a new right hand side, total computation
time would depend linearly on the rank of columns of right hand
side. In the case that we need to solve this system many times with
a new right hand side (e.g. iteration process), it is more efficient to
store all needed blocks for later use with the new right hand side,
instead of repeating all block operations. Then, in the combined
method, the required memory for this purpose, O((4n; + p1)n§),
becomes more than two times the original minimal memory
storage, O(anng) (see Table 1). This is because the solver must
save more n diagonal blocks before normalization during step 1in
Fig. 3, more n; blocks corresponding to temporary moving blocks
G” during step 2, and more p; blocks during cyclic elimination
step 3. Moreover, if sufficient memory storage is allowed, then
calculating an inversion of the master matrix with an identity right
hand side matrix could be another efficient solution method for a
problem with a significant number of right hand sides.

Because the speed of the solver is determined by the processor
taking the most time, a well distributed load over all processors is
important. When the solver is integrated with pre-processing and
post-processing in an independent computation code, the versatile
parallelization may help the load balance. In Fig. 7, the most unbal-
anced of the work load in TORIC occurred during pre-processing
because the blocks would be trivial such as an identity or zero ma-
trix for the last several processors. All processors are blocked by an
MPI barrier until they reach the backward substitution step, so the
last several processors usually are free at the end of the runtime
for step 3. We may use this expected unbalance by assigning more
work during the solver time to the free processors. Then, the im-
balance would be dissolved after step 1 and makes the two-level
solver faster.

5. Applications

The 3-D block-tridiagonal parallel solver can be applied to many
physics problems that are computationally intensive. One exam-
ple is the study of plasma heating and current drive by mode-
converted waves in the ion cyclotron range of frequencies (ICRF) in
a tokamak. The energy or momentum of the wave is transferred to
the plasma by several resonant mechanisms [26]. The code (TORIC)
utilizing the two-level solver is used to solve Maxwell’s equations
given in Eq. (1), with the plasma response impressed by an ICRF
wave injected by a 4-strap antenna in the Alcator C-Mod tokamak
[27-29]. By the linear summation of 2-D electric field solutions
from each toroidal mode (see Fig. 8) weighted by the antenna
toroidal spectrum profile, we can obtain the wave electric field in
3-D geometry as shown in Fig. 9. Although the 3-D reconstruction
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Fig. 8. 2-D contour plot of the electric field of an ICRF wave in Alcator C-Mod from a TORIC wave simulation with one positive toroidal mode (ng = 9). (a) The real part of
the right hand polarized electric field in the plane perpendicular to the static magnetic field, and (b) the real part of the parallel electric field. The unit of the electric field

is [V/m], but is normalized to the square root of power absorption, v/Ps,s[MW]. In the

poloidal cross section, the outer line corresponds to the vessel of the tokamak, the

solid vertical line is the ion-ion hybrid resonance layer where mode conversion can occur, and the dashed vertical line is the cut-off layer of the fast wave [26]. The center

of the antenna is located at about (X, Z) = (22 cm, 0 cm). Plasma parameters for this di

scharge are static magnetic field (Br = 8.0T), plasma current (I, = 1.2 MA), central

electron temperature (Too = 4 keV), central electron density (n.o = 1.4e?® m~3), and ion concentration (D, He, H) = (0.44, 0.22, 0.08) X 1.

with many toroidal modes is useful to distinguish the different
wave modes supported by the plasma wave dispersion relation,
it is computationally prohibitive using the single-level paralleliza-
tion in many computer facilities. Using 511 poloidal modes to re-
solve a millimeter short wavelength mode converted wave, the
total computation time for 40 toroidal modes using the single-level
parallelization is about 3000 s x 40 modes x 256 cores = 8500
CPU-Hours. However, using the two-level parallel solver, the CPU
computation time is more than threefold decreased, as shown in
Fig. 4(b), thus making the 3-D reconstruction with many toroidal
modes feasible.

In the tokamak geometry (toroidally symmetric), Maxwell’s
equations together with a constitutive relation for the plasma cur-
rent determine the dispersion relation in terms of the perpendicu-
lar wave vector (k, ) and parallel wave vector (k) relative to the
static magnetic field direction, the wave frequency (w), and the

density and temperature of ions and electrons [2,26]. For the range
of ion cyclotron frequency wave, the plasma dispersion equation
has three different roots for ki that correspond to the fast mag-
netosonic wave (FW) mode, the ion cyclotron wave (ICW) mode
and the ion Bernstein wave (IBW) mode. The fast wave mode has
the long wavelength (several centimeter) that is determined by
the smallest magnitude root of k2, and this mode is dominant in
the low temperature region in front of ICRF antenna. The fast wave
mode is used for accessing the core plasma from the antenna, but it
is evanescent beyond a cut-off layer before approaching an ion-ion
hybrid resonance layer where mode conversion occurs in the core.
If the distance between the cut-off layer and the resonance layer is
small enough for tunneling of the wave as shown in Fig. 8, a large
portion of the fast wave is not reflected but converted to either the
ICW mode [30] or the IBW mode [31]. The wavelength of both con-
verted modes is small, on the order of the ion gyroradius (ICW: a
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few millimeters, IBW: sub-millimeter). While the electrostatic IBW
is supported by kinetic effects in the high electron temperature of
the core plasma, the electromagnetic ICW requires a large k; whose
parallel phase velocity is smaller than the electron thermal veloc-
ity. Thus, ICW can exist not only in the core but also off-axis where
the poloidal magnetic field results in an upshift of the wave k; [32].
Also, the ICW is susceptible to collisionless electron Landau damp-
ing (ELD) due to its large k; and its polarization results in a rel-
atively large parallel electric field compared to the fast wave and
the IBW. As shown in many experiments, increasing the concentra-
tion of He? in D and H plasmas moves the mode conversion layer
farther from the core, resulting in mode conversion preferentially
to ICW rather than mode conversion to IBW [33].

In Fig. 9, a TORIC simulation performed with the two-level
parallel solver shows the fast wave (yellow and green) and the
mode converted ICW (red and blue). The FW has a dominant right
handed polarized electric field component in the perpendicular
plane and appears as the centimeter scale (big) contours in front
of the antenna in Fig. 8(a). For the component of the electric field
parallel to the static magnetic field which is important for electron
Landau damping, ICW is dominant and it appears as the long strips
with the oscillating amplitude in a few millimeters as shown in
Fig. 8(b) and Fig. 9. Two groups of strips are located above and
below the mid-plane, but they are propagating in different toroidal
directions as shown in Fig. 9, in expectation with the backward
propagation property of the ICW (from negative to positive in the
x-direction of Fig. 8). Also, an asymmetric toroidal mode profile
results in a difference in the intensity and wavelength of the ICW
propagating above and below the mid-plane. This is because both
the toroidal and poloidal mode numbers contribute to the large k;
of the ICW, and the positive poloidal mode effectively increases k;
for the ICW below the mid-plane while the negative poloidal mode
number decreases k; for the ICW above the mid-plane due to the
backward propagating nature of the wave [34]. We also notice that
the ICW is damped strongly in the parallel direction by electron
Landau damping, which could be useful for localized current drive
in the tokamak [27-30].

The 3-D reconstructed picture as shown in Fig. 9 is useful
for understanding the toroidal dependency of many experimental
diagnostics that must be taken into account when validating the
numerical code against experiment. In fact the two-level parallel
solver has made it feasible to carry out 3-D reconstructions of mode
converted ICRF waves that were needed to simulate the signal of
a Phase Contrast Imaging (PCI) diagnostic in the Alcator C-Mod
tokamak that was used to detect the mode converted waves [33].
The diagnostic was displaced toroidally from the ICRF antennas
necessitating 3-D field reconstructions in order to know precisely
the wave field at the diagnostic location.

The two-level solver is also useful to analyze lower hybrid (LH)
frequency range waves using TORLH [35], which is modified from
TORIC to focus on the fast and slow wave mode by neglecting
other thermal wave modes. To resolve the short wavelength of the
slow mode (<1 mm), TORLH typically requires higher spatial res-
olutions (i.e. n; > 1000 and n, > 3000) than TORIC. The slow
wave is electrostatic, and it is damped by electron Landau damping
that causes velocity space diffusion of the non-thermal fast elec-
trons. The non-Maxwellian electron distribution function evolves
consistently with a balance between the energy transfer from the
wave and the electron collisions, which requires iteration between
the wave solver (TORLH) and the Fokker-Planck equation solver
(CQL3D [36]). The iterations make the analysis computationally
more intensive. Fig. 10 shows 3-D contours of the parallel elec-
tric field of lower hybrid waves reconstructed by the results of the
iteration between TORLH and CQL3D using many toroidal modes
as shown in Fig. 9 for ICRF waves. Using the two-level solver, the
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was obtained by superposing the 2-D TORIC wave simulations of 41 toroidal modes
(fromn = —20 to n = 20). The real part of the parallel electric field (red and blue,
[V/m]) represents an ion cyclotron wave mode (a short radial wavelength), and the
right hand polarized electric field in the perpendicular plane to the static magnetic
field (yellow and green, [V/m]) indicates the fast magnetosonic wave mode (a long
radial wavelength). The peak toroidal mode of the antenna profile is n = 7, the
total ICRF power absorption is about 0.85 MW, and the other plasma parameters
are same as indicated in Fig. 8. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. 3-D contour plot of the electric field of an LH wave in Alcator C-Mod that
was obtained by superposing the 2-D TORLH wave simulations of many toroidal
modes (fromn = —157 ton = —179, which corresponds to n = —1.81 to
ny = —2.06).

required computation time for the reconstruction is reduced sig-
nificantly (more than four times) than when using the single-level
solver.

The 3-D reconstruction of the LH resonance cone behavior
shown in Fig. 10 is an important feature of the wave propagation
as the resonance cone indicates the group velocity path of the elec-
trostatic LH wave branch [5]. The toroidal dependence of the wave
path could be very important when examining possible parasitic
absorption mechanisms in the scrape off layer (SOL) that could
be responsible for the density limit seen in LH current drive ex-
periments such as collisional damping [37] or parametric decay
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instability [38], as these mechanisms depend critically on the prop-
agation path in the SOL.

6. Conclusion

The optimized distribution of total processors by two-level par-
allelization for a massive block-tridiagonal system is shown to be
beneficial for faster computation by reducing the communication
overhead when a large number of processors are used. The two-
level parallel solver contains 1-D parallelization in block rows us-
ing the combined methods [9] of “Partition Thomas method” [7]
and “Cyclic Odd-Even Reduction” [6], and 2-D parallelization for
manipulating blocks themselves using ScaLAPACK [12]. A semi-
empirical model to estimate the computation speed of several al-
gorithms is established, and it is verified by test that an optimal
point exists among various processor grid configurations. Using the
two-level parallelization with the combined method, we can ob-
tain system flexibility in terms of the number of block rows and
processor configuration. Although the two-level solver requires
about twice the memory of the single-level solver using a “Thomas
algorithm”, it shows much higher floating point operation rate,
with good accuracy and stability of the solution. As an applica-
tion of the two-level solver, the intensive computations of mode-
converted ICRF waves and lower hybrid waves in a tokamak are
demonstrated, where the new solver makes expensive 3-D recon-
structions of the wave fields computationally feasible, thus making
it possible to confirm important physics of wave propagation and
damping. We expect this technique will be useful for other appli-
cations that generate block-tridiagonal systems with large blocks.
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