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Abstract: Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph
tandem cells, with best confirmed efficiency of 12.3%, have yet to fully
approach their theoretical performance limits. In this work, we consider
a strategy for improving the light trapping and charge collection of a-
Si/c-Si micromorph tandem cells using random texturing with adjustable
short-range correlations and long-range periodicity. In order to consider the
full-spectrum absorption of a-Si and c-Si, a novel dispersion model known
as a quadratic complex rational function (QCRF) is applied to photovoltaic
materials (e.g., a-Si, c-Si and silver). It has the advantage of accurately
modeling experimental semiconductor dielectric values over the entire
relevant solar bandwidth from 300—1000 nm in a single simulation. This
wide-band dispersion model is then used to model a silicon tandem cell
stack (ITO/a-Si:H/c-Si:H/silver), as two parameters are varied: maximum
texturing height h and correlation parameter f . Even without any other
light trapping methods, our front texturing method demonstrates 12.37%
stabilized cell efficiency and 12.79 mA/cm2 in a 2 µm-thick active layer.
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1. Introduction

Sunlight is one of the most promising renewable sources of energy. The amount of solar power
incident on the Earth’s surface is 10,000 times greater than the commercial energy used by every
human on the planet, even without assuming any improvements in the performance and cost of
current solar cell technology [1]. In recent years, the level of adoption of solar technology
has increased enormously, to tens of gigawatts of annual installations worldwide. However,
the enormous potential of this resource may not be realized without further improvements in
the efficiency of materials usage, and greater reductions in cost of manufacturing, particularly
for incumbent technologies based on silicon [2]. For example, the fluctuating prices of poly-
silicon wafers have provided significant motivation for the development and utilization of thin
film solar cells (TFSCs). TFSCs have a major advantage over ordinary, wafer-based solar cell
technology, i.e., they provide the same power with only a fraction of the materials usage [3–5].
However, the maximum efficiencies of some types of TFSCs are lower than those found in
wafer-based technology. For example, the best crystalline silicon-based solar cells operate at
25.0% efficiency, whereas nanocrystalline silicon TFSCs only have efficiencies up to 10.7% [6].

The gap in performance between TFSCs and monocrystalline-based cells is believed to arise
primarily from differences in optical and electronic design and performance. Because of in-
complete light absorption, many photovoltaic cells have lower performance than the theoret-
ical Shockley-Queisser limit associated with their electronic bandgap [7]. This is particularly
a challenge for thin-film materials with low mobilities. Among the variety of commercially
manufactured photovoltaic materials, silicon micromorph solar cells have operated far from the
theoretical limit of tandem cells: approximately 40% with a-Si (Eg1 = 1.72eV) and c-Si (Eg2 =
1.11eV) [8,9]. On the other hand, thin film silicon micromorph cells have a record efficiency of
only 12.3% [6]. Thus, it is very important to identify the best light-trapping structures possible
to help maximize the performance and reduce the costs of photovoltaic cells. Light trapping can
be achieved by changing the angle of the light as it travels in the solar cell, i.e., by elongating
the optical path, and this can be done by using a surface that has a rough texture. Theoreti-
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cally, a rough-textured surface reduces reflection by increasing the probability that the reflected
light will bounce back onto the surface, minimizing its chance of reflecting out of the cell [10].
From early theoretical work on photovoltaic cells [11, 12], it is known that a perfectly random
structure can scatter light at all possible angles inside the active layer, thereby enhancing the
absorption (effective path length) up to 4n2 [13]. However, thin-film solar cells, in particular,
rarely achieve such high performance [14]. Part of the reason is that analytical approaches do
not adequately describe the real structures that have been built experimentally. In particular, the
feature size of a randomly-textured surface seems to play an important role for light absorption,
based on experimental observations over the last decade [15, 16]. Although experimental re-
sults must be the ultimate guide, examining and optimizing a very wide range of structures that
can potentially be fabricated is extremely expensive and time-consuming. Thus an extremely
accurate, simulation-based approach is needed to help guide experimentalists. In this work, we
investigate and optimize a broad class of random structures with short-range correlation for
experimental realism, and long range periodicity to enhance diffraction into guided modes. As
depicted in Fig. 1, the simulation of random texturing is not a trivial undertaking due to the
complicated structure and dispersion characteristics of a thin film solar cells.

Most previous simulation works related to TFSC materials, especially the case of an a-Si
solar cell, have been conducted in the frequency domain, either with just a single frequency
at a time [17–20], a limited range of frequencies [21], or split frequencies [22]. For a single
frequency simulation, it should be emphasized that runtime increases linearly with the number
of frequencies, and thus a single frequency method is not suitable in the presence of sharp spec-
tral features, such as those engendered by a 3D dispersive material. As an alternative, the finite
difference time domain (FDTD) method sidesteps this problem by simulating all frequencies
at once in a single simulation, which can finish quickly in the presence of loss [23, 24]. How-
ever, most thin film photovoltaic materials do not have a proper time domain dispersion model,
because semiconductor materials generally do not follow the Drude-Lorentz model over the
whole range of wavelengths due to multiple optical transitions and varying joint densities of
states [25]. The dispersion characteristics of thin film photovoltaic materials have been investi-
gated extensively over a long period of time. Among many dispersion models, the Tauc-Lorentz
(TL) model captures the characteristics of a-Si material very well, including varying joint den-
sities of states for optical transitions [25]. However, the TL model is not sufficient for time
domain simulations due to the complexity of its equation, which makes the resulting FDTD
implementation computationally expensive. Thus the Double-Lorentz (DL) model was sug-
gested as an alternative for the time domain simulation of a-Si material [26]. However, since
the DL model must have a negative pole in its dispersion equation, the stability of 2-D and 3-D
simulations cannot be guaranteed when the DL model is used.

In this work, we apply a quadratic complex rational function (QCRF) model to accurately
capture the dispersion of thin film photovoltaic materials. We employ a FDTD simulation due to
its simplicity and accuracy [27–29]. Specifically, the dielectric function of a-Si is modeled over
the wavelength range from 300—1000 nm, where the relevant power-generating absorption of
the a-Si active layer mainly occurs. A full-wave optical simulation is performed and the full-
spectrum results are compared to an analytic model as well as experimental data. Also, it has
been shown that the QCRF model can fit other photovoltaic materials including, but not limited
to, c-Si, silver, and CdTe.

In order to trap light optimally, we suggest a statistically correlated random surface texturing
algorithm which can reproduce known structures such as perfectly Lambertian surfaces and flat
surfaces in the proper limits, as well as yielding physically realistic structures at intermediate
values. Combining this proposed texturing with accurate modeling of TFSC materials can then
be used to determine the optimum texturing of the front surface texturing of a tandem silicon
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Fig. 1. Cross section of a-Si/c-Si tandem solar cell. It is contacted with indium tin oxide on
the front, and silver in the back, and encapsulated with glass. The randomly textured front
surface is shown from two different perspectives. Note that the same textured surface on
the ITO and a-Si is also applied to the top of the c-Si layer. The minimum glass thickness of
1500 nm is used only in simulation. Experimental thicknesses are greater, but Fig. 4 shows
that this only has a minor effect on the absorption spectrum.

solar cell (a-Si/c-Si) structure with normal incident light, as shown in Fig. 1. The tandem sil-
icon solar cell has several advantages over a silicon-based single junction solar cell [30]. For
instance, the tandem silicon cell is more stable than the a-Si:H single junction solar cell, due to
the contribution of a bottom µc-Si:H cell, which means that the Staebler-Wronski degradation
is smaller. In contrast with the single µc-Si:H single junction solar cell, it can be manufactured
as a thinner layer. However, one additional challenge is that unlike a single junction solar cell,
a multi-junction solar cell must have the currents generated in each layer matched in order to
obtain optimal performance. This requirement further suggests that careful simulation will be
necessary for a successful design.

2. Dispersion modeling and validation of its accuracy

Classical modeling methods, such as the Debye, Lorentz and Drude models, have been used
extensively for many types of dispersive media [23,31–33]. However, those models are insuffi-
cient for dispersive modeling of some thin film photovoltaic materials such as a-Si, CIGS and
CZTS, because in the semiconductor materials, both the conducting term and non-conducting
term must be taken into account in their wave equation. The wave equation considering both
terms is rather complicated and the solutions are somewhat difficult to interpret [34]. Neverthe-
less, a qualitative description of many of the optical properties of semiconductors is furnished
by classical theory. As a result, there is a promising modeling method called Tauc-Lorentz
model [25] which shows very good agreement with measurements of a-Si. However, the Tauc-
Lorentz model has an exponential function in its equation, making numerical differentiation
very difficult; thus, the Tauc-Lorentz model is not ideal for time domain simulations [26]. Re-
cently, the quadratic complex rational function (QCRF) model was suggested for dispersive
modeling of biological tissues [27] and concrete materials [28], although its potentially useful-
ness is much more general. The QCRF dielectric function has the following form:
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εr,QCRF(ω) =
A0 +A1( jω)+A2( jω)2

1+B1( jω)+B2( jω)2 , (1)

where ω is the optical frequency, and A0, A1, A2, B1, and B2 are adjustable parameters.
As shown in Eq. (1), the QCRF dispersion model has an advantage over the Drude, Debye

and Lorentz dispersion models in terms of the number of degrees of freedom, which helps
make it highly applicable to wide-band dispersive media such as photovoltaic materials. In
addition, the coefficients of the QCRF model can be obtained by solving a 5×5 matrix inversion
analytically — a very computationally efficient procedure [27–29]. In this paper, the QCRF
model is applied to thin film photovoltaic materials.

2.1. Dispersion modeling

Despite the simplicity and accuracy of the QCRF method, the conventional QCRF model does
not always precisely fit measurements of all materials, especially when the imaginary part of
epsilon exponentially approaches zero. Also, obtaining the coefficients of the QCRF model
through matrix inversion does not consider the Kramers-Kronig (K-K) relations explicitly.
However, an optimization method respecting K-K can be used to overcome this limitation [29].

As shown in Fig. 2, the QCRF model fits fairly well with measurement data for photovoltaic
materials. Since the light absorbed by a dispersive material is directly proportional to an ex-
ponential of ε ′′, the imaginary part of the dielectric function of a-Si, the imaginary part of the
dielectric function of which varies sharply, is plotted as a log scale. Also, in this work, silver
is treated as a non-absorbing material, so only the real part of permittivity is considered. Al-
though it is possible to fit lossy silver with the QCRF model, if we were to treat silver as a lossy
material explicitly, it would result in a predictive error, in which parasitic loss would be incor-
rectly counted as absorption contribution to open-circuit voltage. This means that our estimates
of short-circuit current enhancement may slightly underestimate the relative enhancement as-
sociated with our light-trapping approach. The optical constants of the photovoltaic materials
considered in this manuscript were acquired from the literature [35, 36].

2.2. Theoretical absorption and simulation result

In this section, the accuracy of the QCRF model is verified by comparison to analytical predic-
tions for a dielectric slab. In the 300 nm thickness of a single a-Si dielectric slab, the 3-D FDTD
simulation results are compared to analytic absorption derived by a theoretical calculation [37].
The total reflection and transmission coefficients for the electric fields can be calculated analyt-
ically using multiple reflections, and then summed exactly to yield:

r(λ )= ρ1 +∑
∞
n=1 τ1τ

′
1(ρ

′
1)

n−1ρn
2 e− jωt= ρ1 +

τ1τ
′
1

ρ
−1
2 e jωt −ρ

′
1

(2)

t(λ ) = τ1τ2 ∑
∞
n=0

(
ρ2ρ

′
1

)n
e− jωt =

τ1τ2

1−ρ2ρ
′
1e− jωt

, (3)

where ρ1 is the electric field reflection coefficient at the left boundary of the dielectric slab when
traveling to the right, ρ

′
1 is the same coefficient when traveling in the reverse direction, τ1 is the

transmission at the left boundary when traveling to the right, τ
′
1 is the same coefficient traveling

in the reverse direction, ρ2 is the reflection coefficient at the right boundary of the dielectric slab
when traveling to the right, ω = 2πc/λ is the optical frequency, and t is time required for light
travel through the certain thickness of dielectric material. Note that τk = 1+ρk and τ

′
k = 1+ρ

′
k
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Fig. 2. Dispersion curve fittings of photovoltaic materials using the QCRF model. The solid
lines and symbols indicate the results of the QCRF model and the experimental data of dis-
persive material, respectively: (a) Real part of relative permittivity of a-Si. (b) Imaginary
part of relative permittivity of a-Si. (c) Real part of relative permittivity of c-Si. (d) Imagi-
nary part of relative permittivity of c-Si. (e) Real part of relative permittivity of silver.
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Fig. 3. The theoretical and simulated absorption rates of 300 nm thick a-Si, the former
being obtained from Eq. (3) combined with literature data from ref. [36], and the latter
being obtained from our QCRF model. The root mean square error from comparing the
two data sets is 3.97%.

for all integer k, because of phase shifts. Using Eqs. (2) and (3), reflected power R(λ ) = |r(λ )|2

and transmitted power T (λ )= |t(λ )|2 can also be obtained. The light absorption spectrum A(λ )
is then given simply by A(λ ) = 1−T (λ )−R(λ ).

Using this approach, the light absorption spectrum for a 300 nm dielectric slab of a-Si is
obtained. Also, a 3-D QCRF based FDTD simulation is performed with 300 nm thickness of
a-Si material. The dispersive QCRF material is located at the center of 3-D space which has 100
× 100× 900 cells. The x and y boundaries are connected periodically; perfectly matched layers
are implemented near the z boundaries (at the top and bottom of the simulation geometry). The
Yee lattice spacing is set to 3.86 nm, resulting in the minimum resolution of 20 cells per optical
wavelength within all non-metallic materials. The rest of the simulation region is set to be free
space.

As shown in Fig. 3, the dispersive FDTD simulation, which is performed only once, predicts
the absorption of the a-Si material very accurately, including both the material dispersion and
the Fabry-Perot oscillations that occur in the dielectric slab. Comparing the two data sets, we
find that the root mean square error between them is 3.97%.

2.3. Experimental and simulated absorption result in the solar cell structure

This section presents the results of the 3-D FDTD simulation of a c-Si single junction solar cell
structure found in a recent experiment. In this experimental study, the absorption of the solar
cell was measured over a broad range of wavelengths both with and without light trapping. The
thickness of c-Si layer is 1500 nm and ITO is considered as a charge transport and anti-reflection
coating layer [38]. A 3-D QCRF-FDTD simulation is performed on the same geometries in
order to establish its accuracy.

The experimentally measured absorption spectra of c-Si solar cells, shown on the left hand
side of Fig. 4, can be predicted accurately using our simulation technique. More specifically,
the absorption spectrum measured for the flat structure is very similar to our simulation results,
except for the Fabry-Perot oscillations in the short wavelength range. This difference is mainly
because the experiment had glass that is more than 100 µm thick deposited on the top of the
solar cell, whereas, in order to save simulation time, it is assumed that the thickness of the
glass is less than a few microns. Even so, the overall absorption curve for the flat case matches
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Fig. 4. The left figure indicates the experimental absorption rate for a 1500 nm thick c-Si
solar cell. It is adapted from recently published research [38]. The right figure indicates the
absorption rate obtained by the simulation.

very well with the experimental data. For the textured structure, the simulation predicted a
slightly lower absorption than observed in experiment, particularly for wavelengths around 800
nm. This is mainly because different texturing methods are used in the simulation and the
experiment.

3. Statistical random surface texturing model

A number of recent studies have focused on approaching the Yablonovitch 4n2 limit for light
trapping by introducing a randomly textured front surface [39, 40]. However, recent work has
also demonstrated that this limit can be exceeded within a certain range of wavelengths by intro-
ducing deviations from perfectly random structures [41]. Previous simulations have shown that
introducing structures that effectively enhance the group index of the structure beyond the bulk
material can be highly effective for improving performance within the critical light-trapping
regime [42]. However, previous material models in the time domain did not always accurately
represent the experimentally observed dispersion properties, thus limiting the potential role for
highly accurate simulation techniques such as finite-difference time domain [27–29]. However,
combining innovative light trapping structures with adjustable parameters in the presence of
properly modeled dispersion can help accurately pinpoint the best structures to build in ex-
periments. It has been observed that over very short distances, the aspect ratios of features in
thin-film structures are limited to a process-dependent degree, which renders the perfectly ran-
dom texture as somewhat unrealistic [40]. Thus, introducing a degree of short-range correlation
can help capture the smoothness (finite aspect ratio) of real structures. Furthermore, adding a
measure of periodicity into the system opens up the potential for higher group index modes,
associated with slow light and resonant absorption phenomena [41, 42]. If we want to create
a structure that captures both the limits on the aspect ratios as well as the degree of nearest-
neighbor correlation, we can generally represent it mathematically as having a first term that
reproduces the neighbor’s height with a correlation factor f that varies from zero to one, as well
as a second, random term that preserves the norm of the average height:

Zn+1 = f ∗Zn +
√

1− f 2 ∗ rn, (4)

where Zn is the nth height of the random texturing surface and rn is an independent sampling
from a random distribution of Gaussian variables with a zero mean and unit variance. The
correlation factor f is thus able to control the randomness of the textured surface. For example,
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Fig. 5. (a) Contour plot showing calculated short-circuit current density as a function of
maximum texturing height and correlation factor for 2D solar cells, using TM-polarized
light incident at normal incidence. Note that the optimal performance is expected to occur
at f = 0.975, ln(1− f ) =−3.689 and h = 1000 nm in 2-D structure. (b) The optimized 2D
geometry used to generate our contour plot.

when the correlation factor is equal to one, a flat surface is generated; when it reaches zero,
Eq. (4) is dominated by rn, which is a Gaussian variable. However, this formulation does not
account for the possibility of periodic boundary conditions. Thus, we extend our definition of
correlation from Eq. (4) by introducing a doubly correlated version that accounts for periodicity
explicitly:

Zn+1 = w(n,N)∗Zn +( f −w(n,N))∗ZN−n−1 +
√

1− f 2 ∗ rn, (5)

where N is the maximum index of the 1-D structure and w() denotes a 1-D weighting function:

w(n,N) = f − ( f/2)∗ exp(−(N−2∗n+2)), (6)

where n ranges from 0 to N/2. Note that the textured blocks are created in the following or-
der: Z0,ZN ,Z1,ZN−1 . . .Z2/N−1,Z2/N . The application of the double-sided correlation function
ensures that the textured surface will not have abrupt changes in height at its edges, which
could result in an unrealistic randomly textured surface. Note that in general, the exponential
decay can have a prefactor Γ in its exponent, but it was set to unity in our work, since we found
dependence on this parameter to be fairly weak in our simulations.

A 2-D simulation of the solar cell is performed using a FDTD tool known as MEEP [33] to
obtain the optimum texturing height and correlation factor. The algorithm for generating the
random surface texturing is based on the double correlation equation above, Eq. (5). In this 2-D
simulation, a TM-polarized wave is incident from the normal direction. The structure defined
in the 2-D simulation, as shown in Fig. 5, consists of a metal back reflector, a silicon (absorb-
ing material) block with a fixed thickness, and a non-absorbing random surface texturing. The
transmission spectrum T (λ ) and the reflection spectrum R(λ ) are computed and used to com-
pute the absorption spectra, A(λ ) = 1−T (λ )−R(λ ) over a specified range of wavelengths.
The absorption is then fed into the short-circuit current density (Jsc) which serves as a proxy
for the efficiency of the photovoltaic cells.
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Fig. 6. Random surface texturing algorithm represented in terms of correlation factor ( f ).

As depicted in Fig. 5, the highest Jsc of 7.466 mA/cm2 is obtained at the optimum texturing
height of 1000 nm and the correlation factor of 0.975. Each Jsc value is collected from multiple
simulations of runs (5 runs) and averaged out for plotting the contour plot. This provides a
proof of concept that correlated random structures can provide additional light absorption.

In order to consider a more realistic 3-D solar cell structure, the 1-D double-sided correlation
equation is now expanded over a 2-D surface. Much like the previous extension of the 1-D
correlation equation to account for periodic boundary conditions in Eq. (5), the 2-D double-
sided correlation equation extends this in both periodic directions as follows:

Zi+1, j+1 = w(i,Ni)∗Zi, j+1

+( f/2−w(i,Ni))∗ZN+2−i, j+1

+w( j,N j)∗Zi+1, j

+( f/2−w( j,N j))∗Zi+1,N+2− j

+
√

1− f 2 ∗ rn,

(7)

where i represents the x index, j represents the y index, Ni is the maximum index of i, N j is the
maximum index of j and w() denotes a 2-D weighting function:

w(i,Ni) = f/2− ( f/4)∗ exp(−(Ni−2∗ i+2)),
w( j,N j) = f/2− ( f/4)∗ exp(−(N j−2∗ j+2)).

(8)

The textured features of the 2-D surface are created in a similar fashion to those in the original
1-D texturing algorithm. As depicted in Fig. 6, Eq. (7) introduces correlations across the 2-
D surface, which reflects the limited aspect ratios associated with random texturing methods.
The maximum texturing height of the random surfaces is controlled simply by rescaling the
standard deviation (σ ) of the Gaussian distribution. The application of long-range periodicity
enhances diffraction into guided modes and saves a tremendous amount of computational cost,
since simulating a single segment of a periodic structure can closely approximate the entire
architecture of a large 3-D solar cell.

Due to the differing resolutions employed in our 2-D and 3-D solar cell simulations, the
optimum correlation factor obtained in each simulation also differs. In order to compare them
properly, the correlation factor from the 3-D simulation result is exponentiated by a factor given
by the product of the block width N times the ratio of the y-grid values in absolute units (e.g.,
in nm) as shown in the equation below:
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Fig. 7. Efficiency versus thickness of (left) indium-tin oxide and (right) a-Si. Each red dot
corresponds to a single 3-D FDTD simulation and is projected from a higher-dimension
manifold of design space onto the axes displayed, in order to identify the optimal values
for these individual parameters. Note that each simulation is performed in a flat solar cell
structure without texturing.

f2D = f (N∆y2D/∆y3D)
3D , (9)

where ∆y2D and ∆y3D are the grid values used in the 2-D and 3-D simulations, respectively.
Given that the optimum correlation factor for 2-D simulation is 0.975, its normalized 3-D cor-
relation factor is equal to 0.9998.

It can be useful to compare these results with recent experimental work on thin-film textures
for light-trapping. The specific random texturing methods discussed in a recent comprehensive
study [40] gave rise to several local peaks, with widths of approximately 50 — 100 nm. Com-
paring the local peak width of the experimental geometry with our random surface texturing
statistical model, the sample with f = 0.99 matches well with the structure introduced in the
reference paper [40]. Looking at the surfaces shown in Fig. 6, one hardly can distinguish which
one will be the best light trapping structure among a variety of randomly-textured surfaces. It
will become more apparent when these randomly-textured surfaces are applied to the front of
the solar cell structure.

4. Enhanced light trapping in a tandem cell application

In this section, we numerically demonstrate the optimum front texturing of a silicon tandem
solar cell by utilizing the approach outlined in the previous sections to create a correlated ran-
dom texturing and to accurately simulate its behavior in the time domain. The QCRF-FDTD
and the statistical random texturing models are used both to enhance light trapping in a tandem
cell structure and to help match the current generation in each layer.

The efficiency as a function of the thicknesses of a-Si:H, c-Si:H and ITO layers in a flat
tandem cell structure is shown in Fig. 7. In order to find the best thicknesses, we first run 3-D
FDTD simulations after varying all the geometric parameters. We then project these results onto
a single axis at a time, while look for a cluster of points with the highest calculated efficiencies.
Using this procedure, we find that the optimum thicknesses of a-Si:H and c-Si:H are 205 nm
and 1795 nm, respectively; ITO had its best performance when its thickness is 60 nm.

Starting with the best parameters observed in Fig. 7, the statistical texturing algorithm is
applied to determine the optimum surface texturing of the tandem cell structure. As shown in
Fig. 1, the same randomly textured surface is applied to the ITO, a-Si and c-Si layers. Because
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Fig. 8. Contour plot showing silicon tandem cell efficiency versus texturing height and the
correlation factor. Note that the optimal performance is predicted to occur when f = 0.999
and h = 1158 nm, as explained in the text.

a maximum texturing height is also considered as an important factor in random texturing,
we introduce a feature which controls the maximum texturing height of the random texturing
algorithm. In order to calculate the overall cell efficiency of the cell, the internal quantum
efficiency of a-Si and c-Si are calculated from a semiclassical drift-diffusion simulation tool
capable of calculating recombination losses known as ADEPT 2.0 [43]. In the combination of
recombination and optical losses, the overall cell efficiencies of the random texturing model
are plotted as shown in Fig. 8. The best cell efficiency is 12.37%; the associated short circuit
currents are 12.79 mA/cm2 at the a-Si layer and 12.88 mA/cm2, while the open circuit voltages
are 875.9 mV for the a-Si layer and 520.0 mV for the c-Si layer. The optimum texturing height is
1158 nm and the optimum correlation factor is 0.999. The efficiency of cell tends to plateau after
it reaches a high enough correlation factor of 0.999 or more. The reason is that our algorithm
re-scales the height of random structures in order to find the optimum texturing height, so that
random surfaces with higher correlation factors tend to create structures very similar to those
obtained with lower correlation factors. Thus we can feel confident that we have found a global
optimum with respect to these two key parameter values.

Light absorption of the a-Si and c-Si layers is shown in Fig. 9. We compare the best-
performing structure from Fig. 8 with flat ( f = 1) and totally random ( f = 0) structures at
normal incidence. In the a-Si layer, the optimized structure shows enhanced light trapping over
the entire range of wavelengths. The absorption of c-Si shown in Fig. 9 (b) should not be di-
rectly compared to each structure, because the amount of light arriving at the c-Si layer is
different due to a filtering effect caused by absorption in the a-Si layer. Thus, light absorption
in the c-Si layer is re-normalized by including that effect. Fig. 9 (c) shows that the normalized
absorption in the c-Si layer is also enhanced, compared to both the flat and random structures.
Excepting the Fresnel reflection associated with the air-SiO2 boundary (0.0349 from analytical
calculation), the optimized tandem cell has almost full absorption for wavelengths from 300 nm
to 550 nm; after that, it decreases as shown in Fig. 9 (d). Front texturing itself with the statisti-
cal algorithm shows promising light absorption enhancement for normal incidence; however, it
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Fig. 9. Light absorption rate of the optimized tandem silicon solar cell with two reference
absorption curves that are obtained from a flat structure and a totally random structure for
normal incidence. (a) Light absorption in the a-Si layer. (b) Light absorption in the a-Si
layer. (c) Normalized light absorption in the c-Si layer with rest of light filtered by the
a-Si layer and by subtraction of the first reflected light at the SiO2 layer. (d) Total light
absorption in both layers.

would not be expected to retain the same advantage at all angles. In future work, this shortcom-
ing should be addressed and studied over all angles by adding complementary light trapping
methods, such as photonic crystal [44, 45], back grating [46, 47] and intermediate layers [48].

The random textured surface of the best-performing cell is shown in Fig. 10. It has a large
structure close to the x-axis, which is connected to the opposite side via periodic boundary
conditions, and also has a number of small random structures on its surface. It seems like that a
combination of one large structure and several small structures ensures that incident light will
be scattered in all directions, so that enhanced absorption can be achieved. It is shown that an
enhanced light trapping structure can be obtained by adjusting the correlation factor and the
texturing height in our random texturing algorithm.

Also, it should be emphasized that each simulation in Fig. 8 takes approximately 75 hours
on a single core computer; entire ensembles of simulations are performed on our computational
cluster, Conte, on a dedicated queue that has 64 cores with a memory capacity of 4GB/core.
Without an accurate dispersion model, simulating the full bandwidth at an acceptable frequency
resolution (as shown in Fig. 9) would not be viable with such a computational resource. In this
work, the QCRF dispersion model enables us to reduce a potentially large number of simula-
tions to a single calculation over the entire relevant portion of the solar spectrum for a given
geometry.
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Fig. 10. Optimal random surface texturing in a tandem cell application shown from two
different perspectives.

5. Conclusion

In conclusion, we have investigated a randomly textured surface in a-Si/c-Si micromorph tan-
dem cells using correlated random texturing with QCRF to calculate the entire solar spectrum in
a single calculation. The QCRF model satisfies the Kramers-Kronig relation for real materials,
is numerically stable, and can be used to achieve accurate curve fitting to experimental semi-
conductor material dispersion data (e.g., a-Si, c-Si and silver) for wavelengths ranging from
300—1000 nm. Its accuracy is verified in two ways: first, by comparing the results it produced
with experimental results acquired for photovoltaic materials; and second, in comparing this
simulation technique with analytical results, where the root mean squared error is observed to
be 3.967%. The QCRF model is applied to a 3-D FDTD simulation; used properly, it reduces
a potentially large number of simulations required for full solar spectrum analysis to a single
simulation run. Taking advantage of this capability, a range of correlated random textures for
light trapping are examined to find the optimal parameter values. Constraining ourselves to a 2
µm-thick active material combination of a-Si/c-Si, we have found that the best-performing mi-
cromorph tandem cell structure has 1158 nm of maximum texturing height and a relatively high
correlation factor ( f = 0.999). It is predicted to have 12.37% stabilized cell efficiency, 12.79
mA/cm2 of short-circuit current and 1395.9 mV of open-circuit voltage. In short, a randomly
textured tandem cell with optimized parameters shows meaningful enhancement of light ab-
sorption at normal incidence. In future work, alternative and complementary designs with more
general applicability will be considered, including but not limited to photonic crystal structures
[44,45], back grating [46,47] and intermediate layer [48]. In all these cases, as well as for other
photovoltaic absorber or window layer materials, the QCRF and statistical texturing models
can play a critical role in enabling accurate single simulations encompassing the entire solar
spectrum.
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