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Scattering source calculations using conventional spherical harmonic expansion may require lots of computation time to
treat full-coupled three-dimensional photon-electron transport in a highly anisotropic scattering medium where their scattering
cross sections should be expanded with very high order (e.g., P; or higher) Legendre expansions.

In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved
with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its
computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer
program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method
with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve
speed up to 17~42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU
calculation but also in the parallel computing with several CPUs.

KEYWORDS : Computational Efficiency; Modified Scattering Kernel; Photon-electron Full-coupling; Three-dimensional Discrete Ordinates Method;

Parallel Computing; Unstructured Tetrahedral Mesh

1. INTRODUCTION

When a photon incidents on a medium, the photon
travels some considerable distance before undergoing a
more catastrophic interaction leading to a partial or total
transfer of the photon energy to electrons through interac-
tions such as the photoelectric effect, Compton scattering,
and pair production. These electrons will ultimately deposit
their energy in the medium.

The Monte Carlo method can simulate the process above
and handle a complex geometry without any assumptions
or simplifications. Computer codes [1,2,3] that use the
Monte Carlo method have been widely used in radiotherapy
to simulate the dose distributions in multi-dimensional
geometrical problems. However, fluxes and responses
are calculated at pre-selected locations (tallies) and lots of
computing time might be required for an accurate simulation
with small statistical errors.

Compared to the Monte Carlo method, the discrete
ordinates method, which is typically called the Sy method,
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has been widely used for neutral particle transport, but
not for photon-electron full-coupled transport. Previous
research [4] had been done to assess the suitability of the
popular Sy neutral particle codes for coupled photon-
electron calculations specific to the external beam therapy
of medical physics applications. It appeared that the higher
dimensional transport codes had fundamental difficulties
in handling the electron transport. This is because the
electron cross sections are fundamentally different from
neutral particle cross sections due to the facts that electrons
have highly forward peaked scattering and their inelastic
scattering rapidly increases in magnitude as the energy
loss approaches zero. A number of computer codes that
use the Sy method require a regular mesh (rectangular,
cylindrical, or spherical) to model the geometry. Use of
such specific regular meshes leads to the simplest difference
equations, but it may require an excessive number of mesh
points to adequately model complex three-dimensional
geometries.
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The CEPXS [5] code provides coupled photon-electron
cross sections with a multi-group Legendre form, so that
conventional discrete ordinates codes and our program can
solve photon-electron full-coupled transport. However, the
deterministic methods using multi-group cross sections
still have difficulties in treating the continuous slowing
down and the forward peaking scattering of the electrons.
For the geometry modeling, the use of unstructured tetra-
hedral meshes makes it easier to model a complicated
geometry adequately.

In the discrete ordinates method for photon-electron
transport, scattering sources are calculated with updated
angular fluxes through the transport sweep in each iteration.
If there is no up-scattering (no-coupling or partial-coupling),
only the self-scattering source needs to be considered
because the scattering contributions from its upper energy
groups are pre-determined. However, in the photon-electron
full-coupled transport case, where both up- and down-
scattering exist, we should consider extra iterations to
update the scattering sources contributed from all other
groups in each iteration.

In conventional scattering source calculations, the
scattering cross sections are expanded by using the Legendre
polynomials and the angular fluxes are expanded using
the spherical harmonics to deal with anisotropic scattering.
This may require lots of computation time to deal with
highly anisotropic cross sections, such as P; or above,
because lots of algebraic operations for loops and functions
associated with the spherical harmonics are involved. This
may undermine one of the merits of deterministic methods,
which is faster calculation than the Monte Carlo method.

In this paper, we introduce a modified scattering kernel
approach to avoid the unnecessarily repeated calculations
mentioned above. We implemented the modified scattering
kernel approach and the parallel computing in our computer
program which solves the multi-group discrete ordinates
transport equation using the discontinuous finite element
method [6] with unstructured tetrahedral meshes. The
computational efficiency of the modified scattering kernel
coupled with parallel computing was tested on the three-
dimensional full-coupled photon-electron transport problems.

2. THEORY AND METHODOLOGY

2.1. Governing Equations

The equations we solve are the following photon-electron
full-coupled multi-group transport equations:

Q-Vy,(7Q)+o,y,(F.Q)

=Y G0, @O, ) (12)

p'=lar

E —_— —_— — —_— —_—
+Y [dS0, Q-0 F.Q)+q,.F D),

e=l 47
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+Y [dQ0, (@O, F.Q)+q,.(FQ),

p=l4r
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where p and e are energy group indices for photons and
electrons, respectively. In Eq. (1), gp.e(7, Q) and ge..(7, Q)
represent the external sources for photon and electron
groups, respectively. Op—p, Ocmp, Oc—se, and O, are the
multi-group differential photon scattering cross section,
electron-to-photon production cross section, electron scat-
tering cross section, and photon-to-electron production
cross section, respectively. These scattering or production
cross sections are provided by the CEPXS in multi-group
Legendre form.

Our program is used as a transport solver to check the
computational efficiency of the modified scattering kernel
coupled with parallel computing. It uses the discrete
ordinates method with the latest spatial discretization
scheme, which is a discontinuous finite element method
with unstructured tetrahedral meshes.

2.2 Modification of the Scattering Kernel
The three-dimensional multi-group discrete ordinates

equation is:
Qu -V, (r,Q)+0,, (M, (7.Qn)

i s o @
= qs‘g(r5Q")+qex.g (V’Q")a

where q...(7, Q,) is an external source and g, (7, €.) is a
scattering source, which is expressed as:

0,3 =3Y0. . OY @G G

g'=1(=0 m=—{

The spherical harmonics moments of the flux in the discrete
ordinates are expressed as:

N(N+2)

=g X o

n'=l1

0, Y, () (7, Q). @

The additional theorem of the spherical harmonics states:

/

P(Qn Qn):;

TISE R Y, Qi)Y (Q), ©)

and by using the definition of the spherical harmonics, this
may be reduced to:

P(Qu-Qu) = B (1,)P(11,.)

6
+2Z((Z m) P”(u,T)Bm(ﬂnv)COS[m(Wn_W"')]' N
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Rewriting Eq. (2) with Egs. (3)-(6), we have a conventional
discrete ordinates equation in the multi-group form as:
L

Q. -V, (r,Qn)+ o, (N, (r, Q) = i D (20+1) 0, (1)

N(N+2)

ﬁP/ (#n)[g >
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o, P, (1, )V, (?,ﬁnv)j

™)

i qex,g (;’ 5" )9

X

o, P" (4, )cos(mw, )y, (, Qu )]

where the first term on the RHS of Eq. (7) is the scattering
source term, which is scattered from other groups g' and
other ordinates ©, to the energy group g and ordinate Q.

If the anisotropy order, L, is not very high (i.e., P; or
below), the computational burden to deal with the spherical
harmonics in Eq. (7) is not much. However, in the photon-
electron beam problem, electron cross sections are highly
forward peaked in angle, so that it might be better to use
at least P; or above. With a high anisotropy order in the
spherical harmonics, the computational load gets heavier
due to the calculations for m, ¢, sin, cos, and P," (u,) func-
tions in the spherical harmonics in each iteration.

If there is no up-scattering, the scattering source
calculation for group g in Eq. (7) is only performed on
the self energy group, g' = g. The down-scattering source
for g' < g can be directly calculated with the already con-
verged higher energy group angular fluxes. This calculation
can be done on each group sequentially.

However, for the photon-electron full-coupled transport
with the photon beam source, there is up-scattering (from
the electron group to the photon group), so that the scat-
tering source calculation for group g should be performed
throughout all of the energy groups g'=1..., G.

Considering a high anisotropy order, L, and up-scattering
in each iteration, the computational burden with spherical
harmonics increases greatly.

To minimize this computational burden, a modified
scattering kernel is introduced in the conventional discrete
ordinates equation as

Q -V, (r,.Qn)+o, (N, (r,Qn)
G NWN+2) — - o R (8)
= Z z a,, O'n'—)n.g'—»g(r) l,[/g,(V,Qn')'i_qex,g(r’Q")’

'=1 n'=l
where Gy, ¢—¢(7) are pre-calculated group-to-group,

ordinate-to-ordinate scattering cross sections and they are
calculated only once in the whole calculation process.
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In previous researches [7,8], the modified scattering
kernel and the priority concept method to guarantee the
non-negativity of the scattering cross section were intro-
duced to deal with the non-negative scattering cross sections
and showed their efficacy on the resulting flux distributions.
In reference 7, the main goal was generating non-negative
scattering cross sections deterministically. To do this, the
authors introduced a modified scattering kernel and priority
concept method. For the numerical tests, neutron and photon-
electron (only partial-coupling scheme: y — y and y — ¢)
transport were calculated in one-dimensional geometry.
In reference 8, we extended the method for generating
non-negative scattering cross sections to three-dimensional
geometry and tested only in the neutron transport.

In this paper, we extend our program for photon-electron
transport calculations in three-dimensional geometry with
unstructured tetrahedral meshes. Thus, we can calculate an
energy deposition profile in complicated three-dimensional
geometry such as a human phantom. To solve a highly
anisotropic problem effectively, we also introduced a
modified scattering kernel instead of using spherical har-
monics and a group-wise parallel calculation is implemented
in the scattering source calculation. Compared to the pre-
vious researches, we allow negative scattering moments
to deal with electron transport since the even 0" moments
scattering cross section of the electron group, which is
generated by CEPXS, can be positive or negative in the
cross section matrix. These positive or negative 0" scattering
moments come from the embedded continuous slowing
down (CSD) cross sections in the cross section matrix.

To use the modified scattering kernel, as in Eq. (8),
we need to know the group-to-group, ordinate-to-ordinate
scattering cross sections, Oy, ¢—¢( 7). Let us define the
conventional scattering source for group-to-group (g' — g)
and ordinate-to-ordinate (n' — n) as:

L —
Srfpf;[n g'—>g = Z 2€+1 s/g'ﬁg (r)
(=0

P.(4, )[% 0, P, (1, )y (?,ﬁn-)j

o (=m)!
m= 1(l+ )'

X (%a)n.P/” (u, )cos(mw, )y, (r ﬁnv)] X

" (1,) c0s (mw,)
(©)

X

x(%a) P (e, )sin(mwn.)(//g,(;,ﬁnv))

Also, we define the scattering source with the modified
scattering kernel for group-to-group and ordinate-to-ordinate
as:

MobDI

Sn'—meg'—>g Ea)n'gr’"”“g‘”g (;) ‘//g'(;’ﬁ"')' (10)
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The main idea of the modified scattering kernel is that
we prefer to use pre-calculated group-to-group, ordinate-
to-ordinate scattering cross sections which will provide
the same scattering source as with the conventional one
without additional calculations in the iterative calculation
(directly use the angular flux without the calculations of
the spherical harmonic moments).

Thus, we equate Eq. (9) to Eq. (10) as:

S nass =S s sp (1n
Put Egs. (9) and (10) into Eq. (11) and rewrite it for G,—,,
¢—¢( 77), we can then obtain:

Cnongsg(F) = ZL:(M +1)0,,, (1)

_;,,O(un )&Pf: (44, )j
Z (l=m)! P (4

2 Tmm) 1, )cos(mw, )
| x{ g G eos(om, )

(=m)!
+2m_1 i )|P (4, )sin(mw,)

<[ (. )sintom, )

(12)

Eq. (12) is the final form of the group-to-group, ordinate-
to-ordinate scattering cross sections, Gy, g—¢( 7 ), and
these are pre-calculated once before the whole transport
calculation.

Once Gy, ¢—o( 7) is pre-calculated, we use the resulting
cross sections in the modified scattering kernel instead of
using the conventional spherical harmonics scattering kernel.
By using the modified scattering kernel, we can avoid
unnecessarily repeated calculations, which are affected
by anisotropy order, L. In addition, high order anisotropy
(P15 or above) is not a computational burden any more
since the modified scattering kernel only considers the loop
for the directional ordinates, (n' — n), and energy group,

€ —29.

2.3 Multi-group Legendre Photon-Electron Coupled
Cross Sections

In this section, we introduce the structure of multi-
group Legendre photon-electron coupled cross sections,
which are generated by the CEPXS code. It will help to
understand how up- and down-scattering matrix consists
with, depending on the coupling schemes.

CEPXS generates the coupled electron-photon cross
sections in a multi-group Legendre format. The physical
models contained in CEPXS are adequate to describe the
electron/photon cascade over the energy range of 100 MeV
to 1.0 keV.
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Photon Groups Electron Groups
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9|1 00 00 06353 03354 0355 9436 g
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1] 00 00 00 00 6,55 Opsg || 2
12 00 00 00 00 00 0355 ).

Fig. 1. Typical Global Cross Section Matrices of 0" Legendre
Order (Photon-source and Partial-coupling).

To generate cross sections, an energy bound (maximum
and cutoff energy), Legendre order, number of groups
and type (linear or logarithmic group structure), source
particle type (electron or photon source), coupling scheme
(no-coupling, partial-coupling, full-coupling), and material
composition are required as input parameters for the CEPXS.
The coupling schemes, if the source particles are electrons,
are classified into the following three categories: 1) no-
coupling, electrons only, 2) partial-coupling, electrons
produce photons but photons do not produce electrons,
and 3) full-coupling, electrons produce photons and photons
produce electrons. For the photon source, coupling schemes
are the same as the electron source except that the electrons
are replaced by photons, and the photons are replaced by
electrons.

The resulting multi-group Legendre photon-electron
coupled cross sections are given as oc: charged particle
deposition (electrons/cm), os: secondary production
(particles/cm), og: energy deposition (MeV/cm), o.: absorp-
tion (1/cm), o: total (1/cm), and oy -, scattering cross
section (1/cm).

Figure 1 shows an example of global cross section
matrices of 0™ Legendre order for the partial-coupling
with photon-source case.

For a partial-coupling case, we can find the solution
of Eq. (7) or Eq. (8) by sweeping the angular fluxes from
the 1* group to the last group in order. When we solve
the 1* group, only the within group scattering (oi-) is
considered. For the 2™ group calculation, we have two
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Fig. 2. Typical Global Cross Section Matrices of 0" Legendre
Order (Photon-source and Full-coupling).

scattering source terms. One is the down-scattering source
term from the 1* energy group (0i-2). The other is the
within group scattering source term (0:-,). We already
have the converged 1* group angular flux, so that the
scattering source from the 1* group is easily calculated
with a down-scattering cross section (0i—.). The 2™ group
angular flux is then calculated iteratively.

However, for the full-coupling case shown in Fig. 2,
even for the 1* group, we need a scattering source from
the lower groups (o, -1, g' =3, 4, 5, 6) , which is not yet
available. Because of this, we should do a transport sweep
(update angular fluxes with previous scattering sources) on
all energy groups (g =1, 2,---, G) and update the scattering
sources throughout all energy groups for the next transport
sweep in each iteration.

2.4 Parallel Processing

In this paper, a basic MPI parallel processing is imple-
mented in the transport sweep and scattering source cal-
culation. In the transport sweep, each CPU calculates
angular fluxes for different ordinate directions, 2,. When
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time (start) -él

transport sweep
(g9=1, G)

¥

calculate phi

convergence check>

scattering source calculation
(modified kernel or spherical harmonics)

cpu:l cpu:2 cpu:G-1 cpu:G

g=1 g=2 g=G-1 g=G

time (end) >

Fig. 3. Diagram to Check the Elapsed Time per Iteration for
Modified Scattering Kernel and Conventional Spherical
Harmonics Kernel.

the transport sweeps are done, all angular fluxes from all
CPUs are gathered to calculate scalar fluxes of the energy
group (g). This process is performed throughout all energy
groups (g=1,---, G).

For the scattering source calculation, each CPU cal-
culates the scattering source of group (g), which is scattered
from other groups (g') including the ordinate-to-ordinate
transfer (n' — n) for the next transport sweep. In other
words, group-wise parallel computing is implemented in
the scattering source calculation.

In Fig. 3, the start and end time are marked, and the
elapsed time per iteration is compared for two scattering
kernels. All procedures are the same except the scattering
source calculation part. One is with the modified scattering
kernel, Eq. (8), and the other is with the conventional
spherical harmonics kernel, Eq. (7).

Figure 4 shows the conceptual algorithm to calculate
the scattering source, g, (7, ﬁn), in Egs. (7) and (8) where
vertex, n, elem, and g are indices for vertexes of tetrahedral
element, ordinate direction, tetrahedral element, and energy
group. For parallel computing, the calculation of the scat-
tering source of energy group g, which is the most outer
loop in Fig. 4 (marked in the red bold font), is distributed
to each CPU. In other words, group-wise parallel com-
putation on energy group g is implemented in the scattering
source calculation.

The shaded boxes in Fig. 4 show how the two kernels
differ from each other in the scattering source calculation.
An algorithm with the modified scattering kernel is much
simpler than one with spherical harmonics, so that compu-
tational time could be reduced. In addition, high order
anisotropy (P;s or above) is not a computational burden
any more because the modified scattering kernel has nothing
to do with anisotropy order, L.
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— DO g = 1, G (parallel computing) [— DO g = 1, G (parallel computing)
— DO elem = 1, Nelem

— DO n =1 NN+2)

— DO vertex =1, 4

— DO elem = 1, Nelem
— DO n =1, N(N+2)
— DO vertex =1, 4

DOg =1G DOg =1G
DO n'= 1, N(N+2) DO £=1,L

|: pom=1, ¢
ENDDO C DO n'= 1, N(N+2)
ENDDO ENDDO

vertex, n, elem, ENDDO
it 2 ENDDO
ENDDO

qlvertex, n, elem, g)

— ENDDO — ENDDO
— ENDDO — ENDDO
— ENDDO — ENDDO

— ENDDO — ENDDO

(a) Modified scattering kernel (b) Spherical harmonics kernel

Fig. 4. Conceptual Algorithm for Calculating Scattering Source
with (a) Modified Scattering Kernel and (b) Spherical
Harmonics Kernel.

Comparisons of elapsed time per iteration will be shown
in the next section for two test problems.

3. NUMERICAL TESTS

3.1 Simple Water Box Problem

The configuration of Test Problem I is described in
Fig. 5. A 1MeV photon beam incidents on the 2cmx 2cm
center region (purple color) of the water slab. Cross sections
are generated by CEPXS and the detailed parameters for
Test Problem I are listed in Table 1.

The sectional view of the unstructured tetrahedral mesh,
which was generated by Gmsh [9], for Test Problem I is
shown in Fig. 6. To have a good dose profile along the
centerline parallel to the Y-axis, a much finer mesh is
applied in the centerline region.

The calculated three-dimensional dose profile, which
is visualized by Gmsh, is shown in Fig. 7. To validate the
results, the dose profile along the centerline is compared
with that of MCNP5 [1]. Figure 8 shows that our calculation
gives quite good agreement with the results of the MCNP5
calculation.

The elapsed times per iteration for Test Problem I are
listed in Table 2. The total number of energy groups is
16, and the elapsed time per iteration is logged while
varying the number of CPUs from 1 to 12. In this parallel
computing, the energy group of the scattering source is
distributed to the CPUs, so that the maximum parallelization
can be achieved when an equal number of CPUs and energy
groups are used. In other words, each CPU calculates the
scattering source for one group.

With a modified scattering kernel, we can improve
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2cm

b

1MeV
photon
beam

Fig. 5. The Configuration of Test Problem I (Simple Water
Box Problem).

Table 1. Detailed Parameters for Test Problem |

Item Parameters
Number of elements 19,174
Material Water
Incident beam 1MeV Photon
Cut-off Energy 0.01 MeV

Photon: 8 Group

Energy group Electron: 8 Group

Coupling scheme Full-coupling

Anisotropy P,

Angular quadrature Ss

Mesh generation

/Post-processing Gmsh

Reference calculation MCNP5

Lo

Fig. 6. A Sectional View of Unstructured Tetrahedral Mesh for
Test Problem I (Simple Water Box Problem).
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Dose profile [MeV/g]
-0.00205 0.00488

0.0118
- T

Z
);J\Y

Fig. 7. A Sectional View of Dose Profile for Test Problem I
(Simple Water Box Problem).

0.008 —

0.006 —

—— MCNPS5 (Reference)
= G—© Sy, (This work)

Error bar: one sigma

Dose (MeV/g)

0.002 -

o ; ! i I i I
0 05 I 15 2
Depth; Y-axis (cm)
Fig. 8. A comparison of Dose Profiles along the Centerline for
Test Problem I (Simple Water Box Problem).

speed by up to 35 times for an elapsed time per iteration
compared to the conventional spherical harmonics kernel
in the parallel computing. Even without parallel computation
(i.e., with one CPU), we can have a speed increase of
about 31 times.

3.2 Water Sphere in the Polyethylene Cube Problem

The configuration of Test Problem II is described in
Fig. 9 where a 6MeV photon beam incidents on the left side
(y=0, purple color) of a 6cmx 6cmx 6¢cm polyethylene
cube. Inside of the cube, a water sphere with a 2.5cm radius
is located. Cross sections are generated by CEPXS and
the detailed parameters for Test Problem II are listed in
Table 3.
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Table 2. The Comparison of the Elapsed Times per Iteration for
Two Scattering Kernels (Test Problem 1)

Modiﬁed Spherical
No. of CPUs Energy scattering harmonics
groups/CPU (secl/(ii:rl:tlion) (sec/iteration)
1 16.00 1,094 34,080
2 8.00 566 17,686
3 533 414 14,856
4 4.00 356 12,844
5 3.20 317 12,759
6 2.67 287 7,708
7 229 282 7,630
8 2.00 179 7,609
9 1.78 184 6,331
10 1.60 186 6,322
11 1.45 179 6,332
12 1.33 179 6,323

Processor: Intel Xeon 3.4GHz CPU(6Core)x 2EA, RAM: 96GB

6cm

A polyethylene

6cm

6cm

6 MeV
photon beam

N

Fig. 9. A Configuration of Test Problem II (Water Sphere in
the Polyethylene Cube Problem).

The sectional view of the unstructured tetrahedral mesh,
which is generated by Gmsh, for Test Problem II is shown
in Fig. 10.

The sectional view of three-dimensional dose distribution
is shown in Fig. 11. The dose profiles along the center line,
which are shown in Fig. 11, are compared with MCNP5
and shown in Fig. 12.

The horizontal sectional view of dose distribution is
shown in Fig. 13. The dose profiles along the line (y=4cm
and z=0, little bit shifted from the center line), which are
shown in Fig. 13, are compared with MCNPS5 and shown
in Fig. 14.
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Table 3. Detailed Parameters for Test Problem Il

Item Parameters
Number of elements 19,215
. Sphere: water
Material Cube: polyethylene
Incident beam 6MeV Photon
Cut-off Energy 0.06 MeV
E Photon: 8 Group
nergy group Electron: 8 Group
Coupling scheme Full-coupling
Anisotropy P; Dose profile [MeV/g] Z
-0.000125 0.00151 000315 )J\v
Angular quadrature Ss | T
Mesh generation Fig. 11. A Sectional View of Dose Profile along the Center
/Post-processing Gmsh Line for Test Problem II (Water Sphere in the Polyethylene
Cube Problem).
Reference calculation MCNP5 —

0.003

I
Il

D
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Fig. 12. A Comparison of Dose Profiles along the Centerline

for Test Problem II (Water Sphere in the Polyethylene Cube

Problem).

Fig. 10. A Sectional View of Unstructured Tetrahedral Mesh
for Test Problem II (Water Sphere in the Polyethylene Cube
Problem).

From these figures, it can be shown that the estimated
dose profiles by our calculation agree well with the reference
results obtained with MCNPS5.

The elapsed times per iteration listed in Table 4 show
a stepwise decrease as the number of CPUs is increased,
and this is the same as in Test Problem 1. This is because
parallel computation is performed on energy group g men-

tioned in Fig. 4. In the second column of Tables 2 and 4, 1 Hfie e nggifmewg] e i
energy groups/CPU means how many scattering sources [ I .
of energy groups each CPU should deal with. For example, Fig. 13. A Horizontal Sectional View of Dose Profile for Test

in the case of 10 CPUs, the energy groups/CPU is 1.60. Problem II (Water Sphere in the Polyethylene Cube Problem).
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Fig. 14. A Comparison of Dose Profiles along the Horizontal
Line for Test Problem II (Water Sphere in the Polyethylene
Cube Problem).

Table 4. The Comparison of the Elapsed Times per Iteration for
Two Scattering Kernels (Test Problem 1)

Modiﬂed Spherical
No. of CPUs Energy scattering harmonics
groups/CPU (secl/(iet::rl;tlion) (sec/iteration)
1 16.00 2,088 35,569
2 8.00 1,012 17,796
3 5.33 660 14,938
4 4.00 373 12,919
5 3.20 328 10,657
6 2.67 263 8,113
7 229 280 7,698
8 2.00 182 7,633
9 1.78 182 7,631
10 1.60 182 7,623
11 1.45 185 7,630
12 1.33 187 7,637

Processor: Intel Xeon 3.4GHz CPU(6Core)x 2EA, RAM: 96GB

This means that 6 CPUs calculate the scattering source
for two energy groups, and 4 CPUs calculate the scattering
source for one energy group since the total number of
energy groups is 16. Even though 4 CPUs are done with
their calculations, they should wait until the calculations
of the other 6 CPUs are finished.

As shown in Tables 2 and 4, we can obtain faster
calculation results with the modified scattering kernel
than with the conventional spherical harmonics kernel in
the iterative calculation procedure.
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4. CONCLUSION

In this paper, the computational efficiency of the
modified scattering kernel is analyzed on two three-
dimensional photon-electron full-coupled test problems
(a simple water box problem and a water sphere in the
polyethylene cube problem) with our own program with
implementation of the modified scattering kernel and
photon-electron coupled multi-group cross sections.

The numerical tests show that we can improve speed
up to 17~42 times for the elapsed time per iteration using
the modified scattering kernel not only in the single CPU
calculation but also in parallel computing with several CPUs.

The modified scattering kernel can be easily imple-
mented regardless of spatial discretization schemes. In
this paper, we implemented and tested it in the three-
dimensional discrete ordinates transport solver, which uses
the latest discontinuous finite element spatial discretization
with unstructured tetrahedral elements. The numerical test
also shows that our program gives very good agreement
in the dose profiles with the MCNP5 reference results.
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