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ABSTRACT In this paper, we propose a hemispherical reconfigurable frequency selective surface (FSS)
using water channels. The switching between band-pass and band-stop states is possible since the water
with a high dielectric constant can control the effective permittivity of the structure. We simulate and
fabricate the FSS andmeasure the radiation pattern of FSS enclosed horn antenna to check the reconfigurable
characteristic of the hemispherical FSS. The simulated results show a good agreement with the measured
results.

INDEX TERMS Frequency selective surface, hemisphere radomes, water channels.

I. INTRODUCTION
Frequency selective surface (FSS) is a periodic struc-
ture which can selectively transmit or reflect electromag-
netic (EM) waves at specific frequencies. FSSs have been
widely used as a filter in radomes, antennas, reflectors,
absorbers, and so on. Conventional passive FSSs have
the disadvantage of merely operating at a fixed single
designed frequency, which limits their use in practical
applications. To overcome this drawback, reconfigurable
FSS has been extensively studied using various meth-
ods, including circuit tuning and material tuning meth-
ods. Circuit tuning methods often use active elements,
such as PIN diodes, varactor diodes, and micro-electro-
mechanical systems (MEMS) [1]–[11], while the material
tuning methods employ liquid crystals, ferrite substrates, and
graphenes [12]–[20]. The FSS structure using PIN diodes
realizes the frequency reconfigurable function by control-
ling the bias voltage (on-off state) applied to the PIN
diodes [1], [2]. Number and location of the PIN diodes in
a unit cell have a significant effect on the performance of

the FSS. It has the advantages of a wide variable range
of the transmission frequency and low loss. However, there
are disadvantages such as only two variable transmission
frequencies, slow switching time, and difficulty in accurate
fabrication due to nonlinearity [3], [4]. The FSS structure
using varactor diodes realizes the frequency reconfigurable
function by adjusting the diode capacitance according to the
applied bias voltage [5]–[7]. This not only produces more
transmission frequencies, but also has low loss and faster
switching time [8]. However, it is difficult to operate in the
high frequency band and the manufacturing cost is relatively
high [9]. The FSS structure using MEMS realizes the fre-
quency reconfigurable function by controlling capacitance
of the system [10], [11]. It has the advantages of reduced
manufacturing cost, low loss, high isolation, and fast switch-
ing [12]. However, since the size of the MEMS elements is
too small, the transmission frequency bandwidth is narrow
and the change range of capacitance is small [12], [13]. The
FSS applying the bias voltage to the liquid crystal changes
its orientation of the molecule that causes a change in the
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dielectric constant and the FSS frequency response [14].
It has the advantage of a tunable capability over a wide
frequency range, but has the disadvantage of difficulty in
realization due to the complicated structure [15]. Themagnet-
ically tunable FSS is implemented by using a ferrite substrate,
where the permeability of the ferrite substrate can vary with
the external bias magnetic field. This has advantages that
the magnetically tunable FSSs do not need a bias circuit,
but it often suffers from several disadvantages, such as low
tuning speed and narrow tuning range [16]. Graphene has
been considered as a good candidate for designing tunable
FSSs, as it possesses extraordinary properties over a wide-
band frequency range, such as high mobility, large thermal
conductivity, and strong intrinsic strength, come from the
special atomic structures [17], [18]. But realizing such a
material is challenging due to difficulty in controlling the
surface conductivity [19], [20]. Recently, the method using
the fluidic channel to obtain the reconfigurable properties has
been studied extensively [21]–[23]. The FSS using fluidic
channels has the ability, such as drastic change of electrical
characteristics, a variety of designs using various parameters
and wide tuning ranges. Therefore, fluidic channels can be
suitable for use in a reconfigurable FSS realization. We also
have proposed the reconfigurable FSS using the fluidic chan-
nels in planar dielectric slab [24]. However, since we have
only confirmed the reconfigurability of the planar structure,
it could not guarantee the feasibility of the practical structures
such as radomes.

In this letter, we propose a hemispherical reconfigurable
FSS using water channels. The switching between band-pass
and band-stop states is possible since water with a high
dielectric constant (εr = (66 ∼ 57) − j(26 ∼ 33), when
the frequency is from 8 GHz to 12.5 GHz at 25 degrees
Celsius) [25] can control the effective permittivity of the
structure. The relative permittivity (εr) of a material is its
permittivity expressed as a ratio relative to the permittiv-
ity of a vacuum. The detailed dimensions of the FSS such
as a diameter and number of tubes are optimized using
a full-wave EM simulation software (CST MICROWAVE
STUDIO (MWS) [26]). To check the reconfigurable char-
acteristic of the hemispherical FSS, we then fabricate the
optimized FSS and measure the radiation pattern when a horn
antenna is placed inside the FSS. The simulated results show
a good agreement with the measurement, which confirms that
the proposed FSS can be suitable for use in a reconfigurable
FSS.

II. DESIGN AND FABRICATION
Fig. 1 shows the design procedure for reconfigurable struc-
tures. First, we have figured out transmission characteristics
of planar dielectric slab without fluidic channels by chang-
ing parameters such as permittivity and thickness. We have
compared the simulation results with calculated results using
equation (1) (see Fig. 2) to obtain the reliability of the sim-
ulation results for the simplest planar structure which the
fluidic channels are not inserted. Fig. 3 illustrates that the

FIGURE 1. Design procedure for reconfigurable structures.

FIGURE 2. Transmission coefficient of wave passing through dielectric
slab.

thickness of the dielectric slab can change only the frequency
interval between the maximum and minimum values of the
transmission coefficient when the real part (ε′: eps1) of per-
mittivity is 5 and imaginary part (ε′′: eps2) of permittivity
is zero. Also, to understand the effects of real part (eps1)
and imaginary part (eps2) of the permittivity of the dielectric
slab (100 mm × 100 mm × 10 mm) on the transmission
characteristic, the transmission coefficients are calculated in
terms of the permittivity of the dielectric slab. Fig. 4 shows
the transmission coefficients in terms of eps1 when eps2 is
zero. This indicates that the difference between the minimum
and the maximum transmission coefficients increases as a
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FIGURE 3. Transmission coefficients according to the thickness of
dielectric slab.

FIGURE 4. Transmission coefficients according to eps1.

FIGURE 5. Transmission coefficients according to eps2.

real part (eps1) of the permittivity increases. The real part of
the permittivity can also change periods between the max-
imum and minimum values of the transmission coefficient.
Fig. 5 illustrates the transmission coefficients in terms of
eps2 when eps1 is 10. It is seen that the imaginary part of the
permittivity only affects attenuation. Next, the spacing and
thickness of tubes of the dielectric slab inserted fluidic chan-
nels are optimized usingCSTMWS [24]. Third, we have opti-
mized parameters such as number and diameter of channels

FIGURE 6. Transmission coefficient depending on the diameter of tubes.

of hemispherical reconfigurable FSS for a target frequency.
Finally, we have fabricated and measured the structure to
check the validity of our design. Fig. 7 shows the procedure
for verifying the feasibility of the hemispherical reconfig-
urable FSS with water channels. First, we should determine
a specific configuration among practical structures. Since
the hemispherical structure has a constant curvature for any
directions from the vertex, we can easily insert the water
channels in implementing the

T (z = 0+)

=
T32T21e−jθ

1− 021023e−j2θ

T32 =
2× ηregionIII

ηregionIII + ηregionII
, T21 =

2× ηregionII
ηregionI + ηregionII

,

021 =
ηregionI − ηregionII

ηregionII + ηregionI
, 023 =

ηregionIII − ηregionII

ηregionIII + ηregionII

(1)

FSS. Therefore, we have selected the hemispherical FSS.
We also find its application in hemisphere radomes. Second,
it is necessary to find an insertion structure of fluidic channels
that can significantly change the effective permittivity of the
structure while achieving structural stability and feasibility.
So, we decided to insert fluidic channels similar to the frame
structure of an umbrella. Third, to design the reconfigurable
FSS operating at 9.7 GHz, we have optimized the dimen-
sions of the FSS by changing the diameter and number of
tubes using a full-wave solver. We have obtained simulation
results by changing the diameter (D2) and number (N1) of
tubes (see Fig. 6 and 8). When the number and diameter of
the tubes are changed, the center frequency is also shifted.
However, it can be seen that the diameter of the tube does
not significantly change the transmission characteristics. The
effective permittivity of the structure can be changed by vary-
ing diameter and number of tubes to obtain the reconfigurable
characteristic in the X-band. Fourth, the design structure is
fabricated and measured in an anechoic chamber. Finally,
we compare simulation results with measurement results.
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FIGURE 7. Design procedure to verifying feasibility of hemispherical
structure.

FIGURE 8. Transmission coefficient depending on the number of tubes.

If the performance of results has not served what we have
established, we should go back to step 3 to solve the problem.
The optimized the design parameters are listed in Table 1.
Fig. 9 shows the reconfigurable FSS for a real hemisphere
radome, which consists of foam (Rohacell HF- 71), compos-
ites (E-glass/epoxy laminate), adhesives, and silicon tubes
that can be filled or unfilled with water. The foam is carved
with designed dimensions, and the holes are extracted from
the foam. To make the curvature, thermal-forming process
is performed. The channel made of silicon is then inserted
in the holes, which can be filled or unfilled with water.
Finally, the adhesive is applied to the curved-foam and the
composites are attached on the outside and inside of the foam

TABLE 1. Design parameters of hemispherical reconfigurable FSS for
operating at target frequency.

FIGURE 9. Geometry of the hemispherical reconfigurable FSS: (a) Cross
section view; (b) Perspective view.

to achieve mechanical strength, harness, and stability. The
fabricated hemispherical FSS with metric is shown in Fig. 10.
Fig. 11(a) is the 3-D model in the simulation. Fig. 11(b)-(f)
have shown that the transmission coefficients, reflection coef-
ficients, phase responses and radiation patterns between the
filled state and the unfilled state are varied. The difference
in the transmission coefficient is about 0.4 (i.e., the differ-
ence in power is 64 %) and the difference in the radiation
patterns with phi = 0◦ is about 5 dB at 9.7 and 8.7 GHz.
Note that the structure filled with water at 9.7 GHz has a
band-pass characteristic, whereas the structure without water
at 8.7 GHz has a band-pass characteristic. There is little
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FIGURE 10. Fabricated hemispherical reconfigurable FSS: (a) Top view;
(b) Bottom view.

difference between water filled and water unfilled at
10.8 GHz. As a result, we can obtain the reconfigurable
characteristic using water channels. In addition, we should
consider the effect of the water since the water has a high
dielectric constant. In the designed structure, the loss of water
is very small due to the small size of the tube with the
diameter of about 0.1λ. In other words, EM waves hardly
attenuate in our FSS structure when they pass through the
water. By confirming the results of transmission coefficient
and radiation patterns, we can conclude that the hemispheri-
cal reconfigurable FSS capable of transmitting EM waves at
a specific frequency can be implemented by using the water
channels.

III. MEASUREMENT
In order to verify the transmission characteristics of the
fabricated structure, a measurement setup using an indoor
anechoic chamber is utilized as illustrated in Fig. 12.
This measurement system includes two horn antennas
(ANT-SGH-90, gain : 22 dB, frequency : 8.2-12.4 GHz) serv-
ing as a transmitting and receiving antennas. Inner surfaces of
the anechoic chamber are covered with pyramidal absorbers
to minimize interference from reflection and external noise.
While the hemispherical FSS is illuminated from the trans-
mitting antenna, the FSSwith the receiving antenna is rotated,
and the received power is recorded for each rotation angle.
Figs. 13(a) and 13(b) show the measured and simulated radi-
ation patterns of the proposed FSS at 8.7 GHz and 9.7 GHz,
respectively. Note that the structure filled with water at
9.7 GHz has a band-pass characteristic, whereas the structure
without water at 8.7 GHz has a band-pass characteristic (See
Fig. 11(b)). The comparison between the measurement and
simulation results shows a good agreement. When the FSS
is used in the band-pass state at 8.7 GHz and 9.7 GHz, only
signals within the desired band can be completely received.
On the other hand, in the band-stop state, signals are effec-
tively reflected by the FSS. Therefore, it is confirmed that the
desired reconfigurable characteristic at the target frequency
can be achieved by configuring the hemispherical FSS with
water channels. Fig. 13(c) shows that the comparison between
water filled and water unfilled shows a good agreement since

FIGURE 11. 3-D model and the simulated results of the hemispherical
reconfigurable FSS: (a) Simulation geometry; (b) Simulation result of CST
MWS and ANSYS HFSS; (c) Phase responses; (d) radiation pattern at
8.7GHz; (e) Radiation pattern at 9.7 GHz; (f) Radiation pattern at 10.8 GHz.

there is little difference between transmission coefficients of
two cases at 10.8 GHz (See Fig. 11(b)).

Our system works by manually inserting or draining
water into the channel. Fast-state-switching-speed requires
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FIGURE 12. Measurement setup.

FIGURE 13. Comparison between measured and simulated radiation
patterns of the hemispherical reconfigurable FSS: (a) 8.7 GHz; (b) 9.7 GHz;
(c) 10.8 GHz.

automation of water pumping and draining systems. This
study is limited to examine the feasibility of a hemispher-
ical reconfigurable FSS using water channels, and further

research is needed to implement a practical system in the
future.

IV. CONCLUSION
We have designed, fabricated, and measured a hemispheri-
cal reconfigurable FSS using water channels in the X-band.
It has been demonstrated that the effective permittivity of
the hemispherical structure can be changed by varying the
radius and number of tubes. Our results demonstrated the
reconfigurability of FSS using fluidic channels, which can be
used in practical applications of reconfigurable FSS radomes.
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