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Piccolo is a 64-bit lightweight block cipherwhich is able to be implemented in constrained hardware environments such as awireless
sensor network. Fault analysis is a type of side channel attack and cube attack is an algebraic attack finding sufficiently low-degree
polynomials in a cipher. In this paper, we show a fault analysis on the Piccolo by using cube attack. We find 16 linear equations
corresponding to a round function F by cube attack, which are used to fault analysis. Our attack has the complexity of 28.49 and 29.21
encryptions with fault injections of target bit positions into Piccolo-80 and Piccolo-128, respectively. And our attack needs 220.86
and 221.60 encryptions with random 4-bit fault injections for Piccolo-80 and Piccolo-128, respectively.

1. Introduction

Fault analysis is a type of side channel attack.This analysis was
introduced by Boneh et al. in [1]. Differential fault analysis
(DFA), which is an improved method of fault analysis, was
introduced by Biham and Shamir in [2]. DFA is applied to
various block ciphers such as AES [3, 4], ARIA [5], SEED
[6], CLEFIA [7], LED [8], Piccolo [9–12], PRESENT [13], and
KATAN32 [14]. Cube attack was introduced by Dinur and
Shamir in [15]. This attack is an algebraic attack by finding
sufficiently low-degree polynomials in a cipher. Cube attack
is applied to various cryptosystems such as block cipher [16]
and stream cipher [15, 17].

In CHES 2011, Piccolo was introduced by Shibutani et al.
in [18]. Piccolo is a block cipher which supports 80-bit and
128-bit secret key size. In this paper, we analyze two versions
of Piccolo [18] with fault analysis by using cube attack. In
ISPEC 2012, fault analysis using cube attack was introduced
by Abdul-Latip et al. in [16]. In this paper, we apply this
method on Piccolo-80 and Piccolo-128. As a result, we find
16 linear equations corresponding to a round function 𝐹 by
cube attack, which are used to fault analysis.

Piccolo is analyzed by various techniques. In ISPEC 2012,
Wang et al. suggest biclique cryptanalysis of reduced round
Piccolo in [19]. They analyze reduced version of Piccolo-
80 without postwhitening keys XOR and reduced 28-round

Piccolo-128 without prewhitening keys XOR. In 2013, Song
et al. suggest biclique cryptanalysis of full rounds of Piccolo
[20]. And also Jeong suggests a differential fault analysis of
full rounds of Piccolo [9].

In this paper, we show a fault analysis on the Piccolo by
using cube attack. We find 16 linear equations corresponding
to a round function 𝐹 of Piccolo by using cube attack. These
equations are used to our attack. In this paper, we describe the
case that an adversary injects random 4-bit faults. Our attack
has the complexity of 220.86 and 221.60 encryptions for Piccolo-
80 and Piccolo-128, respectively, while the assumption of [9]
is an adversary that injects random byte faults. Reference [9]
has the complexity of 224 and 240 encryptions for Piccolo-80
and Piccolo-128, respectively. Our attack has a lower compu-
tational complexity than [9], even though the assumption of
fault injection in our attack differs from [9].

In Section 2, we briefly describe the procedures of cube
attack and cube tester. And then we describe the brief
specifications of Piccolo in Section 3. In Section 4, a method
of fault analysis of Piccolo by using cube attack is presented.
Finally, our conclusions are in Section 5.

2. Cube Attack and Cube Tester

Algebraic attack is to find a solution, which is the key,
of a system of equations that represent target cipher with
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given plaintext and the corresponding ciphertext, that is
representing cipher as a system of equations with multiple
variables defined over finite field where each key bit is
represented as a variable in the system. Solving the system is
equivalent to finding the secret key of the target cipher. Cube
attack is an algebraic attack finding sufficiently low-degree
polynomials in cipher.

2.1. Cube Attack. Cube attack was introduced by Dinur
and Shamir in [15]. Cube attack is a chosen plaintext
attack. The main idea of cube attack is to find linear
equations consisting of secret variables by using cube sum.
Let 𝑝(V

1
, . . . , V

𝑛
, 𝑘
1
, . . . , 𝑘

𝑚
) be a polynomial derived from a

cipher, where V
1
, . . . , V

𝑛
are public variables and 𝑘

1
, . . . , 𝑘

𝑚

are secret variables. In other words, each secret variable is
considered a bit in secret key and each public variable is con-
sidered a bit in plaintext or internal state. Let 𝐼 = {𝐼

1
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𝑠
} ⊆
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Note that the set in terms of 𝐼 is called cube index. Then the
polynomial 𝑝 is represented by three polynomials 𝑡

𝐼
, 𝑝
𝑆(𝐼)

,
and 𝑞 as the following form:

𝑝 (V
1
, . . . , V

𝑛
, 𝑘
1
, . . . , 𝑘

𝑚
)

= 𝑡
𝐼
⋅ 𝑝
𝑆(𝐼)
+ 𝑞 (V

1
, . . . , V

𝑛
, 𝑘
1
, . . . , 𝑘

𝑚
) ,

(1)

where 𝑞 is not consisting of a monomial which has a factor 𝑡
𝐼
.

Cube attack is required to check the linearity of 𝑝
𝑆(𝐼)

which is called superpoly. A superpoly 𝑝
𝑆(𝐼)

is called a
maxterm if 𝑝

𝑆(𝐼)
is linear. We use the following cube sum to

find a 𝑝
𝑆(𝐼)

:
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where plaintext bits except cube index (V
𝑖
, 𝑖 ∈ {1, . . . , 𝑛} − 𝐼)

are fixed as constants.
As the above representation, cube is completed with the

sum total 2𝑆 pairs of plaintext and ciphertext for a cube
index 𝐼 = {𝐼

1
, . . . , 𝐼

𝑠
}. To check whether 𝑝

𝑆(𝐼)
is a maxterm,

linearity test is required. Let 𝑝
𝑆(𝐼)
(𝑘
1
, . . . , 𝑘

𝑚
) be a polynomial

of 𝑚 variables over GF(2). Let 𝑡 be the number of tests. The
following is a procedure of linearity test.

Step 1. Choose 2 random vectors 𝑥, 𝑦 ∈ GF(2)𝑚.

Step 2. If 𝑝
𝑆(𝐼)
(𝑥)⊕𝑝

𝑆(𝐼)
(𝑦)⊕𝑝
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(0) ̸= 𝑝

𝑆(𝐼)
(𝑥⊕𝑦), then 𝑝

𝑆(𝐼)

is not linear. Stop the test.

Step 3. Repeat Steps 1 and 2, 𝑡 times.

Step 4. 𝑝
𝑆(𝐼)

is linear. Stop the test, where 0 = (0, . . . , 0) ∈
GF(2)𝑚.

If 𝑝
𝑆(𝐼)
(𝑘
1
, . . . , 𝑘

𝑚
) is linear, the above equation in Step 2

is always correct for all inputs 𝑥, 𝑦 ∈ GF(2)𝑚. Because
checking all inputs is impossible, an upper bound of number
of linearity tests has to be set. If there are at most 𝑑

1
elements

in a cube index for testing linearity, atmost 2𝑑1×(3×𝑡+1) pairs
of plaintext and ciphertext are needed. Cube attack consists of

preprocessing phase and online phase. Preprocessing phase
is to find a system of linear equations by using cube sum and
linearity test.Online phase is recovering themaster key stored
by using an encryption oracle.The following are details for the
two phases.

Preprocessing Phase. After finding a polynomial from a cipher,
find a cube, that is, amaxterm, by using linearity test. Sincewe
know output after all plaintext bits are entered in encryption
oracle, fix plaintext except cube index as a constant. Fixed
constants of every cube do not have to be equal. Let 𝑓

𝑖
be

a maxterm which consists of only secret variables 𝑘
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𝑚

and let 𝑏
𝑖
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online phase. We consider the following system of equations:
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(3)

In the preprocessing phase, find enoughmaxterms to recover
the master key and precalculate this system of equations by
using Gaussian elimination. If we find 𝑚 linear independent
maxterms, then recover all the master keys with 𝑚3 opera-
tions for recovery by using Gaussian elimination. In general,
it is lower than complexity 𝑙 × 2𝑑1 × (3 × 𝑡 + 1) for finding
𝑙maxterms. Let 𝑓

1
, . . . , 𝑓

𝑚
be linearly independent. Then the

master keys are represented as the following system:
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where 𝑎
𝑖,𝑗
∈ GF(2).

Online Phase. In online phase, calculate the value of cube
sum from an encryption oracle by using the cube that has
been found in the preprocessing phase. Let each plaintext
bit not in the cube be constant. The calculated value is 𝑏

𝑖
,

that is, the value of the maxterm. By substituting the value
𝑏
𝑖
into (4), we recover the master key. Let cube index found

at preprocessing phase have at most 𝑑
2
elements. Then the

complexity of online phase is𝑚 × 2𝑑2 .

2.2. Cube Tester. Cube attack finds a maxterm by testing
linearity of 𝑝

𝑆(𝐼)
of a given polynomial 𝑝 and cube index

𝐼. Cube tester distinguishes a polynomial from a random
polynomial by many tests including linearity test. There are
some other tests using cube sum in [21]. In cube attack, a
plaintext bit not in the cube is fixed as a constant. However all
bits not in the cube have to be considered variables in the cube
tester. Since the purpose of using the cube tester is getting
information, which are properties of polynomial, we use the
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Figure 1: Encryption process of Piccolo.

low-degree test that is in [21]. The degree𝑁 is determined by
low-degree test. Let 𝐼 be a cube index, let J be the number of
bits not in the cube index (i.e., 𝐽 = 𝑛 + 𝑚 − 𝑆; 𝑝

𝑆(𝐼)
consists

of 𝐽 variables), and 𝑡 is the number of tests. Since low-degree
test is valid only when 𝑝(0) = 0 for the given polynomial p,
we define 𝑝∗

𝑆(𝐼)
(𝑥) = 𝑝

𝑆(𝐼)
(𝑥) + 𝑝

𝑆(𝐼)
(0). Then low-degree test

for the polynomial 𝑝∗
𝑆(𝐼)
(𝑥) is as follows.

Step 1. Choose𝑁+ 1 random vectors 𝑦
1
, . . . , 𝑦

𝑁+1
∈ GF(2)𝐽.

Step 2. If ∑
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) ̸= 0, then degree of

𝑝
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> 𝑁. Stop the test.

Step 3. Repeat Steps 1 and 2, 𝑡 times.

Step 4. Degree of 𝑝
𝑆(𝐼)
≤ 𝑁. Stop the test.

If𝑁 = 1, then the low-degree test is similar to the linearity
test.We use the idea of the cube testerwhich uses every bit not
in the cube index (consisting of plaintext and the master key)
as a variable.

3. Description of Piccolo

Piccolo is a 64-bit block cipher with 80- and 128-bit key
size. The structure of Piccolo is a Feistel network. Piccolo-80
consists of 25 rounds and Piccolo-128 consists of 31 rounds.
Figure 1 illustrates the working processing of Piccolo. Each
round consists of two functions, round function 𝐹 and round
permutationRP.The round functions𝐹 andRP are as follows.

Table 1: 𝑆-box of Piccolo.

𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑆(𝑥) e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d
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where𝑋𝑡 is the transposition of𝑋.
𝑆(𝑥) is the 4-bit 𝑆-box and 𝑀 is the diffusion matrix as

follows (see Table 1):
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Themultiplications between𝑀 and vectors are defined by an
irreducible polynomial 𝑥4 + 𝑥 + 1 over GF(24).

Round Permutation RP.The round permutation RP is defined
by
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where 𝑥
𝑖
is byte.

For description of Piccolo and our attack, we denote
intermediate variables before 𝑟-round as 𝑋𝑟 = 𝑋𝑟
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𝐴 | 𝐵: concatenation of 𝐴 and 𝐵.

Let the 64-bit plaintext and ciphertext be 𝑃 and 𝐶,
respectively. Encryption of Piccolo is defined as follows:
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Key schedule of Piccolo consists of the following.
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𝑖

is the round constant.

Since key schedule of Piccolo is just performing XOR
determined constants to themaster key, recovering the round
key and recovering the master key are the same. Table 2 is
showing the master key used for the round key of Piccolo.
Detailed descriptions of Piccolo are in [18].

4. Fault Analysis on the Piccolo

In this section, we show the fault analysis for Piccolo-80 and
Piccolo-128. We assume that an adversary is able to make
4-bit errors in a maximum at a time on a round during
an encryption process. By using cube sum, find system of
linear equations in the common 𝐹 of Piccolo-80 and Piccolo-
128. And use the system to represent the phase recovering
the master key of Piccolo-80 and Piccolo-128. Analysis of
a round function 𝐹 in Section 4.1 is corresponding to the
preprocessing phase of cube attack.The attack in Sections 4.2
and 4.3 is the case of an encryption oracle that is given and is
corresponding to online phase.
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Figure 2: Fault analysis of Piccolo-80.

4.1. Equations of Round Function 𝐹. Since round function 𝐹
is the same for Piccolo-80 and Piccolo-128, the results of fault
injection attack on 𝐹 are the same in the both algorithms.
Let 𝐹(𝑋) = (𝐹

0
(𝑋), . . . , 𝐹

15
(𝑋)), where 𝑋 = (𝑥

0
, 𝑥
1
, . . . , 𝑥

15
)

is an 16-bit intermediate value and each 𝐹
𝑗
(𝑥) is a bit (𝐹 :

GF(2)16 → GF(2)16). We test all possible cubes of degree 1 to
degree 4 and all possible inputs for each cube. We get many
linear polynomials and choose 16 appropriate polynomials
for recovering the master key. Table 3 shows our selected 16
polynomials, cube index, and output bit (𝐹

𝑖
).

4.2. Analysis on the Piccolo-80. We explain how to recover all
the master keys of Piccolo-80. By key schedule of Piccolo-
80, recovering 𝑤𝑘

2
, 𝑤𝑘
3
, 𝑟𝑘
44
, 𝑟𝑘
48
, and 𝑟𝑘

49
is equal to

recovering all the master keys of Piccolo-80. Let plaintext 𝑃
be given and let 𝑋𝑗

𝑖
, 𝑌
𝑗

𝑖
be intermediate values for plaintext

𝑃. In this paper, we recover the master key of Piccolo-80
by recovering some 𝑋𝑗

𝑖
s. Figure 2 is for the last 4 rounds of

Piccolo-80. The following is the attack on Piccolo-80.

Step 1. First, we analyze the last round (i.e., round 25).
Perform cube sum by using the cube in Table 3 for 𝐹 which
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Table 2: Round key of Piccolo.

Piccolo-80 Piccolo-128
Round Round key Master key Round Round key Master key
First wk0, wk1 𝐾

𝐿

0

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

1
, 𝐾
𝐿

1

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

0
First wk0, wk1 𝐾

𝐿

0

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

1
, 𝐾
𝐿

1

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

0

1 rk0, rk1 K2, K3 1 rk0, rk1 K2, K3

2 rk2, rk3 K0, K1 2 rk2, rk3 K4, K5

3 rk4, rk5 K2, K3 3 rk4, rk5 K6, K7

4 rk6, rk7 K4, K4 4 rk6, rk7 K2, K1

5 rk8, rk9 K0, K1 5 rk8, rk9 K6, K7

6 rk10, rk11 K2, K3 6 rk10, rk11 K0, K3

7 rk12, rk13 K0, K1 7 rk12, rk13 K4, K5

8 rk14, rk15 K2, K3 8 rk14, rk15 K6, K1

9 rk16, rk17 K4, K4 9 rk16, rk17 K4, K5

10 rk18, rk19 K0, K1 10 rk18, rk19 K2, K7

11 rk20, rk21 K2, K3 11 rk20, rk21 K0, K3

12 rk22, rk23 K0, K1 12 rk22, rk23 K4, K1

13 rk24, rk25 K2, K3 13 rk24, rk25 K0, K3

14 rk26, rk27 K4, K4 14 rk26, rk27 K6, K5

15 rk28, rk29 K0, K1 15 rk28, rk29 K2, K7

16 rk30, rk31 K2, K3 16 rk30, rk31 K0, K1

17 rk32, rk33 K0, K1 17 rk32, rk33 K2, K7

18 rk34, rk35 K2, K3 18 rk34, rk35 K4, K3

19 rk36, rk37 K4, K4 19 rk36, rk37 K6, K5

20 rk38, rk39 K0, K1 20 rk38, rk39 K2, K1

21 rk40, rk41 K2, K3 21 rk40, rk41 K6, K5

22 rk42, rk43 K0, K1 22 rk42, rk43 K0, K7

23 rk44, rk45 K2, K3 23 rk44, rk45 K4, K3

24 rk46, rk47 K4, K4 24 rk46, rk47 K6, K1

25 rk48, rk49 K0, K1 25 rk48, rk49 K4, K3

Final wk2, wk3 𝐾
𝐿

4

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

3
, 𝐾
𝐿

3

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

4
26 rk50, rk51 K2, K5

27 rk52, rk53 K0, K7

28 rk54, rk55 K4, K1

29 rk56, rk57 K0, K7

30 rk58, rk59 K6, K3

31 rk60, rk61 K2, K5

Final wk2, wk3 𝐾
𝐿

4

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

7
, 𝐾
𝐿

7

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑅

4

takes 𝑋25
0
. For example, consider 6th equation of Table 3.

Suppose that inject fault into 𝑥25
4

to 𝑥25
8
. Then, since fault is

injected into only 𝑋25
0
, value of 𝑋25

1
or 𝑟𝑘
48

is not changed.
We notate the following to explain our attack:

𝑋
25

0
= (𝑥
25

0
, . . . , 𝑥

25

15
), 𝑋
25

1
= (𝑥
25

16
, . . . , 𝑥

25

31
);

𝑌
25

0
= (𝑦
25

0
, . . . , 𝑦

25

15
);

𝑦
25

12
[𝑥
25

4
]: 𝑦25
12

when fault is injected into 𝑥25
4
;

𝑦
25

12
[𝑥
25

8
]: 𝑦25
12

when fault is injected into 𝑥25
8
;

𝑦
25

12
[𝑥
25

4
, 𝑥
25

8
]: 𝑦25
12

when fault is injected into both 𝑥25
4
,

𝑥
25

8
.

We calculate cube sum for cube index {4, 8} like the following:

Cube sum = ∑

𝑥
4
,𝑥
8
∈{0,1}

𝐹
12
(𝑥
25

0
, . . . , 𝑥

25

15
)

= ∑

𝑥
4
,𝑥
8
∈{0,1}

[𝐹
12
(𝑥
25

0
, . . . , 𝑥

25

15
) ⊕ 𝑥
25

28
⊕ 𝑘
48

12
]

= 𝑦
25

12
⊕ 𝑦
25

12
[𝑥
25

4
] ⊕ 𝑦
25

12
[𝑥
25

8
] ⊕ 𝑦
25

12
[𝑥
25

4
, 𝑥
25

8
] .

(14)

𝑦
25

12
is not the output of 𝐹. But since cube sum does XOR

even times, 𝑥25
28

and 𝑟𝑘48
12

are offset. That is, we know value
of cube sum cause of 𝑌25

0
| 𝑌
25

1
| 𝑌
25

2
| 𝑌
25

3
= 𝐶. In

the same way, cube sum using fault injection in this paper
is performed. By performing cube sum for every cube in
Table 3, we get 16 systems of equations. Recover input 𝑋25

0
.
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Table 3: Cube sum result of 𝐹(𝑥
0
, . . . , 𝑥

15
).

Cube index Outbit (𝐹
𝑖
) Polyequation

1, 5, 6 8 𝑥
0
+ 1

0, 8, 9, 11 10 𝑥
1
+ 1

1, 5, 6 12 𝑥
0
+ 𝑥
2

0, 8, 9, 11 7 𝑥
3

0, 1, 5, 6 4 𝑥
4
+ 1

4, 8 12 𝑥
5
+ 𝑥
9

4, 5, 8, 9 4 𝑥
6
+ 1

4, 8, 9, 11 7 𝑥
5
+ 𝑥
7
+ 1

5, 6, 9 12 𝑥
8
+ 1

4, 5, 7, 8 6 𝑥
9

5, 6, 9 8 𝑥
10
+ 1

4, 5, 7, 8 3 𝑥
11

5, 6, 13 8 𝑥
12
+ 𝑥
14

0, 12 4 𝑥
1
+ 𝑥
13

5, 6, 13 12 𝑥
14
+ 1

0, 8, 11, 12 7 𝑥
3
+ 𝑥
15

Similarly, we recover input𝑋25
2
using𝐹which takes𝑋25

2
. Since

𝑋
25

0
⊕ 𝑤𝑘
2
= 𝑌
25

0
, 𝑋
25

2
⊕ 𝑤𝑘
3
= 𝑌
25

2
, we recover 𝑤𝑘

2
, 𝑤𝑘
3
(i.e.,

𝐾
3
,𝐾
4
).

Step 2. Since we know 𝑤𝑘
2
and 𝑤𝑘

3
, calculate intermediate

value 𝑋25
0
, 𝑋25
2

for given ciphertext. Round permutation RP
in round 24 is as follows:

𝑌
24

1
= (𝑋
25

0
)
𝐿

| (𝑋
25

2
)
𝑅

, 𝑌
24

3
= (𝑋
25

2
)
𝐿

| (𝑋
25

0
)
𝑅

𝑌
24

0
= (𝑋
25

3
)
𝐿

| (𝑋
25

1
)
𝑅

, 𝑌
24

2
= (𝑋
25

1
)
𝐿

| (𝑋
25

3
)
𝑅

.

(15)

Therefore, we calculate𝑌24
1
,𝑌24
3

for given ciphertext. By using
this, analyze round 24. In a similar way with Step 1, recover
𝑋
24

0
, 𝑋24
2
by using the cube in Table 3 for 𝐹 which takes 𝑋24

0
,

𝑋
24

2
. Since 𝑋24

0
= 𝑌
24

0
, 𝑋24
2
= 𝑌
24

2
, 𝑌24
0
= (𝑋
25

3
)
𝐿
| (𝑋
25

1
)
𝑅,

and 𝑌24
2
= (𝑋
25

1
)
𝐿
| (𝑋
25

3
)
𝑅, we recover 𝑋25

1
, 𝑋25
3
. Then we

recover 𝑟𝑘
48
, 𝑟𝑘
49

(i.e., 𝐾
0
, 𝐾
1
) since 𝑋25

1
⊕ 𝐹(𝑋

25

0
) ⊕ 𝑟𝑘

48
=

𝑌
25

1
, 𝑋
25

3
⊕ 𝐹(𝑋

25

2
) ⊕ 𝑟𝑘

49
= 𝑌
25

3
.

Step 3. We recover𝐾
0
,𝐾
1
,𝐾
3
, and𝐾

4
so far. Given ciphertext

𝐶, we calculate 𝑋24
0
, 𝑋24
1
, 𝑋24
2
, and 𝑋24

3
. That is, we recover

𝑋
23

0
, 𝑋23
2
, 𝑌23
1
, and 𝑌23

3
. We want to recover 𝑋23

1
. Since 𝑋22

0
=

𝑌
22

0
= (𝑋

23

3
)
𝐿
| (𝑋
23

1
)
𝑅, 𝑋22
2
= 𝑌
22

2
= (𝑋

23

1
)
𝐿
| (𝑋
23

3
)
𝑅,

if we recover right 8 bits of 𝑋22
0

and left 8 bits of 𝑋22
2
, then

we recover 𝑋23
1
. To recover right 8 bits of 𝑋22

0
, inject fault

into bits corresponding to cube index of last 8 equations in
Table 3. For recovering left 8 bits of 𝑋22

2
, inject fault into bits

corresponding to cube index of first 8 equations in Table 3.
Then we recover 𝑋23

1
. Since 𝑋23

1
⊕ 𝐹(𝑋

23

0
) ⊕ 𝑟𝑘

44
= 𝑌
23

1
,we

recover 𝑟𝑘
44
(i.e., 𝐾

2
).

Use the above 3 steps to recover all the master keys used
for Piccolo-80.This needs the assumption that we inject fault
into at most 4 bits in the same time. Thus in this paper we
consider the following as an analyzing way.

Table 4: Attack complexity of Piccolo-80.

Assumption Required fault Complexity
Assumption 1 132 ≈ 2

7.04
2
48

Assumption 2 264 ≈ 2
8.04

2
16.01

Assumption 3 347 ≈ 2
8.44

359.1 ≈ 2
8.49

Assumption 1. We inject fault into at most 4 bits in the same
time. But, apply this to only last round.

Assumption 2. We inject fault into at most 4 bits in the same
time. But, apply this to only rounds 24 and 25.

Assumption 3. We inject fault into at most 4 bits in the same
time.

That is, suppose that we analyze only Step 1 or Steps 1
and 2. Even though we analyze only Steps 1 and 2, since at
least 32 bits of 80-bit master key are recovered, we recover
all the master keys with less operations than brute-force
attack. To recover 𝑋𝑟

𝑖
, inject fault into 11 bits among 16 bits

of internal state 𝑋𝑟
𝑖
by using injections 66 times. To recover

left 8 bits and right 8 bits of 𝑋𝑟
𝑖
(i.e., (𝑋𝑟

𝑖
)
𝐿
, (𝑋
𝑟

𝑖
)
𝑅), we inject

fault into 8 bits and 10 bits among 16 bits of 𝑋𝑟
𝑖
, respectively.

Then (𝑋𝑟
𝑖
)
𝐿
, (𝑋
𝑟

𝑖
)
𝑅 are recovered by using injections 44 and

39 times, respectively.
Under Assumption 1, we need 133 encryptions for recov-

ering 32-bit master key (𝑤𝑘
2
, 𝑤𝑘
3
). We exclusively search to

recover remaining 48-bit master key.Therefore, we need total
133 + 2

48
≈ 2
48 encryptions for recovering the master key

under Assumption 1.
Under Assumption 2, we need 133 encryptions for recov-

ering 32-bit master key (𝑤𝑘
2
, 𝑤𝑘
3
). For recovering 32-bit

round keys 𝑟𝑘
48

and 𝑟𝑘
49
, we have to calculate 𝑌24

1
, 𝑌
24

3
.

Given ciphertext, calculating 𝑌24
1

is equivalent to 0.5 round
encryption. So is 𝑌24

3
. Hence, we need 132 + (132 × 0.5 +

1)/25 encryptions for recovering 32-bit round keys 𝑟𝑘
48

and 𝑟𝑘
49
. We exclusively search to recover remaining 16-bit

master key. Therefore, we need total 133 + (132 + 67/25) +
2
16
≈ 2
16.01 encryptions for recovering the master key under

Assumption 2.
UnderAssumption 3, we need 133+(132+67/25) encryp-

tions for recovering 𝑤𝑘
2
, 𝑤𝑘
3
, 𝑟𝑘
48
, and 𝑟𝑘

49
. Given cipher-

text, calculating𝑌22
1

is equivalent to 2.5 round encryption.We
need 44 + 39 + {(44 + 39) × 2.5 + 1 × 3}/25 encryptions for
recovering 32-bit round keys 𝑟𝑘

44
, 𝑟𝑘
45
. Therefore, we need

total 133+(132+67/25)+(83+210.5/25) ≈ 28.49 encryptions
for recovering the master key under Assumption 3. Table 4
is showing encryption complexity needed for recovering the
master key of each assumption.

4.3. Analysis on the Piccolo-128. Piccolo-128 recovers the
master key in a similar way to Piccolo-80. Figure 3 is for the
last 5 rounds of Piccolo-128.The following is how Piccolo-128
recovers the master key.
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Figure 3: Fault analysis of Piccolo-128.

Step 1. First, we analyze the last round (i.e., round 25). In a
similar way with Step 1 in analysis of Piccolo-80, recover𝑋31

0
,

𝑋
31

2
by using the cube in Table 3 for 𝐹 which takes 𝑋31

0
, 𝑋31
2
.

Since 𝑋31
0
⊕ 𝑤𝑘
2
= 𝑌
31

0
, 𝑋
31

2
⊕ 𝑤𝑘
3
= 𝑌
31

2
, we recover 𝑤𝑘

2
,

𝑤𝑘
3
(𝐾
4
, 𝐾
7
).

Step 2. Since we know 𝑤𝑘
2
and 𝑤𝑘

3
, calculate intermediate

values 𝑋31
0
, 𝑋
31

2
for given ciphertext. Since 𝑌30
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= (𝑋
31
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)
𝐿
|

(𝑋
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)
𝑅
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2
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𝐿
| (𝑋
31

0
)
𝑅, we calculate 𝑌30

1
, 𝑌
30

3
for

given ciphertext. In a similar way with Step 1 in analysis of
Piccolo-80, recover 𝑋30

0
, 𝑋30
2
by using the cube in Table 3 for

𝐹 which takes 𝑋30
0
, 𝑋30
2
. We recover 𝑋31

1
, 𝑋31
3
, since 𝑋30
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=

𝑌
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0
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2
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2
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5
).

Step 3. Since we know 𝑤𝑘
2
, 𝑤𝑘
3
, 𝑟𝑘
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, and 𝑟𝑘
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, calculate

intermediate values 𝑋30
0
, 𝑋30
2
, 𝑌30
1
, and 𝑌30

3
for given cipher-

text. Since 𝑌29
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)
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= (𝑋
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2
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| (𝑋
30

0
)
𝑅, we

calculate 𝑌29
1
, 𝑌29
3

for given ciphertext. In a similar way with
Step 1 in analysis of Piccolo-80, recover𝑋29

0
,𝑋29
2
by using the

cube in Table 3 for 𝐹 which takes 𝑋29
0
, 𝑋29
2
. We recover 𝑋30

1
,

𝑋
30

3
since 𝑋29
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3
, we recover 𝑟𝑘
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, 𝑟𝑘
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(𝐾
6
,𝐾
3
).

Step 4. This step is similar to Step 3 in analysis of Piccolo-80.
Given ciphertext 𝐶, we calculate 𝑋29

0
, 𝑋29
2
, 𝑌29
1
, and 𝑌29

3
. We

want to recover 𝑋29
1
. Since 𝑋28
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= (𝑋
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| (𝑋
29

3
)
𝑅, if we recover right 8 bits of

𝑋
28

0
and left 8 bits of 𝑋28

2
, then we recover 𝑋29

1
. To recover

right 8 bits of𝑋28
0
, inject fault into bits corresponding to cube

index of last 8 equations in Table 3. For recovering left 8 bits
of 𝑋28
2
, inject fault into bits corresponding to cube index of

first 8 equations in Table 3. Then 𝑋29
1
is recovered. And then

we recover 𝑟𝑘
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(𝐾
0
), because𝑋29

1
⊕ 𝐹(𝑋
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0
) ⊕ 𝑟𝑘
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.

Step 5. This step is similar to Step 3 in analysis of Piccolo-
80. We want to recover𝑋28

3
. Given ciphertext 𝐶, we calculate

𝑋
28

0
, 𝑋28
2
, 𝑌28
1
, and 𝑌28

3
. Since 𝑋27

0
= 𝑌
27

0
= (𝑋
28

3
)
𝐿
| (𝑋
28

1
)
𝑅,

𝑋
27

2
= 𝑌
27

2
= (𝑋
28

1
)
𝐿
| (𝑋
28

3
)
𝑅, we recover left 8 bits of𝑋27

0
and

right 8 bits of 𝑋27
2
. To recover left 8 bits of 𝑋27

0
, inject fault

into bits corresponding to cube index of first 8 equations in
Table 3. For recovering right 8 bits of𝑋27

2
, inject fault into bits

corresponding to cube index of last 8 equations in Table 3.
Then we recover 𝑋28

3
. And we recover 𝑟𝑘

55
(𝐾
1
) since 𝑋28

3
⊕

𝐹(𝑋
28

2
) ⊕ 𝑟𝑘

55
= 𝑌
28

3
.

Use the above 5 steps to recover all the master keys used
for Piccolo-128.This needs the assumption that we inject fault
into at most 4 bits in the same time. Assume that we analyze
only Steps 1, 2, 3, and 4 such as Piccolo-80. Even though we
analyze only Steps 1, 2, 3, and 4, since at least 32 bits of 128-bit
master key are recovered, we recover all the master keys with
less operations than brute-force attack. Table 5 is showing
encryption complexity needed for recovering the master key
of each assumption.

4.4. Improved Attack. The attacks described in Sections 4.2
and 4.3 are valid under the assumption that an adversary is
able to control the injecting time and bit positions to inject
fault and the number of bits of fault injection. However it
is difficult to control bit positions where faults are injected.
Therefore, in this section, we explain the way of attack under
the assumption that an adversary is not able to control bit
positions to inject faults. That is, an adversary is able to inject
𝑖 bits of random faults into Piccolo-80 and Piccolo-128. The
attack of Section 4.4 is similar to the attack of Sections 4.2
and 4.3. But this attack adds the process that determines fault
position before each Step of Sections 4.2 and 4.3.
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Figure 4: Determine position of fault injection for Case 1 (i = 4).
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Figure 5: Determine position of fault injection for Case 2 (𝑖 = 4,
𝑗 = 1).

Assume that we inject 𝑖 bits of random fault into last
round. In some cases, we determine fault position. Then, the
following is how to determine position of fault injection for 3
cases. (Each case with 4 fault bits is described in Figures 4, 5,
and 6).

Case 1. There are 𝑖 bits error in 𝑌𝑟
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).

Case 2. There are 𝑗 bits error in 𝑌𝑟
0
and 𝑖 − 𝑗 bits error in 𝑌𝑟

2

after fault injection. In a similar way to Case 1, fault injection
position in 𝑋𝑟
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0
. And fault injection position in 𝑋𝑟
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Figure 6: Determine position of fault injection for Case 3 (𝑖 = 4,
𝑗 = 1).

Table 5: Attack complexity of Piccolo-128.

Assumption Required fault complexity
Step 1 132 ≈ 2

7.04
2
96

Step 2 264 ≈ 2
8.04

2
64

Step 3 396 ≈ 2
8.63

2
32

Step 4 479 ≈ 2
8.90

2
16.01

Step 5 562 ≈ 2
9.13

593.64 ≈ 2
9.21

in𝑌𝑟
3
(𝑌
𝑟

1
), then𝑋𝑟

2
(𝑋
𝑟

0
) or𝑋𝑟

3
(𝑋
𝑟

1
) is fault injected. Since there

is no error in 𝑌𝑟
2
(𝑌
𝑟

0
), fault injection position in𝑋𝑟

3
(𝑋
𝑟

1
)must

be same with changed j bits after fault injection in 𝑌𝑟
3
(𝑌
𝑟

1
).

Furthermore, 𝑋𝑟
0
(𝑋
𝑟

2
)must be same with changed 𝑖 − 𝑗 bits

after fault injection in 𝑌𝑟
0
(𝑌
𝑟

2
) since there are 𝑖 − 𝑗 bits error in

𝑌
𝑟

0
(𝑌
𝑟

2
).

Therefore, we determine the position of fault injection for
these 3 cases. Table 3 is the table of optimal cubes that are
used for the attack in Sections 4.2 and 4.3. Therefore, there
are many cubes except cubes in Table 3. Because there are too
many cubes, we do not describe all cubes in this paper. For
example, suppose that we get 16 ciphertexts for cube sum of
{0, 1, 3, 4}. Then we calculate all of subcubes of {0, 1, 3, 4}. So,
we use cubes in Table 6 and recover 1st, 2nd, 5th, and 7th bit
of whitening key.

By the same method, we use sufficient cubes for recover-
ing 𝑤𝑘

2
and 𝑤𝑘

3
of Piccolo-80 and Piccolo-128 and recover

𝑤𝑘
2
and 𝑤𝑘

3
. Since we know 𝑤𝑘

2
and 𝑤𝑘

3
, calculate

intermediate values 𝑋𝑟
0
, 𝑋
𝑟

2
for given ciphertext. Therefore,

we inject faults into (𝑟 − 1)th round, determining position
of fault injection by 3 cases that described this section.
And we recover (𝑟 − 1)th round key. This process is
the same with Step 2 in Section 4.2 and Step 2 in Section 4.3
except determining position of fault injection. By the same
way, we recover all themaster keys of Piccolo-80 and Piccolo-
128 using Steps in Sections 4.2 and 4.3 with determining
position of fault injection, respectively.
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Table 6: Subcube of {0, 1, 3, 4}.

Cube index Outbit (𝐹
𝑖
) Polyequation

0, 3 0 𝑥
2
+ 1

0, 4 8 𝑥
1
+ 𝑥
5
+ 1

0, 1, 3, 4 2 𝑥
5

0, 1, 3, 4 15 𝑥
7

Table 7: Necessary positions of fault injections for Table 3.

Number of fault
bits (Number of
faults)

Necessary positions of fault injection

1 (11) (0), (1), (4), (5), (6), (7), (8), (9), (11), (12), (13)

2 (27)

(0, 1), (0, 5), (0, 6), (0, 8), (0, 9), (0, 11), (0, 12),
(1, 5), (1, 6), (4, 5), (4, 7), (4, 8), (4, 9), (4, 11), (5,
6), (5, 7), (5, 8), (5, 9), (5, 13), (6, 9), (6, 13), (7,

8), (8, 9), (8, 11), (8, 12), (9, 11), (11, 12)

3 (22)

(0, 1, 5), (0, 1, 6), (0, 5, 6), (0, 8, 9), (0, 8, 11), (0,
8, 12), (0, 9, 11), (0, 11, 12), (1, 5, 6), (4, 5, 7), (4, 5,
8), (4, 5, 9), (4, 7, 8), (4, 8, 9), (4, 8, 11), (4, 9, 11),
(5, 6, 9), (5, 6, 13), (5, 7, 8), (5, 8, 9), (8, 9, 11), (8,

11, 12)

4 (6) (0, 1, 5, 6), (0, 8, 9, 11), (0, 8, 11, 12), (4, 5, 7, 8),
(4, 5, 8, 9), (4, 8, 9, 11)

The complexity of this attack depends on the complexity
for finding ciphertext to recover round key. For Table 3, we
need 66 ciphertexts. Table 7 is showing necessary positions
of fault injection for cubes of Table 3.

For calculating complexity, we assume that an adversary
always injects 4-bit random fault into the last three and five
rounds for Piccolo-80 and Piccolo-128, respectively. Since
an adversary injects exactly 4-bit fault, position of all fault
bits has to match position that we want. This probability is
1/ (
64

4
) ≈ 2
−19.277. That is, an adversary injects 2−19.277 times

for each round and gets all ciphertexts that correspond to
Table 3 for each round. Therefore, this attack on Piccolo-80
needs 3 ⋅ 219.277 ≈ 220.862 fault injections. Similarly, this attack
on Piccolo-128 needs 5 ⋅ 219.277 ≈ 221.599 fault injections. The
number of additional encryptions to recover themaster key is
negligible. Hence, our attack has the complexity of 220.86 and
2
21.60 encryptions with four bits of random fault injections for
Piccolo-80 and Piccolo-128, respectively.

5. Conclusions

In this paper, we present the security weakness of Piccolo
against fault analysis. Our attack fully exploits the structure
of Piccolo, which is a Feistel network. We describe an attack
for fault injection of target bit positions on Piccolo-80 and
Piccolo-128. The master key of Piccolo-80 and Piccolo-128
is recovered by fault analysis by using cube attack with
injecting faults 28.44 and 29.14, respectively. Our attack has the
complexity of 28.49 and 29.21 encryptions for Piccolo-80 and
Piccolo-128, respectively, which are practical complexities.
And finally, an attack for random four bits fault injection for

Piccolo-80 and Piccolo-128 is presented. This attack needs
2
20.86 and 221.60 encryptions with four bits of random fault
injections for Piccolo-80 and Piccolo-128, respectively.
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