1) Check for updates

Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2014, Article ID 842675, 10 pages
http://dx.doi.org/10.1155/2014/842675

Research Article

The Security Weakness of Block Cipher Piccolo

against Fault Analysis

Junghwan Song, Kwanhyung Lee, and Younghoon Jung

Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea

Correspondence should be addressed to Younghoon Jung; skyl236@hanyang.ac.kr

Received 23 December 2013; Accepted 21 January 2014; Published 13 March 2014

Academic Editor: Jongsung Kim

Copyright © 2014 Junghwan Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Piccolo is a 64-bit lightweight block cipher which is able to be implemented in constrained hardware environments such as a wireless
sensor network. Fault analysis is a type of side channel attack and cube attack is an algebraic attack finding sufficiently low-degree
polynomials in a cipher. In this paper, we show a fault analysis on the Piccolo by using cube attack. We find 16 linear equations
corresponding to a round function F by cube attack, which are used to fault analysis. Our attack has the complexity of 254’ and 2°*'

encryptions with fault injections of target bit positions into Piccolo-80 and Piccolo-128, respectively. And our attack needs 2

20.86

and 2*"% encryptions with random 4-bit fault injections for Piccolo-80 and Piccolo-128, respectively.

1. Introduction

Fault analysis is a type of side channel attack. This analysis was
introduced by Boneh et al. in [1]. Differential fault analysis
(DFA), which is an improved method of fault analysis, was
introduced by Biham and Shamir in [2]. DFA is applied to
various block ciphers such as AES [3, 4], ARIA [5], SEED
(6], CLEFIA [7], LED [8], Piccolo [9-12], PRESENT [13], and
KATAN32 [14]. Cube attack was introduced by Dinur and
Shamir in [15]. This attack is an algebraic attack by finding
sufficiently low-degree polynomials in a cipher. Cube attack
is applied to various cryptosystems such as block cipher [16]
and stream cipher [15, 17].

In CHES 2011, Piccolo was introduced by Shibutani et al.
in [18]. Piccolo is a block cipher which supports 80-bit and
128-bit secret key size. In this paper, we analyze two versions
of Piccolo [18] with fault analysis by using cube attack. In
ISPEC 2012, fault analysis using cube attack was introduced
by Abdul-Latip et al. in [16]. In this paper, we apply this
method on Piccolo-80 and Piccolo-128. As a result, we find
16 linear equations corresponding to a round function F by
cube attack, which are used to fault analysis.

Piccolo is analyzed by various techniques. In ISPEC 2012,
Wang et al. suggest biclique cryptanalysis of reduced round
Piccolo in [19]. They analyze reduced version of Piccolo-
80 without postwhitening keys XOR and reduced 28-round

Piccolo-128 without prewhitening keys XOR. In 2013, Song
et al. suggest biclique cryptanalysis of full rounds of Piccolo
[20]. And also Jeong suggests a differential fault analysis of
full rounds of Piccolo [9].

In this paper, we show a fault analysis on the Piccolo by
using cube attack. We find 16 linear equations corresponding
to a round function F of Piccolo by using cube attack. These
equations are used to our attack. In this paper, we describe the
case that an adversary injects random 4-bit faults. Our attack
has the complexity of 22% and 2! encryptions for Piccolo-
80 and Piccolo-128, respectively, while the assumption of [9]
is an adversary that injects random byte faults. Reference [9]
has the complexity of 2** and 2*° encryptions for Piccolo-80
and Piccolo-128, respectively. Our attack has a lower compu-
tational complexity than [9], even though the assumption of
fault injection in our attack differs from [9].

In Section 2, we briefly describe the procedures of cube
attack and cube tester. And then we describe the brief
specifications of Piccolo in Section 3. In Section 4, a method
of fault analysis of Piccolo by using cube attack is presented.
Finally, our conclusions are in Section 5.

2. Cube Attack and Cube Tester

Algebraic attack is to find a solution, which is the key,
of a system of equations that represent target cipher with

http://dx.doi.org/10.1155/2014/842675
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2014%2F842675&domain=pdf&date_stamp=2014-03-13

given plaintext and the corresponding ciphertext, that is
representing cipher as a system of equations with multiple
variables defined over finite field where each key bit is
represented as a variable in the system. Solving the system is
equivalent to finding the secret key of the target cipher. Cube
attack is an algebraic attack finding sufficiently low-degree
polynomials in cipher.

2.1. Cube Attack. Cube attack was introduced by Dinur
and Shamir in [I5]. Cube attack is a chosen plaintext
attack. The main idea of cube attack is to find linear
equations consisting of secret variables by using cube sum.
Let p(v,..., v, ky5.. ., k,,) be a polynomial derived from a
cipher, where v,,...,v, are public variables and k,...,k,,
are secret variables. In other words, each secret variable is
considered a bit in secret key and each public variable is con-
sidered a bit in plaintext or internal state. Let I = {I;,..., .} €
{1,...,n} be a set and let ¢; be the monomial x; x; ...x; .
Note that the set in terms of I is called cube index. Then the
polynomial p is represented by three polynomials t;, pg),
and g as the following form:
pvyo vk, k)

@)

k)

where g is not consisting of a monomial which has a factor ¢;.

Cube attack is required to check the linearity of pg
which is called superpoly. A superpoly pg; is called a
maxterm if pg, is linear. We use the following cube sum to
find a ps(I):

Psay = Z

(Vg »eees¥1) EGE(2)°

=t; Py + 4 (Ve s Vo ks

p(Vl,...,Vn,kl,.-.,km)) (2)

where plaintext bits except cube index (v;,i € {1,...,n} - I)
are fixed as constants.

As the above representation, cube is completed with the
sum total 25 pairs of plaintext and ciphertext for a cube
index I = {Iy,..., I;}. To check whether pg, is a maxterm,
linearity test is required. Let pg;) (k. .., k,,) be a polynomial
of m variables over GF(2). Let t be the number of tests. The
following is a procedure of linearity test.

Step 1. Choose 2 random vectors x, y € GF(2)™.

Step 2. If PS(I) (x) [$] pS(I) (y) (s3] PS(I) (O) * PS(I) (x 57])/), then PS(I)
is not linear. Stop the test.

Step 3. Repeat Steps 1 and 2, t times.

Step 4. pgp is linear. Stop the test, where 0 = (0,...,0) €
GF(2)".

If ppy(kys..., k) is linear, the above equation in Step 2
is always correct for all inputs x,y € GF(2)". Because
checking all inputs is impossible, an upper bound of number
of linearity tests has to be set. If there are at most d; elements
in a cube index for testing linearity, at most 2% % (3xt+1) pairs
of plaintext and ciphertext are needed. Cube attack consists of

International Journal of Distributed Sensor Networks

preprocessing phase and online phase. Preprocessing phase
is to find a system of linear equations by using cube sum and
linearity test. Online phase is recovering the master key stored
by using an encryption oracle. The following are details for the
two phases.

Preprocessing Phase. After finding a polynomial from a cipher,
find a cube, that is, a maxterm, by using linearity test. Since we
know output after all plaintext bits are entered in encryption
oracle, fix plaintext except cube index as a constant. Fixed
constants of every cube do not have to be equal. Let f; be
a maxterm which consists of only secret variables k, ..., k,,
and let b, be the value of the maxterm f; which is found from
online phase. We consider the following system of equations:

f1 (kl""’km) =b

©)
filkys... k) = b

In the preprocessing phase, find enough maxterms to recover
the master key and precalculate this system of equations by
using Gaussian elimination. If we find m linear independent
maxterms, then recover all the master keys with #” opera-
tions for recovery by using Gaussian elimination. In general,
it is lower than complexity I x 2% x (3 x t + 1) for finding
I maxterms. Let f,..., f,, be linearly independent. Then the
master keys are represented as the following system:

ky = ial,i b
i=1
(4)
A

where a; € GF(2).

Online Phase. In online phase, calculate the value of cube
sum from an encryption oracle by using the cube that has
been found in the preprocessing phase. Let each plaintext
bit not in the cube be constant. The calculated value is b,
that is, the value of the maxterm. By substituting the value
b, into (4), we recover the master key. Let cube index found
at preprocessing phase have at most d, elements. Then the
complexity of online phase is m x 2%.

2.2. Cube Tester. Cube attack finds a maxterm by testing
linearity of pgr) of a given polynomial p and cube index
I. Cube tester distinguishes a polynomial from a random
polynomial by many tests including linearity test. There are
some other tests using cube sum in [21]. In cube attack, a
plaintext bit not in the cube is fixed as a constant. However all
bits not in the cube have to be considered variables in the cube
tester. Since the purpose of using the cube tester is getting
information, which are properties of polynomial, we use the

International Journal of Distributed Sensor Networks

p
wk et wk —h
[F =0 & [F Ik
| R |
[F D rk, [F @
| RP |
2 2 2 ¥
’|'T| XD Tk /|'T| s, rhars
| RP
/llTl AP rhyr s /ll? AP rkyr
wky (D wk; —P
C

FIGURE 1: Encryption process of Piccolo.

low-degree test that is in [21]. The degree N is determined by
low-degree test. Let I be a cube index, let] be the number of
bits not in the cube index (i.e.,] = n+m — S§; pg;) consists
of] variables), and t is the number of tests. Since low-degree
test is valid only when p(0) = 0 for the given polynomial p,
we define pg(x) = pgp(x) + psr)(0). Then low-degree test
for the polynomial pg ;) (x) is as follows.

Step 1. Choose N + 1 random vectors y,,. .., yy,1 € GF(2).

.....

Psy > N. Stop the test.
Step 3. Repeat Steps 1 and 2, ¢ times.

Step 4. Degree of pgy < N. Stop the test.

If N = 1, then the low-degree test is similar to the linearity
test. We use the idea of the cube tester which uses every bit not
in the cube index (consisting of plaintext and the master key)
as a variable.

3. Description of Piccolo

Piccolo is a 64-bit block cipher with 80- and 128-bit key
size. The structure of Piccolo is a Feistel network. Piccolo-80
consists of 25 rounds and Piccolo-128 consists of 31 rounds.
Figure 1 illustrates the working processing of Piccolo. Each
round consists of two functions, round function F and round
permutation RP. The round functions F and RP are as follows.

TABLE 1: S-box of Piccolo.

2 3 4 5 6 7 8 9 a b c d e f
f 6 ¢ 5 d

x 0 1
Sx) e 4 b 23 8 0 9 1 a 7

Round Function F. The round function F is defined by
F (x0, X1, X3, %3) = (S (%), S (1), S (x3), S (x3))

M- (S (x0), S (x1), S (), S ()’
5)

where X' is the transposition of X.
S(x) is the 4-bit S-box and M is the diffusion matrix as
follows (see Table 1):

2311
1231

M_1123 ©)
3112

The multiplications between M and vectors are defined by an
irreducible polynomial x* + x + 1 over GF(2%).

Round Permutation RP. The round permutation RP is defined
by

RP (X, X1, - > X7) = (%5 X7, X4 X1, Xg» X35 X5 X5) > (7)

where x; is byte.

For description of Piccolo and our attack, we denote
intermediate variables before r-round as X" = X | X] |
X, | X5 = (xg...,xg;) and intermediate variables before
r-round’s RP function as Y™ = Y | Y] | Y, | Y5 (ie,
RP(Y") = X'*). Let the round function F in r-round be
F(X) = (Fy(X]), ..., F5(X})) and let the round key be rk, =
(kgs ..., ki5). The other notations are as follows:

(Xf)L: left 8 bits of X} and (X;)R: right 8 bits of X';
K} left 8 bits of K; and K}': right 8 bits of K;;
A | B: concatenation of A and B.

Let the 64-bit plaintext and ciphertext be P and C,
respectively. Encryption of Piccolo is defined as follows:

(1) Py | P, | P, | Py « P (P, is the 16-bit plaintext);

(2) X§ « Pyowky, X} =P,

X} « P,owk;, X; = Py;

(3)fori=1tor—1

Yy — X, Y« X3 @ F(X}) @ rky_,
Y, — Xb,Yi « Xi @ F(X}) @rky_,
XH—I - RP(Y’),
(4) Y, « X @ wk,,Y] « X & F(X() @rk,,_,
Y, « X, @ wk;,Y; — X; @ F(X}) @rk,,_;
(5) C« Y| Y] |Y)|Y!(Yis the 16-bit ciphertext).
ol Xy Iy s p

Key schedule of Piccolo consists of the following.
Piccolo-80:

wky «— K§ | K}, wk, «— K} | Ky,
(8)

wk, «— Kf; | Kf, wk;y «— K3L | KR,
fori < 0to24 do

ifi mod 5 =0 or 2, then

(rkyi rhyisy) — (coni?, conggrl) o (K, K;) (9)
ifi mod 5 =1 or 4, then

(rkyirhyiyy) — (congf, conifﬂ) o (K, Ky) (10)
ifi mod 5 = 3, then

(rhyis TKyip1) — (congf, Cong?ﬂ) ® (K, Ky), (1)

where coni80 is the round constant.
Piccolo-128:

wk, «— Kg | Kf, wky «— KIL | KX,
(12)
wk, «— Kb | KX, wky «— K | KX,

fori < 0to 61 do
if (i + 2) mod 8 =0, then
(KO’KZ’K@KAL) — (K2>K6>K4>Ko)

(K3’K7>K5) — (K7’K5>K3) (13)

128

rk; «— 1k(i12) mod s ® con;

128 .
where con; " is the round constant.

Since key schedule of Piccolo is just performing XOR
determined constants to the master key, recovering the round
key and recovering the master key are the same. Table 2 is
showing the master key used for the round key of Piccolo.
Detailed descriptions of Piccolo are in [18].

4. Fault Analysis on the Piccolo

In this section, we show the fault analysis for Piccolo-80 and
Piccolo-128. We assume that an adversary is able to make
4-bit errors in a maximum at a time on a round during
an encryption process. By using cube sum, find system of
linear equations in the common F of Piccolo-80 and Piccolo-
128. And use the system to represent the phase recovering
the master key of Piccolo-80 and Piccolo-128. Analysis of
a round function F in Section 4.1 is corresponding to the
preprocessing phase of cube attack. The attack in Sections 4.2
and 4.3 is the case of an encryption oracle that is given and is
corresponding to online phase.

International Journal of Distributed Sensor Networks

Fault injection in Step 3

22 22 22 2
X2 X3 X2 X2
F D rky 969(_ rkys
Y22 Y2 Y2 Y2
w |
23 23 23 23
Xo Xi X3 X3
a N
F < rhyy €9<_ rkys
v3? v Y5 v3?
| RP |
24 24 24 24
Xo K Xi ﬁ X5 X3

Fault injection|in Step 2

F () rkyg

—>€9<— rky

L
Y2 Y4 Y2 Y2
| P |
Xy N X3P ﬂxﬁs bes
Fault injection] in Step 1
E <> rkyg ? 69(_ rkyg
wk, %E} wk; —)69
Y2 Y® Y® Y2
C

FIGURE 2: Fault analysis of Piccolo-80.

4.1. Equations of Round Function F. Since round function F
is the same for Piccolo-80 and Piccolo-128, the results of fault
injection attack on F are the same in the both algorithms.
Let F(X) = (Fy(X),...,F5(X)), where X = (xp, x;,...,%;5)
is an 16-bit intermediate value and each Fj(x) is a bit (F :

GF(2)'* — GF(2)'). We test all possible cubes of degree 1 to
degree 4 and all possible inputs for each cube. We get many
linear polynomials and choose 16 appropriate polynomials
for recovering the master key. Table 3 shows our selected 16
polynomials, cube index, and output bit (F,).

4.2. Analysis on the Piccolo-80. We explain how to recover all
the master keys of Piccolo-80. By key schedule of Piccolo-
80, recovering wk,, wks, rky,, rk,g, and rk,y is equal to
recovering all the master keys of Piccolo-80. Let plaintext P
be given and let X/,Y/ be intermediate values for plaintext

P. In this paper, we recover the master key of Piccolo-80

by recovering some X/s. Figure 2 is for the last 4 rounds of
Piccolo-80. The following is the attack on Piccolo-80.

Step 1. First, we analyze the last round (i.e., round 25).
Perform cube sum by using the cube in Table 3 for F which

International Journal of Distributed Sensor Networks 5
TABLE 2: Round key of Piccolo.
Piccolo-80 Piccolo-128
Round Round key Master key Round Round key Master key
First wko, wk, Ky [KS K Ky First wko, wk, Ky [KF K Ky
1 rky, rk; K,, K, 1 rky, rk; K,, K,
2 rk,, rk; K,, K, 2 rk,, tk; K, K;
3 rky, rks K,, K; 3 rky, rks K, K,
4 rke, 1k, K, K, 4 ke, 1k, K,, K,
5 rkg, 1k Ky, K, 5 rkg, 1kq K, K,
6 rkyg» Thy K,, K, 6 rkyg» thy Ky, K,
7 Ky, i K, K, 7 Ky, i K, K;
8 1k s K,, K; 8 Ky Ty K, K,
9 kg, ky; K, K, 9 kg, 7Ky K, K;
10 kg, kg K,, K, 10 kg, kg K, K,
11 rkygs Thyy K,, K; 1 rkygs Thyy K, K,
12 kyy, TKys K,, K, 12 rkyy, TKys K,, K,
13 rkyys Thyg K,, K, 13 rkyys Thyg K,, K;
14 rkyg Tk, K,, K, 14 kyg Tk, K, K
15 1kyg, Thyg K,, K, 15 1kyg, Thyg K, K,
16 rksg> 7k K,, K, 16 rksg> 7k Ky, K,
17 1ksy, Thss Ky, K, 17 1ksy, sy K, K,
18 ksy> Tkss K,, K, 18 ksy Tkys K,, K,
19 rksg> Tk, K,, K, 19 rksg, Tk, K, K
20 ksg, k3o K, K, 20 1ksg, Thsg K,, K,
21 rk o> Ty K,, K; 21 1k 49> gy K, K
22 ks, 1k 43 Ky, K, 22 ks, k43 K,, K,
23 kg Thys K,, K; 23 kg Thys K, K,
24 rkyg> Tk 7 K,, K, 24 Tkyg> Tk 7 K, K,
25 Tkyg> Tk 4o K,, K, 25 Tkyg> Tk 4o K,, K,
Final whk,, wk, Ky |K5, K| K§ 26 rksg Tks; K, K,
27 1ksy, sy K,, K,
28 1ksy, Tkss K,, K,
29 rksg, ks, K,, K,
30 rksg, Tksg K, K,
31 rkeo> Tk K,, K;
Final wk,, wk, Ky K5, Ky | K}
takes X;°. For example, consider 6th equation of Table3. We calculate cube sum for cube index {4, 8} like the following:

Suppose that inject fault into x>° to x;. Then, since fault is
injected into only X¢°, value of X3° or rk,q is not changed.

We notate the following to explain our attack:

X25 (x) X25 (xlé,...,ng
Y25 (e ...,ylg)

yi5[x3°]: y25 when fault is injected into x;;
)’12 [x8 I: y > when fault is injected into x8 ;

vy lx2, x3°: ¥ when fault is injected into both x3’

25
Xg -

_ 25 25
Cube sum = Z F, (xo "">x15)

x4,x3€{0,1}
= Z [F12 (xo ,...,xﬁ) €Bx§§ EBkg
x4,x3€{0,1}
= J’12 69)’%2 [x4] & yff [xs] & yfzs is’xés] .
(14)

25 is not the output of F. But since cube sum does XOR
even times, x3; and rk}s are offset. That is, we know value
of cube sum cause of Ygs | Y125 | Y225 | Y325 = C. In
the same way, cube sum using fault injection in this paper
is performed. By performing cube sum for every cube in
Table 3, we get 16 systems of equations. Recover input X; .

6 International Journal of Distributed Sensor Networks
TABLE 3: Cube sum result of F(x,, ..., X;s). TABLE 4: Attack complexity of Piccolo-80.

Cube index Outbit (F,) Polyequation Assumption Required fault Complexity

15,6 8 Xy + 1 Assumption 1 132 = 27% 2%

0,8,911 10 x, +1 Assumption 2 264 = 289 21601

1,56 12 Xo + %X, Assumption 3 347 = 28* 359.1 = 28%

0,8,9,11 7 x,

0,1,5,6 x4 +1

4,8 12 X5 + X

4,5,8,9 xg+1 . . . o

489,11 7 Xt 41 Assumptzon 1. We inject fault into at most 4 bits in the same

time. But, apply this to only last round.

56,9 12 xg+ 1

4578 6 Xy Assumption 2. We inject fault into at most 4 bits in the same

5,6,9 8 Xyo + 1 time. But, apply this to only rounds 24 and 25.

4,5,7,8 3 Xy,

56,13 38 Xy + X1y Assumption 3. We inject fault into at most 4 bits in the same

0,12 4 X, + X3 time.

5.6,13 P X, 41 That is, suppose that we analyze only Step 1 or Steps 1

0.8, 11, 12 7 5+ X and 2. Even though we analyze only Steps 1 and 2, since at

Similarly, we recover input X5’ using F which takes X3°. Since
X @ wk, = Y, X3* @ wk, = Y°, we recover wk,, wk; (ie.,
K3 K,).

Step 2. Since we know wk, and wk;, calculate intermediate

value X2°, X3° for given ciphertext. Round permutation RP
in round 24 is as follows:

le4 _ (XéS)L | (XSS)R) Y§4

Y§4 _ (X;S)L | (X%S)R, Y224

(X5 1 ()"

()1 ()"

(15)

Therefore, we calculate Y;*, Y3* for given ciphertext. By using
this, analyze round 24. In a similar way with Step 1, recover
X¢*, X5 by using the cube in Table 3 for F which takes X;°,
X2 Since X2 = Y2, X2 = v2L vt = (X | (xP)K,
and Y224 = (XfS)L | (XgS)R, we recover st, Xis. Then we
recover rkyg, rkyy (ie., Ky, K;) since X2° @ F(X) @ rkyg =
YE,XP o F(XY) @rky =Yy

Step 3. Werecover K, K, K3, and K, so far. Given ciphertext
C, we calculate X;*, X34, X5*, and X3*. That is, we recover
X(2)3, X?, Y123, and Y323. We want to recover X?. Since XSZ =
Y2 = (XP)E | (XB)R X2 = y2 = (x| (xR,
if we recover right 8 bits of X;> and left 8 bits of X3, then
we recover X?. To recover right 8 bits of ng, inject fault
into bits corresponding to cube index of last 8 equations in
Table 3. For recovering left 8 bits of X5°, inject fault into bits
corresponding to cube index of first 8 equations in Table 3.
Then we recover X:°. Since X7° & F(X.) @ rky, = Y[, we
recover rky (ie., K;).

Use the above 3 steps to recover all the master keys used
for Piccolo-80. This needs the assumption that we inject fault
into at most 4 bits in the same time. Thus in this paper we
consider the following as an analyzing way.

least 32 bits of 80-bit master key are recovered, we recover
all the master keys with less operations than brute-force
attack. To recover X, inject fault into 11 bits among 16 bits
of internal state X by using injections 66 times. To recover
left 8 bits and right 8 bits of X! (i.e., (Xf)L, (Xir)R), we inject
fault into 8 bits and 10 bits among 16 bits of X, respectively.
Then (X)), (X)) are recovered by using injections 44 and
39 times, respectively.

Under Assumption 1, we need 133 encryptions for recov-
ering 32-bit master key (wk,, wk;). We exclusively search to
recover remaining 48-bit master key. Therefore, we need total
133 + 2% = 2% encryptions for recovering the master key
under Assumption 1.

Under Assumption 2, we need 133 encryptions for recov-
ering 32-bit master key (wk,, wk;). For recovering 32-bit
round keys rk,s and rk,, we have to calculate Y;*,Y;".
Given ciphertext, calculating Y;* is equivalent to 0.5 round
encryption. So is Y;*. Hence, we need 132 + (132 x 0.5 +
1)/25 encryptions for recovering 32-bit round keys rk,q
and rk,y. We exclusively search to recover remaining 16-bit
master key. Therefore, we need total 133 + (132 + 67/25) +
2! = 210 encryptions for recovering the master key under
Assumption 2.

Under Assumption 3, we need 133+ (132+67/25) encryp-
tions for recovering wk,, wk;, rkyg, and rk,q. Given cipher-
text, calculating Y* is equivalent to 2.5 round encryption. We
need 44 + 39 + {(44 + 39) x 2.5 + 1 x 3}/25 encryptions for
recovering 32-bit round keys rk,,, rk,s. Therefore, we need
total 133+ (132+67/25) +(83+210.5/25) = 25*° encryptions
for recovering the master key under Assumption 3. Table 4
is showing encryption complexity needed for recovering the
master key of each assumption.

4.3. Analysis on the Piccolo-128. Piccolo-128 recovers the
master key in a similar way to Piccolo-80. Figure 3 is for the
last 5 rounds of Piccolo-128. The following is how Piccolo-128
recovers the master key.

International Journal of Distributed Sensor Networks

Fault injection in Step 5

bed x¥ X% bed
ST TR
v Y Yy YZ,
| RP |
X3 \ X% ﬁxgs X%

Fault injection in Step 4
il e T e Il

ve? v Y28 Ve
| RP |
x3° \ x¥

Fault injection|in Step 3

—{F ks | F ks

v 6 vy Y2,
| RP |
X(S)O X?O X;O Xgo

Fault injection{in Step 2
9<—rk58 Bhrk59

30 30 30 30
Y Y; Y; Y;

ﬁx? x¥

| R |
X3 X! X3! X3

Fault injection in Step 1

H Ne—rkgo a% x—rke

wky —¢H wks —¢b
v v l v v
C

FIGURE 3: Fault analysis of Piccolo-128.

Step 1. First, we analyze the last round (i.e., round 25). In a
similar way with Step 1 in analysis of Piccolo-80, recover X;',
X3' by using the cube in Table 3 for F which takes X]', X3'.
Since X;' @ wk, = Y3', X3! @ wk; = Y;', we recover wk,,
wk; (K, K7).

Step 2. Since we know wk, and wk;, calculate intermediate
values X;', X3! for given ciphertext. Since Y:° = (X2 |
(X;I)R, Y;’O = (XSI)L | (XSI)R, we calculate Y130, Y;’O for
given ciphertext. In a similar way with Step 1 in analysis of
Piccolo-80, recover X;°, X3° by using the cube in Table 3 for
F which takes XSO, X;o. We recover Xfl, X;l, since Xgo =
Yo X3 = ¥;%and Y0 = (3O 1 (x5 730 = (xiht |

(X3HR. Since X @F(X Harky, = Y7, XJ@F(X3)erky =
Y3', we recover rkgy, rkg; (Ky, Ks).

Step 3. Since we know wk,, wks, rkey, and rkg;, calculate
intermediate values XSO, Xzo, Yf ,and Y33 0 for given cipher-
text. Since Y22 = (X" | (X395, v22 = (X3 | (X%, we
calculate Y7°, Y2? for given ciphertext. In a similar way with
Step 1in analysis of Piccolo-80, recover X¢°, X3° by using the
cube in Table 3 for F which takes X', X5°. We recover X;’,
X since X2° = VP, X2 = ¥, and Y’ = (X3°)" | (X30)%,
Y2 = (X3 | (XI)R. Since X3° @ F(X2") @ rksy = Y;and
X3 @ F(X3?) @ rksy = Y3°, we recover rksg, rksy (Kg, K).

Step 4. This step is similar to Step 3 in analysis of Piccolo-80.
Given ciphertext C, we calculate X;°, X5, Y;°, and Y; . We
want to recover ng. Since X(Z)8 = YO28 = (ng)L | (Xf9)R,
ng = Y228 = (ng)L | (ng)R, if we recover right 8 bits of
X2® and left 8 bits of X3°, then we recover X>°. To recover
right 8 bits of X_®, inject fault into bits corresponding to cube
index of last 8 equations in Table 3. For recovering left 8 bits
of X5%, inject fault into bits corresponding to cube index of
first 8 equations in Table 3. Then X>” is recovered. And then
we recover rksg (K,), because X;° @ F(X7) @ rksg = Y7°.

Step 5. This step is similar to Step 3 in analysis of Piccolo-
80. We want to recover ng. Given ciphertext C, we calculate
X3, X2, Y2, and Y72, Since X7 = Y77 = (X' | (X)X,
X§7 = Y227 = (XTB)L | (XgS)R, we recover left 8 bits ofX(2)7 and
right 8 bits of X3. To recover left 8 bits of X', inject fault
into bits corresponding to cube index of first 8 equations in
Table 3. For recovering right 8 bits of X3/, inject fault into bits
corresponding to cube index of last 8 equations in Table 3.
Then we recover X;°. And we recover rks; (K;) since X3° &
F(X3®) @ rkss = Y28,

Use the above 5 steps to recover all the master keys used
for Piccolo-128. This needs the assumption that we inject fault
into at most 4 bits in the same time. Assume that we analyze
only Steps 1, 2, 3, and 4 such as Piccolo-80. Even though we
analyze only Steps 1, 2, 3, and 4, since at least 32 bits of 128-bit
master key are recovered, we recover all the master keys with
less operations than brute-force attack. Table 5 is showing
encryption complexity needed for recovering the master key
of each assumption.

4.4. Improved Attack. The attacks described in Sections 4.2
and 4.3 are valid under the assumption that an adversary is
able to control the injecting time and bit positions to inject
fault and the number of bits of fault injection. However it
is difficult to control bit positions where faults are injected.
Therefore, in this section, we explain the way of attack under
the assumption that an adversary is not able to control bit
positions to inject faults. That is, an adversary is able to inject
i bits of random faults into Piccolo-80 and Piccolo-128. The
attack of Section 4.4 is similar to the attack of Sections 4.2
and 4.3. But this attack adds the process that determines fault
position before each Step of Sections 4.2 and 4.3.

8
X0 X X5 X;
|| | | |
ATt e
why—¢p wky

NEERIRDY ||
0 1

vy Y3
Fault bits

‘ Error bits

FIGURE 4: Determine position of fault injection for Case 1 (i = 4).

Xb X} X5 X3
| | | | |
E /C) rkyg 1'3 /C) rkag
k5 wks—¢H

(7] N [.
v vy v Y]

Fault bits

‘ Error bits

FIGURE 5: Determine position of fault injection for Case 2 (i = 4,
j=1).

Assume that we inject i bits of random fault into last
round. In some cases, we determine fault position. Then, the
following is how to determine position of fault injection for 3
cases. (Each case with 4 fault bits is described in Figures 4, 5,
and 6).

Case 1. There are i bits error in Y;(Y}) after fault injection.
Since X, P wk, = Y; (X5 Pwk; = Y;) and i fault bits, if
Y, (Y;) is different i bits from original ciphertext, then fault
injection position in X{(X}) must be same with changed i bits
after fault injection in Y (Y7).

Case 2. There are j bits error in Y; and i — j bits error in Y,
after fault injection. In a similar way to Case 1, fault injection
position in X must be same with changed j bits after fault
injection in Y. And fault injection position in X} must be
same with changed i- j bits after fault injection in Y.

Case 3. There are i — j bits error in Y;j (Y;) and j bits error in
Y;(Y]). And there is no error in Y; (Yy). If there are j bits error

International Journal of Distributed Sensor Networks

% rhayg % rkyo

wk, —P wk; —>P
HIEEN N | 1]
et et Y; Y3
Fault bits
‘ Error bits

FIGURE 6: Determine position of fault injection for Case 3 (i = 4,
j=1).

TABLE 5: Attack complexity of Piccolo-128.

Assumption Required fault complexity
Step 1 132 = 27% 2%

Step 2 264 = 28 26

Step 3 396 = 2% 2%

Step 4 479 =~ 2890 51601
Step 5 562 = 27" 593.64 ~ 27!

in Y3 (Y7), then X', (X() or X5(X7) is fault injected. Since there
is no error in Y; (Y;), fault injection position in X} (X7]) must
be same with changed j bits after fault injection in Y;(Y7).
Furthermore, X{(X’)must be same with changed i — j bits
after fault injection in Y (Y7) since there are i — j bits error in
Y7 (YD),

Therefore, we determine the position of fault injection for
these 3 cases. Table 3 is the table of optimal cubes that are
used for the attack in Sections 4.2 and 4.3. Therefore, there
are many cubes except cubes in Table 3. Because there are too
many cubes, we do not describe all cubes in this paper. For
example, suppose that we get 16 ciphertexts for cube sum of
{0, 1, 3, 4}. Then we calculate all of subcubes of {0, 1, 3, 4}. So,
we use cubes in Table 6 and recover Ist, 2nd, 5th, and 7th bit
of whitening key.

By the same method, we use sufficient cubes for recover-
ing wk, and wk; of Piccolo-80 and Piccolo-128 and recover
wk, and wk;. Since we know wk, and wk;, calculate
intermediate values Xp, X}, for given ciphertext. Therefore,
we inject faults into (r — 1)th round, determining position
of fault injection by 3 cases that described this section.
And we recover (r — 1)th round key. This process is
the same with Step 2 in Section 4.2 and Step 2 in Section 4.3
except determining position of fault injection. By the same
way, we recover all the master keys of Piccolo-80 and Piccolo-
128 using Steps in Sections 4.2 and 4.3 with determining
position of fault injection, respectively.

International Journal of Distributed Sensor Networks

TABLE 6: Subcube of {0, 1, 3, 4}.

Cube index Outbit (F,) Polyequation
0,3 0 x, +1
0,4 8 X, +x5+1
0,1,3,4 2 X5
0,1,3,4 15 x,

TABLE 7: Necessary positions of fault injections for Table 3.

Number of fault
bits (Number of Necessary positions of fault injection
faults)
1(11) (0), @), (4), (5), (6), (7), (8), (9), (11), (12), (13)
(0, 1), (0,5), (0, 6), (0, 8), (0, 9), (0, 11), (0, 12),
2) (1,5), (1,6), (4,5), (4,7), (4 8), (4, 9), (4,10, G,
6),(5,7), (5,8),(5,9), (5,13), (6, 9), (6,13), (7,
8), (8,9), (8,11), (8,12), (9,11), (11, 12)
(0,1,5), (0,1, 6), (0, 5,6), (0, 8,9), (0, 8,11), (0,
8,12),(0,9,11), (0,11, 12), (1, 5, 6), (4,5, 7), (4, 5,
3(22) 8),(4,5,9), (4,7, 8), (4,8,9), (4, 8,11), (4, 9, 11),
(5,6,9),(5,6,13),(5,738), (5,8,9), (8,9,11), (8,
11, 12)
4(6) (0,1,5,6),(0,8,9,11), (0, 8,11, 12), (4, 5, 7, 8),

(4,5,8,9),(4,8,9,11)

The complexity of this attack depends on the complexity
for finding ciphertext to recover round key. For Table 3, we
need 66 ciphertexts. Table 7 is showing necessary positions
of fault injection for cubes of Table 3.

For calculating complexity, we assume that an adversary
always injects 4-bit random fault into the last three and five
rounds for Piccolo-80 and Piccolo-128, respectively. Since
an adversary injects exactly 4-bit fault, position of all fault
bits has to match position that we want. This probability is
1/(6¢) = 2777 That is, an adversary injects 27'**"” ti
for each round and gets all ciphertexts that correspond to
Table 3 for each round. Therefore, this attack on Piccolo-80
needs 3 - 2'°%77 = 2208 faylt injections. Similarly, this attack
on Piccolo-128 needs 5 - 2'%*7 =~ 22 fault injections. The
number of additional encryptions to recover the master key is
negligible. Hence, our attack has the complexity of 2***¢ and
2719 encryptions with four bits of random fault injections for
Piccolo-80 and Piccolo-128, respectively.

5. Conclusions

In this paper, we present the security weakness of Piccolo
against fault analysis. Our attack fully exploits the structure
of Piccolo, which is a Feistel network. We describe an attack
for fault injection of target bit positions on Piccolo-80 and
Piccolo-128. The master key of Piccolo-80 and Piccolo-128
is recovered by fault analysis by using cube attack with
injecting faults 2°** and 2°'*, respectively. Our attack has the
complexity of 25 and 2°2' encryptions for Piccolo-80 and
Piccolo-128, respectively, which are practical complexities.
And finally, an attack for random four bits fault injection for

Piccolo-80 and Piccolo-128 is presented. This attack needs
22088 and 221 encryptions with four bits of random fault
injections for Piccolo-80 and Piccolo-128, respectively.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D.Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in Advances
in Cryptology—EUROCRYPT’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 37-51, Springer, 1997.

[2] E.Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology—CRYPTO’97, vol.
1294 of Lecture Notes in Computer Science, pp. 513-525, Springer,
1997.

[3] C.H. Kim and J.-J. Quisquater, “New differential fault analysis
on AES key schedule: two faults are enough,” in Smart Card
Research and Advanced Applications, vol. 5189 of Lecture Notes
in Computer Science, pp. 48-60, Springer, 2008.

[4] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault
analysis of the advanced encryption standard using a single
fault,” in Information Security Theory and Practice. Security and
Privacy of Mobile Devices in Wireless Communication, vol. 6633
of Lecture Notes in Computer Science, pp. 224-233, Springer,
2011.

[5] W.Li, D. Gu, and J. Li, “Differential fault analysis on the ARIA
algorithm,” Information Sciences, vol. 178, no. 19, pp. 3727-3737,
2008.

[6] K.Jeong,Y. Lee, J. Sung, and S. Hong, “Differential fault analysis
on block cipher SEED,” Mathematical and Computer Modelling,
vol. 55, no. 1-2, pp. 26-34, 2012.

[7] H. Chen, W. Wu, and D. Feng, “Differential fault analysis
on CLEFIA) in Information and Communications Security,
vol. 4861 of Lecture Notes in Computer Science, pp. 284-295,
Springer, 2007.

[8] K.Jeong and C. Lee, “Differential fault analysis on block cipher
LED-64, in Future Information Technology, Application, and
Service, vol. 1, pp. 747-755, Springer, 2012.

[9] K. Jeong, “Security analysis of block cipher Piccolo suitable
for wireless sensor networks,” Peer-to-Peer Networking and
Applications, 2013.

[10] S. Li, D. Gu, Z. Ma, and Z. Liu, “Fault analysis of the Piccolo
block cipher;” in Proceedings of the 8th International Conference
on Computational Intelligence and Security (CIS ’12), pp. 482-
486, 2012.

[11] H. Yoshikawa, M. Kaminaga, A. Shikoda, and T. Suzuki,
“Round addition DFA on 80-bit Piccolo and TWINE,” IEICE
Transactions on Information and Systems, vol. E96-D, no. 9, pp.
2031-2035, 2013.

[12] E Zhang, X. Zhao, S. Guo, T. Wang, and Z. Shi, “Improved
algebraic fault analysis: a case study on Piccolo and applications
to other lightweight block ciphers,” in Proceedings of the 4th
International Workshop on Constructive Side-Channel Analysis
and Secure Design (COSADE ’13), vol. 7864 of Lecture Notes in

Computer Science, pp. 62-79, Springer, 2013.

10

(13]

(14]

(15

(16]

(17]

(20]

(21]

N. Bagheri, R. Ebrahimpour, and N. Ghaedi, “New differential
fault analysis on PRESENT,” EURASIP Journal on Advances in
Signal Processing, vol. 2013, article 145, 10 pages, 2013.

W. Y. Zhang, E Liu, X. Liu, and S. Meng, “Differential fault
analysis and meet-in-the-middle attack on the block cipher
KATAN32, Journal of Shanghai Jiaotong University (Science),
vol. 18, no. 2, pp. 147-152, 2013.

L. Dinur and A. Shamir, “Cube attacks on tweakable black boxp
polynomials,” in Advances in Cryptology—EUROCRYPT 2009,
vol. 5479 of Lecture Notes in Computer Science, pp. 278-299,
Springer, 2009.

S. E. Abdul-Latip, M. R. Reyhanitabar, W. Susilo, and J. Seberry,
“Fault analysis of the KATAN family of block ciphers,” in
Information Security Practice and Experience, vol. 7232 of
Lecture Notes in Computer Science, pp. 319-336, Springer, 2012.

I. Dinur and A. Shamir, “Applying cube attacks to stream ciphers
in realistic scenarios,” Cryptography and Communications, vol.
4, no. 3-4, pp. 217-232, 2012.

K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita,
and T. Shirai, “Piccolo: an ultra-lightweight blockcipher;” in
Proceedings of the 13th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’11), vol. 6917 of Lecture
Notes in Computer Science, pp. 342-357, 2011.

Y. Wang, W. Wu, and X. Yu, “Biclique cryptanalysis of reduced-
round Piccolo block cipher,” in Information Security Practice
and Experience, vol. 7232 of Lecture Notes in Computer Science,
pp. 337-352, Springer, 2012.

J. Song, K. Lee, and H. Lee, “Biclique cryptanalysis on
lightweight block cipher: HIGHT and Piccolo,” International
Journal of Computer Mathematics, vol. 90, no. 12, pp. 1-17, 2013.
J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir, “Cube
testers and key recovery attacks on reduced-round MD6 and
trivium,” in Fast Software Encryption, vol. 5665 of Lecture Notes
in Computer Science, pp. 1-22, Springer, 2009.

International Journal of Distributed Sensor Networks

