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SUMMARY

The underlying molecular genetic basis of combined
hyperlipidemia, the most common atherogenic lipid
disorder, is poorly characterized. Rare, nonconser-
vativemutations in theWnt coreceptor, LRP6, under-
lie autosomal dominant atherosclerosis, combined
hyperlipidemia, and fatty liver disease. Mice with
LRP6R611C mutation similarly developed elevated
plasma LDL and TG levels and fatty liver. Further
investigation showed that LRP6R611C mutation trig-
gers hepatic de novo lipogenesis, lipid and choles-
terol biosynthesis, and apoB secretion by an
Sp1-dependent activation of IGF1, AKT, and both
mTORC1 and mTORC2. These pathways were
normalized after in vitro treatment of primary hepato-
cytes from LRP6R611C mice with either the IGF1R
antagonist PPP, rapamycin, or rmWnt3a. Strikingly,
in vivo administration of rmWnt3a to LRP6R611C

mice normalized the altered expression of enzymes
of DNL and cholesterol biosynthesis, and restored
plasma TG and LDL levels to normal. These findings
identify Wnt signaling as a regulator of plasma lipids
and a target for treatment of hyperlipidemia.

INTRODUCTION

Familial combined hyperlipidemia (CHL), featuring elevated

levels of plasma triglycerides (TGs) and low-density lipoprotein

(LDL) cholesterol (C), is themost common form of hyperlipidemia

found in the general population. Despite 40 years of investiga-

tion, no single gene has been clearly linked to this disorder,

and its underlying molecular mechanisms remain poorly under-

stood. We identified rare nonconservative loss of function muta-

tions in the gene encoding Wnt coreceptor LRP6 (OMIM,

ADCAD2), which underlie autosomal dominant, early onset cor-

onary artery disease (CAD), and metabolic syndrome traits,

including elevated plasma TG and LDL-C levels, diabetes, oste-
Cell M
oporosis, and hypertension (Mani et al., 2007; Singh et al.,

2013b). These findings underscore the emerging evidence impli-

cating effects of altered Wnt signaling on plasma lipids. Low

serum levels of Wnt1 are associated with elevated TG and

LDL-C in patients with premature CAD (Goliasch et al., 2012).

Common genetic variants in genes encoding TCF7L2 are asso-

ciated with elevated plasma TG in kindreds with familial com-

bined hyperlipidemia (Delgado-Lista et al., 2011; Huertas-Vaz-

quez et al., 2008), while genetic variants in LRP6 have been

associated with risk for elevated LDL-C (Tomaszewski et al.,

2009) in the general population. The functional characterization

of the common genetic variants is hindered by their inherent

small magnitude of effect on the trait. In contrast, the large

effects imparted by the nonconservative LRP6 mutations have

allowed detailed studies of their effects both in vitro and in

primary human cells. The studies of macrophages and skin

fibroblasts of the LRP6R611C mutation carriers have shown

that elevated plasma LDL-C is, partially, the result of impaired

receptor-mediated uptake of LDL (Liu et al., 2008; Ye et al.,

2012). The contribution of LRP6 to LDL clearance was later

confirmed by a genome-wide targeted RNAi screening of

cholesterol-regulating genes (Bartz et al., 2009). LRP6 primarily

facilitates LDL receptor (LDLR)-dependent LDL clearance in

most human cells (Ye et al., 2012). LRP6 forms a complex with

LDLR, clathrin, and autosomal recessive hypercholesterolemia

protein and is required for clathrin-mediated vesicular LDL

uptake (Ye et al., 2012). These functions are impaired in

hematopoietic cells and skin fibroblasts of the LRP6R611C muta-

tion carriers, resulting in 15%–20% lower LDL clearance

compared to wild-type (WT) cells. The same magnitude of

reduction in LDL uptake occurs when LRP6 is knocked down

by RNA interference. This modest reduction in LDL clearance,

however, does not explain the severe degree of hyperlipidemia

in LRP6R611C mutation carriers, raising the possibility that

increased synthesis and secretion of apolipoprotein B (apoB)-

containing lipoproteins constitute major disease mechanisms.

To address this question, we generated a mouse model of

LRP6R611C mutation (Lrp6mut/+) by modifying the endogenous

mouse LRP6 through homologous recombination. To assess

the LDLR-independent role of LRP6 in the hyperlipidemia

present in this mouse, Lrp6mut/mut mice were crossbred onto
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Figure 1. Plasma Lipid Profiles in Lrp6mut/mut and Ldlr–/–/Lrp6mut/mut Mice

(A–C) Higher-plasma TG, total C, and LDL-C levels in Lrp6mut/mut mice on chow diet and (F–H) HCD compared to WT mice on same diets. (K–M) Higher-plasma

TG, total C, and LDL-C levels in Ldlr�/�/Lrp6mut/mutmice on HCD compared to Ldlr�/�mice on same diet. (D and E) Lipoprotein separation by FPLC in Lrp6mut/mut

mice on chow diet and (I and J) HCD diet show higher TG content of VLDL and higher TC content of IDL/LDL in Lrp6mut/mut compared toWTmice. *p < 0.05; **p <

0.01; ***p < 0.001. WT, wild-type; HCD, high cholesterol diet; TG, triglycerides; Total C, total cholesterol; LDL-C, LDL cholesterol; FPLC, fast protein liquid

chromatography. Error bars represent SD. See also Figure S1.
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Ldlr�/� mice. The effect of LRP6R611C mutation on plasma lipids

and their regulation by Wnt/LRP6 pathways were examined in

Lrp6mut/mut and Ldlr�/�Lrp6mut/mut mice.

RESULTS

Lrp6mut/mut Mice Exhibit Elevated Plasma LDL-C and TG
Mice with LRP6R611C (Lrp6mut/+) on B57BL/6 background were

generated by manipulating mouse endogenous LRP6 through

homologous recombination (see Experimental Procedures).

Three-month-old heterozygote Lrp6mut/+ mice on chow diet

have significantly higher plasma TG, total C, and LDL-C

compared to WT mice (see Figure S1 available online). These

levels were intermediate between WT and homozygous mutants

(Figure S1). Plasma lipids were significantly higher in homozy-

gote Lrp6mut/mut mice compared to WT (Figures 1A–1C); homo-

zygous mice were then used for further experimentation. There

was no significant difference in free fatty acid levels between

the two strains (data not shown). Lipid profiling of FPLC-sepa-

rated lipoprotein fractions showed that, as expected, the

increased TG in Lrp6mut/mut mice was predominantly associated

with VLDL particles (Figure 1D). FPLC also showed higher non-

HDL-C (IDL/LDL) in the mutant versus WT mice (Figure 1E).

Lrp6mut/mut mice on 6 months of high-cholesterol/high-fat diet

(HCD) (40% fat, 1.25% cholesterol, 0.5% cholic acid) had about

2-fold increase in plasma TG (Figure 1F) and about 3-fold in-

crease in total C (Figure 1G) and LDL-C (Figure 1H) compared

to WT littermates. FPLC-separated lipoprotein similarly showed

higher TG in the VLDL fraction and higher cholesterol in the non-

HDL-C fraction in Lrp6mut/mut versusWTmice on HCD (Figures 1I

and 1J). We had previously shown that LRP6 regulates LDLR-

mediated vesicular uptake of LDL. To examine the unique role

of LRP6 in lipoprotein assembly and secretion, Lrp6mut/mut

mice were crossbred onto Ldlr�/� mice to generate Ldlr�/�/
Lrp6mut/mut mice. Introducing the LRP6R611C allele into Ldlr�/�
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mice background resulted in significant increase in plasma TG,

total C, and LDL-C (Figures 1K–1M) in 9-month-old mice on

HCD compared to Ldlr�/� mice. Since the effect of LRP6R611C

allele on LDL binding and clearance is relatively small (Liu

et al., 2008; Ye et al., 2012) (Figures 2A and 2B), the major differ-

ences in plasma lipoproteins and lipids cannot be explained by

decreased clearance and must be, therefore, the result of

increased production of VLDL (see below).

Lrp6mut/mut Mice Develop Fatty Liver Disease
CHL is associated with nonalcoholic fatty liver disease (An-

gulo, 2002). Both 6-month-old WT and Lrp6mut/mut mice on HCD

for 3 months developed fatty liver, but the fat content in

Lrp6mut/mut mice was significantly higher (Figure 3A), which was

associated with gross enlargement of the liver and elevated

plasma levels of aspartate aminotransferase andbilirubin (Figures

S2A and S2D). Accordingly, the neutral lipid storage assayed by

Nile red staining was significantly greater in primary hepatocytes

of Lrp6mut/mut versus WT mice on HCD (Figure 3B). Total hepatic

TG and cholesterol ester (CE) contents were also significantly

higher in Lrp6mut/mut versusWTmice (Figures 3C and 3D). No dif-

ference in b-oxidation was seen between primary hepatocytes

fromWTandLrp6mut/mutmice (Figure 3E). Theexaminationof fatty

acid composition in the liver of Lrp6mut/mut mice showed greater

18:1n9 fattyacidcontent inLrp6mut/mutcompared toWTmice (Fig-

ure S3A). This findingwas consistentwith increasedexpressionof

SCD1, aswill be shown.Nodifferencewas found in fatty acid con-

tents of WAT between Lrp6mut/mut and WT mice (Figure S3B).

Increased TG/VLDL Synthesis and Secretion
in Lrp6mut/mut Mice Are Associated with Enhanced
Expression of Lipogenic Enzymes
We measured in vivo VLDL clearance in mice on chow diet by

intravenous injection of 125I-VLDL. The radioactivity remaining

in apoB, the marker of VLDL particles, at 2, 30, 60, 120, and
c.



Figure 2. Binding and Uptake of Lipoproteins and Fatty Aicds in Lrp6mut/mut and Ldlr–/–/Lrp6mut/mut Mice

(A) Binding and (B) uptake of 125I-LDL and (C) uptake of 125I-VLDL in Lrp6mut/mut and wild-type (WT) mice hepatocytes. (D) 14C-acetate, (E) 14C-palmitate, and (F)
14C-oleate uptake by the hepatocytes of Lrp6mut/mut compared toWTmice. (G) Greater 14C-acetate (H) palmitate and (I) oleate uptake by hepatocytes of Ldlr�/�/
Lrp6mut/mut compared to Ldlr�/� mice. *p < 0.05; **p < 0.01; ***p < 0.001. Error bars represent SD.
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240 min after injection was used to determine clearance of VLDL

in Lrp6mut/mut and WT mice. The experiment showed no differ-

ences in VLDL clearance between the two groups (Figure 4A).

Similarly, there was no change in VLDL uptake by primary hepa-

tocytes of Ldlr�/�/Lrp6mut/mut versus Ldlr�/�mice (Figure 2C). To

assess VLDL-apoB secretion, 6 hr fasted mice were injected i.p.
35S-methionine and P407, a polyoxyethylene copolymer that

blocks LPL-mediated lipolysis of VLDL in plasma. VLDL-apoB

secretion, assayed by in vivo measurement of the appearance

of newly secreted 35S-methionine-labeled apoB100 radioac-

tivity, was significantly greater in Lrp6mut/mut than in WT mice

(Figure 4B). We next examined the TG secretion in 8- to 10-

week-old Lrp6mut/mut andWTmice. Plasma TG levels rose imme-

diately after i.p. P407 injection in both WT and Lrp6mut/mut mice

but began to diverge after 1 hr and remained significantly higher

at 24 hr in Lrp6mut/mut than inWTmice (Figure 4C). The combined

apoB100 and TG results indicate significantly greater hepatic

secretion of VLDL particles in Lrp6mut/mut compared to WT

mice. To assess de novo lipogenesis (DNL) and TG synthesis,

primary hepatocytes from Lrp6mut/mut and WT mice were incu-

bated with 14C-acetate, 14C-plamitate, and 14C-oleate. TG was

isolated by thin-layer chromatography (TLC), and the 14C incor-

porations were measured. The results showed 7-fold increase in

incorporation of labeled acetate and greater than 60% increase

of labeled palmitate and oleate into TG in Lrp6mut/mut mice

compared to WT littermates (Figures 4D–4F). Similarly, there

was increased incorporation of all three labels into TG in primary
Cell M
hepatocytes of Ldlr�/�/Lrp6mut/mut mice compared to Ldlr�/�

mice (Figures 4G–4I). Taken together, these findings indicated

increased DNL and TG synthesis associated with increased

VLDL secretion in HCD-fed mice with the R611C allele.

To explore the mechanisms that underlie enhanced DNL, TG

synthesis, and VLDL secretion, mRNA and protein expression

levels of MTP, apoB, and the key hepatic enzymes of DNL were

compared between Lrp6mut/mut and WT mice on both chow diet

and HCD. Protein and mRNA levels of ACC1, FASN, ELOVL6,

SCD1, DGAT1, GPAT1, MTP, and apoB were all higher in

Lrp6mut/mut liver than in WT littermates (Figures 4J and 4K; data

shown for chow diet). These proteins are regulated by SREBP1

and LXRa (Basciano et al., 2009; Darimont et al., 2006; Wang

et al., 2004). Accordingly, the expression levels of the mature

form of SREBP1 and the level of LXRa in nuclear extracts were

considerably higher in Lrp6mut/mut liver compared to WT litter-

mates (Figure 4J). Similar changes were observed in mice with

Ldlr�/� background (Figure S4). In concordancewith this, 14C-ac-

etate, palmitate, and oleate uptake by Lrp6mut/mutmouse hepato-

cytes was significantly increased compared to WT mice (Figures

2D–2F). The same increase in uptake of these substrates was

seen inhepatocytes fromLdlr�/�/Lrp6mut/mutmice (Figures2G–2I).

Lrp6mut/mut Allele Triggers Hepatic Cholesterol
Biosynthesis
Ldlr�/�/Lrp6mut/mut mice had significantly higher plasma LDL-C

levels compared to Ldlr�/� mice. Since the effect of LRP6R611C
etabolism 19, 209–220, February 4, 2014 ª2014 Elsevier Inc. 211



Figure 3. Fatty Liver in Lrp6mut/mut Mice

(A) Oil red O staining in 6-month-old mice on HCD shows greater amounts of hepatic fat in Lrp6mut/mut compared to WT mice. Scale bars, 100 mm. (B) Similarly,

there is greater neutral lipid, assayed by Nile red staining, (C) and greater TG and (D) cholesterol ester (CE) content, measured by enzymatic assays in Lrp6mut/mut

liver compared toWTmice. (E) No difference in fatty acid oxidation, assayed by 14C-CO2, was found between Lrp6mut/mut andWTmice. *p < 0.05; **p < 0.01. WT,

wild-type; HCD, high-cholesterol diet; TG, triglycerides; CE, cholesterol ester. Error bars represent SD. See also Figures S2 and S3.
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on LDL clearance is very small (Figures 2A and 2B), the differ-

ence could be exclusively explained by enhanced production

of plasma LDL. Elevated LDL-C was from increased secretion

of large VLDL particles (Figure S5). We compared hepatic C

biosynthesis in primary hepatocytes of Ldlr�/�/Lrp6mut/mut

versus Ldlr�/� mice by measuring incorporation of 14C-acetate

and 14C-oleate into free C (FC) and C ester (CE). 14C incorpora-

tions into FC and CE were higher in mice Ldlr�/�/Lrp6mut/mut

versus Ldlr�/� mice (Figures 5A and 5B). These findings were

consistent with increased hepatic mRNA and protein expression

of HMGCR in Ldlr�/�/Lrp6mut/mut versus Ldlr�/�mice (Figures 5C

and 5D). In line with these results, the mature form of SREBP2,

the key regulatory enzyme of C biosynthesis, was significantly

higher in nuclear extracts from Ldlr�/�/Lrp6mut/mut compared to

Ldlr�/� mice (Figure 5D). SREBP1 and SREBP2 are retained in

the ER by Insig1 and Insig2 (Yabe et al., 2002; Yang et al.,

2002) and upon various conditions, including activation by AKT

(Du et al., 2006), are transported with SCAP to Golgi for proteo-

lytic cleavage (Hua et al., 1996) and subsequent translocation to

nucleus. In line with increased expression of mature form of

SREBPs and enhanced C biosynthesis, the expression levels

of SCAP1 were increased and those of Insig1 and Insig2 were

reduced in Lrp6mut/mut mice liver compared to WT littermates

(Figure 5D). Genome-wide pattern of TCF7L2 chromatin occu-

pancy has shown that TCF7L2 binds the 30 transcription start

site of Insig1 (Hatzis et al., 2008). Wnt is upstream of TCF7L2,

and its impaired activity in Lrp6mut/mut is consistent with the
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diminished expression of Insig1 mRNA and protein. Higher he-

patic expression levels of SCAP1 mRNA and protein in Ldlr�/�/
Lrp6mut/mut versus Ldlr�/� mice suggests inverse regulation of

SCAP1 by Wnt/LRP6. This effect of LRP6 has not been previ-

ously described, and its underlying mechanisms are still unclear.

Activation of mTOR and IGF1 Pathways in Lrp6mut/mut

Mice Liver
Plasma lipids levels in humans are influenced by nutrients. The

nutrient-sensing kinase mTOR is the core component of multi-

protein complexes mTORC1 and mTORC2, which regulate

metabolism and lipid homeostasis by phosphorylating several

ribosomal proteins, including S6, S6K, and 4E-BP1 (Laplante

and Sabatini, 2009). mTORC1 is activated by PI3K/AKT and

mTORC2 (Yecies et al., 2011), directly stimulates SREBP1 and

SREBP2, and induces the expression of various lipogenic en-

zymes (Dalle Pezze et al., 2012; Hagiwara et al., 2012; Yuan

et al., 2012). Phosphorylations of AKT (S473), S6K, S6, and 4E-

BP1 were all significantly greater in Lrp6mut/mut mice liver

compared to WT mice, both on chow diet (Figure 6A) and on

HCD (data not shown).

In the liver, the PI3K/AKT pathway is primarily activated by in-

sulin and IGF1 (Hagiwara et al., 2012). Lrp6mut/mut mice have

normal baseline insulin and glucose levels but have an impaired

response to intraperitoneal insulin administration (IPITT) (Fig-

ure 6B). Consistent with the plasma findings, dissection of insulin

signaling revealed reduced tyrosine phosphorylation of IRS1 in
c.



Figure 4. TG Synthesis and apoB Secretion

(A) Hepatic VLDL clearance was identical in Lrp6mut/mut and WT mice. (B) apoB secretion and (C) TG synthesis were higher in Lrp6mut/mut compared to WT mice.

Incorporation of 14C-acetate, 14C-palmitate, and 14C-oleate into TG by TLC were greater in (D–F) Lrp6mut/mut and (G–I) Ldlr�/�/Lrp6mut/mut mice hepatocytes

compared to WT and Ldlr�/� mice, respectively. (J) Protein and (K) mRNA expression of the hepatic enzymes of DNL, lipid synthesis and VLDL secretion and

nuclear LXRa and SREBP1were significantly higher in Lrp6mut/mut compared toWTmice. The relative intensities by densitometry are shown. *p < 0.05; **p < 0.01;

***p < 0.001. WT, wild-type; TG, triglycerides; VLDL, very low density lipoprotein; DNL, de novo lipogenesis; TLC, thin layer chromatography. Error bars represent

SD. See also Figure S4.
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Lrp6mut/mut mice liver compared to WT mice. However, AKT

phosphorylation (S473) in response to insulin was paradoxically

higher in Lrp6mut/mut compared to WT mice (same figure). This
Cell M
finding led to examination of IGF1/AKT pathway. Hepatic

IGF1R protein and mRNA and plasma IGF1 protein were all ex-

pressed at significantly greater levels in Lrp6mut/mut compared
etabolism 19, 209–220, February 4, 2014 ª2014 Elsevier Inc. 213



Figure 5. Cholesterol Biosynthesis in Ldlr–/– and Ldlr–/–/Lrp6mut/mut Mice

Incorporation of (A) 14C-acetate into FC and (B) 14C-oleate into CE by TLC were much greater in primary hepatocytes from Ldlr�/�/Lrp6mut/mut compared to

Ldlr�/� mice. (C) mRNA and (D) protein expression levels of the key regulatory enzymes/proteins of cholesterol biosynthesis were significantly higher in Ldlr�/�/
Lrp6mut/mut compared to Ldlr�/� mice. The relative intensities by densitometry are shown. *p < 0.05; **p < 0.01; ***p < 0.001. FC, free cholesterol; CE, cholesterol

ester; TLC, thin-layer chromatography. Error bars represent SD. See also Figure S5.
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to WT mouse (Figures 6C–6E). IRS-1-independent AKT activa-

tion has been previously described in IRS-1-deficient mice (Araki

et al., 1994). This finding suggests that impaired Wnt signaling

(assayed by LRP6 and b-catenin phosphorylation, Figure 6C) en-

hances AKT phosphorylation despite hepatic insulin resistance,

primarily through increased IGF1/IGF1R expression.

We have previously shown that IGF1R is ubiquitinated by

LRP6 (Singh et al., 2013a). Impaired ubiquitination and increased

sumoylation of IGF1R by LRP6R611C result in increased IGF1R

expression, which contributes to mTOR activation in response

to insulin. LRP6 regulation of IGF1 was an important finding

that required further exploration. Canonical Wnt upregulates

Sp5, which suppresses the transcriptional activities of transcrip-

tion factor Sp1 (Fujimura et al., 2007). IGF1 is transcriptionally

regulated by Sp1 (Li et al., 2003; Zhu et al., 2000), hence its

expression is likely diminished by Wnts activation. In contrast,

the anticipation is that the LRP6R611Cmutation results in reduced

Sp5 expression and enhanced Sp1-dependent transcription of

IGF1. As predicted, the expression levels of Sp5 were markedly

reduced in Lrp6mut/mut mice liver compared to WT mice (Figures

6C and 6D). The expression levels of Sp1 protein and mRNA

were significantly higher in Lrp6mut/mut mice hepatocytes versus

WT mice, but the relatively greater increase in protein level

implied both transcriptional and posttranscriptional regulation

by Wnt/LRP6 (same figure). We explored this possibility in

HepG2 cells by sh-RNA-mediated knockdown of LRP6. LRP6

silencing led to reduced Sp5 and increased Sp1 protein (Fig-

ure 6F) and mRNA (Figure 6G) expressions, associated with
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increased expressions levels of lipogenic enzymes, SREBP1

and LXRa. Furthermore, lentiviral knockdown of Sp1 in primary

mice hepatocytes resulted in significant decrease in protein

levels of IGF1 and phosphorylation of AKT (AKT-pT308 and

AKT-pS473) (Figure 6H). Consistent with these findings, treat-

ment of primary mouse hepatocytes with the IGF1R inhibitor

PPP abrogated AKT-dependent activation of mTOR pathway

and reduced the expression of lipogenic enzymes (Figures S6A

and S6B). These findings imply that the LRP6R611C loss-of-func-

tion mutation increases hepatic IGF1 signaling and triggers the

expression of lipogenic enzymes via the AKT/mTOR-dependent

pathways.

Reduction of the Hepatic Lipogenic Enzymes with
Rapamycin and Wnt3a Activation
The expression and activities of enzymes regulating DNL, TG

synthesis, and C synthesis are dramatically reduced when pri-

mary mouse hepatocytes are treated either with the mTOR

antagonist rapamycin (Figure 7A) or with recombinant mouse

Wnt3a (rmWnt3a) (Figure 7B). Treatment with rmWnt3a for

72 hr was also associated with normalization of hepatocyte

neutral lipid (Figure 7B). Given the positive response to in vitro

rmWnt3a, we administered systemic rmWnt3a to Lrp6mut/mut

mice (i.p. 25 mg/kg) every other day for 3 weeks. This resulted

in the reduction of plasma TG (Figure 7C), total C (Figure 7D),

and LDL-C (Figure 7E) in both WT and Lrp6mut/mut mice. These

changes were associated with significantly reduced expression

and/or activities of Sp1, IGF1, mTOR, ACC1, FASN, SCD1,
c.



Figure 6. Activities of mTORC1, mTORC2, and IGF1 in Lrp6mut/mut Mice

(A) Western blot analysis demonstrating the greater activities of hepatic AKT/mTOR pathways in Lrp6mut/mut compared to WTmice. The ratios of phosphorylated

to total proteins by densitometry are shown. (B) Intraperitoneal insulin tolerance test (IPITT) and hepatic insulin signaling pathway show impaired insulin signaling

in Lrp6mut/mut compared to WT mice. The ratios of phosphorylated to total proteins by densitometry are shown. (C) Protein and (D) mRNA expression of the

hepatic IGF1 and IGF1R, the transcription factors Sp1 and Sp5, and (E) plasma IGF1 were are higher in Lrp6mut/mut compared to WT mice. (F) Protein and

(G) mRNA expression of transcription factors Sp5 and Sp1 and key enzymes of DNL are significantly altered after LRP6 silencing by shRNA in HepG2 cells.

(H) Protein expression levels of Sp1, IGF1, and phosphorylation of AKT (pT308 and pS473) were significantly reduced by Sp1 knockdown in primary hepatocytes

of WT and Lrp6mut/mut mice. *p < 0.05; **p < 0.01; ***p < 0.001. WT, wild-type; DNL, de novo lipogenesis. Error bars represent SD. See also Figure S6.
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HMGCR, apoB, and MTP and reduced expression of the mature

forms of SREBP1 and SREBP2 (Figure 7F). To examine whether

rmWnt3a rescued the phenotype by signaling through the

mutant LRP6, we stimulated primary hepatocytes of the mutant

and WT mice with different doses of rmWnt3a. There was a shift

to the right in the dose response to rmWnt3a in the mutant hepa-

tocytes. However, higher doses of Wnt3a resulted in levels of

phosphorylation of the mutant LRP6 that were similar to levels

observed in WT receptor at lower doses (Figure S7). This in-

crease in LRP6 phosphorylation was associated with significant

reduction in expression of Sp1, IGF1, SREBP1, and SREBP2

(same figure). Taken together, these rescue studies implicate
Cell M
Wnt in regulation of mTOR/IGF1 pathways, DNL, lipid synthesis,

and secretion of apoB/VLDL.

DISCUSSION

Altered Wnt signaling is an emerging risk factor for dyslipidemia

by mechanisms that are not understood (Goliasch et al., 2012;

Huertas-Vazquez et al., 2008; Perez-Martinez et al., 2012). We

previously showed thatWnt coreceptor LRP6 regulates vesicular

LDL uptake, a finding that was confirmed by subsequent studies

(Bartz et al., 2009). Primary skin fibroblasts of LRP6R611C muta-

tion carriers exhibited 20% lower cellular LDL uptake compared
etabolism 19, 209–220, February 4, 2014 ª2014 Elsevier Inc. 215



Figure 7. Normalization of Hepatic mTOR by Rapamycin and Reduction of Plasma Lipids by rmWnt3a in Lrp6mut/mut Mice

(A) mTOR inhibitor rapamycin reduced the activation of mTORC1 and the expression of enzymes of DNL in Lrp6mut/mut versus WT mice. (B) Normalization of

hepatic neutral lipid, enzymes of DNL and C biosynthesis, and their regulators SREBP1 and SREBP2 by rmWnt3a in Lrp6mut/mut hepatocytes. (C) Normalization of

plasma TG (D) total C (E) LDL-C and (F) enzymes of DNL and C biosynthesis after administration of i.p. rmWnt3a to Lrp6mut/mut mice. (G) The schematic of Wnt/

LRP6 regulation of IGF1, IGF1R, mTOR pathways, DNL, TG synthesis, and C biosynthesis. *p < 0.05; **p < 0.01; ***p < 0.001. TG, triglycerides; C, cholesterol; rm,

recombinant mouse; WT, wild-type; DNL, de novo lipogenesis. Error bars represent SD. See also Figure S7.
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to fibroblasts from their unaffected relatives (Liu et al., 2008; Ye

et al., 2012). The severity of hypercholesterolemia in LRP6R611C

mutation carriers could not, however, be explained by the

modest degree reduction in LDL clearance; this prompted us

to generate transgenic mice with LRP6R611C mutation to

examine its effect on hepatic lipid metabolism and VLDL synthe-

sis and clearance. Here we show the important role of Wnt/LRP6

signaling in DNL, lipid synthesis, and apoB/VLDL secretion.

Lrp6mut/mut mice exhibited increased DNL, increased hepatic

TG and C synthesis, and increased secretion of both VLDL

apoB and TG compared to WT littermates. Higher hepatic DNL

was associated with development of fatty liver in Lrp6mut/mut

mice, a prominent feature of the metabolic syndrome (Angulo,

2002). These developments were coupled with increases in

levels of mRNA and protein of enzymes of DNL, TG, and C syn-

thesis, and their regulators SREBP1 and SREBP2, but not USF1,

the transcription factor associated with FCHL (data not shown).

AKT triggers SREBP1 and SREBP2 activation (Du et al., 2006)

and suppresses Insig2a gene expression (Yecies et al., 2011),

and there was increased hepatic AKT phosphorylation (S473),

associated with enhanced activities of mTORC2 in Lrp6mut/mut

mouse liver compared to WT mice. Further investigation re-

vealed that increased hepatic IGF1 and IGF1R expression and

action induce AKT/mTOR activation in Lrp6mut/mut mice. We

had previously shown that LRP6 triggers IGF1R ubiquitination,

while LRP6R611C allele promotes its stabilization (Singh et al.,

2013a). The effect of LRP6R611C allele on IGF1 transcription

was an important finding that we linked to impaired Wnt

signaling. Earlier studies have shown that Sp1 is a transcriptional

activator of IGF1 (Kaytor et al., 2001; Zhu et al., 2000). In this

study we show that Lrp6mut/mut mouse hepatocytes have signif-

icantly greater Sp1 expressions compared to WT mice. shRNA-

mediated silencing of LRP6 in primary hepatocytes increased

Sp1 expression, further confirming the critical role of Wnt/

LRP6 in regulation of this developmentally critical transcription

factor. Taken together, these findings suggest that Wnt signaling

tightly controls IGF1 expression and that its impaired function re-

sults in increased IGF1 and IGF1R expressions, leading to

enhancedmTORC2/AKT activation as summarized in Figure 7G.

Consistent with earlier findings (Yecies et al., 2011), enhanced

mTORC2-dependent AKT phosphorylation (S473) was associ-

ated with increased activation of mTORC1. The significance of

mTORC1 pathway in regulation of DNL in Lrp6mut/mut mice was

demonstrated by ex vivo treatment of Lrp6mut/mut liver cells

with rapamycin, which significantly reduced the activity of

mTORC1 and the expression of enzymes of DNL. As predicted,

no change in activity of mTORC2, assessed by AKT S473 phos-

phorylation, was observed.

Finally, our most striking finding was the normalization of

plasma LDL and TG by i.p. administration of rmWnt3a to

Lrp6mut/mut mice, which were associated with reduced expres-

sion of mature forms of SREBP1 and SREBP2 and enzymes of

DNL, TG, and C biosynthesis. In addition, Wnt3a treatment of

Lrp6mut/mut mouse hepatocytes resulted in significant reduction

of hepatic neutral lipid. These findings underscore the important

role of Wnt signaling in homeostasis of plasma lipids and hepatic

fat content and suggest that this pathway is a unique target

for development of novel therapeutics against hyperlipidemia

and FLD.
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The rescue of hyperlipidemia trait with Wnt3a in a mouse with

mutated LRP6 and impaired Wnt signaling is likely caused by

improved interaction between ligand and its coreceptor. Study

of crystal structure of LRP6 had suggested that R611C mutation

impairs the salt bridge between R611 and E477 and weakens its

ligand binding ability (Cheng et al., 2011). Earlier studies by our

group (Mani et al., 2007) and others have shown that impaired

Wnt signaling caused by R611C mutation can be rescued by

higher doses of Wnt3a or by application of recombinant bigly-

can, an extracellular matrix protein that facilitates formation of

a complex between Wnt3a and LRP6 (Berendsen et al., 2011).

In the current study we show a shift to right in the dose response

to rmWnt3a in mutant hepatocytes. Strikingly, higher-dose

rmWnt3a normalized phosphorylation of the mutant LRP6 and

was associated with significant reduction in expression of Sp1,

IGF1, SREBP1, and SREBP2.

In summary, our study establishes a causal link between LRP6

mutation/altered Wnt signaling and combined hyperlipidemia

and elucidates the mechanisms by which Wnt signaling regu-

lates lipogenesis, lipid synthesis, and apoB secretion. Rescue

of the hyperlipidemia trait by Wnt3a in mice identifies the Wnt

signaling pathway as a potential target for development of novel

therapeutics against combined hyperlipidemia.

EXPERIMENTAL PROCEDURES

Generation of LRP6R611C Mice

Mice with LRP6R611C (Lrp6mut/+) mutation on B57BL/6 background were

generated by manipulating mouse endogenous LRP6 through homologous

recombination. Briefly, constructs containing mouse homologous DNA with

two nucleotide mutations at the positions 100443-5, which results in R593C

(mouse equivalent of human R611C mutation) substitution were generated

by the Vegalab LLC (Wilmington, DE). C57BL/6 ESCs were injected with the

constructs and targeted into the Balb/c blasts to generate chimeras. Chimeras

were crossed with B6mice, and genotype-positivemice were backcrossed for

eight generations prior to experimentation. Three-month-old heterozygous

Lrp6mut/+ mice had modest elevation of plasma TG. Lrp6mut/+ mice were inter-

crossed to obtain homozygous offspring in the expectedMendelian ratios. The

viable offspring were genotyped by PCR (for primers, see Table S1). Homozy-

gote (Lrp6mut/mut) mice showed normal reproductive activities and had normal

size and growth. Southern blot analysis of a limited number of mice confirmed

the presence of LRP6R611C allele only (data not shown). The mutant LRP6

protein was expressed in most tissues, including liver, skeletal muscle, and

adipose tissue at normal levels. Homozygote Lrp6mut/mut were crossbred

onto Ldlr�/� mice. The F1 progenies (Ldlr�/+/Lrp6mut/+) were backcrossed

with Ldlr�/� mice to obtain offspring that were heterozygous for the R611C

allele and LDLR deficient (Ldlr�/�/Lrp6mut/+). Subsequent intercross of these

mice resulted in offspring that were homozygote for R611C allele and were

LDLR deficient in the expected Mendelian ratios.

Mice were fed ad libitum and at age 6–8 weeks were fed with either a normal

chow diet (9% kcal from fat) or a HCD for 3 months (40% kcal from fat, 1.25%

cholesterol, 0.5% cholic acid; Research Diet, D12109). Experiments were car-

ried out after overnight fasting. Each experiment was carried out in six to seven

mice. After mice were sacrificed, tissues were snap frozen and plasma was

separated, followed by storage at �80�C for further analysis. All procedures

were approved by the Institutional Animal Care and Use Committee at Yale

University.

Antibodies

Antibodies to ACC1-pS79, ACC1, FASN, SCD1, tubulin, TBP, GAPDH, AKT-

pS473, AKT, GSK3b-pS21/9, GSK3b, TSC2-pT1462, TSC2, mTOR-pS2448,

mTOR, S6K-pT389, S6K, S6-pS240/244, S6, 4E-BP1-pS65, 4E-BP1, b-actin,

LRP6-pS1490, LRP6, TCF7L2, b-catenin, b-catenin-pS33/37/T41, IGF1R,

AKT-pT308, and Lamin B were purchased from Cell Signaling. Antibodies to
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apoB, SCAP, Insig1, Insig2, Sp5, and Sp1 were purchased from Santa Cruz

Biotech. Antibodies to MTP, SREBP1, SREBP2, and IRS1 were purchased

from BD Biosciences. Antibodies to ACAT2 and IGF1 were purchased from

Novus. Antibodies to ELOVL6 (Thermo Scientific), DGAT1 (Bio Vision),

GPAT1 (GeneTex), LXRa (Abcam), HMGCR (Upstate), and IRS1-pY612 (Invi-

trogen) were used for western blotting.

Primary Hepatocyte Isolations

Primary hepatocytes were isolated by perfusing portal vein of 3-month-oldWT

and Lrp6mut/mutmalemice and 6-month-old Ldlr�/�miceand Ldlr�/�/Lrp6mut/mut

male mice on indicated diets (n = 6) with collagenase (type II collagenase,

GIBCO). Isolated hepatocytes were Percoll purified and cultured on

collagen-coated tissue culture dishes in William’s medium supplemented

with primary hepatocytes maintenance supplements (GIBCO) and kept in a

humidified cell culture incubator at 37�C and 5% CO2.

Generation of Stable LRP6 or Sp1 Knockdown Cells

For LRP6 knockdown in HepG2 cells, cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% heat-inactivated fetal

bovine plasma and 13 penicillin-streptomycin at 37�C in a humidified

O2/CO2 (19:1) atmosphere. Lentivirus particles containing LRP6 targeting

shRNA (50-CGGCGAATTGAAAGCAGTGAT-30 ) were purchased (Santa Cruz

Biotech) and transduced into HepG2 cells. Transduced cells were selected

using 1 mg/mL puromycin.

For Sp1 knockdown, isolated primary hepatocytes were cultured on

collagen-coated tissue culture dishes in William’s medium supplemented

with primary hepatocytes maintenance supplements (GIBCO). Cells were

infected with Sp1 shRNA (m) lentiviral Particles (sc-29488-V, Santa Cruz

Biotech) using polybrene to increase the efficiency of infection.

Plasma and Liver Lipid Determination

Blood from fasted animals was obtained, and plasma was separated (1,500 g

for 15 min). Plasma TG, total C, and LDL C were analyzed at the Mouse Meta-

bolic Phenotyping Center at Yale by COBAS Mira Plus (Roche). Liver tissues

were homogenized in 5% NP-40 in water slowly heated to 95�C for 5 min.

Collected supernatants after centrifugation (14,000 g for 10min) were assayed

for total hepatic C and TG content using colorimetric enzymatic kit (Wako).

Lipoprotein Profiling by Fast Protein Liquid Chromatography

Plasma lipoprotein profiling was determined by fast protein liquid chromatog-

raphy (FPLC). In brief, plasma from ten mice from each genetic background

was pooled for FPLC analysis. A total of 200 ml plasma was loaded and run

on the system followed by fractionation. Cholesterol levels of the fractions con-

taining the plasma lipoproteins were analyzed by standard enzymatic assays

using lipoprotein diagnostic kits (Wako).

Measurement of Hepatic Lipogenesis

Isolatedprimary hepatocytes ofWT, Lrp6mut/mut, Ldlr�/�, and Ldlr�/�/Lrp6mut/mut

micewere serum starved overnight, followed by insulin stimulation (100 nM) for

4 hr. Insulin stimulated primary hepatocytes were incubated with 25.0 nmol of

[1,2-14C]-acetate (PerkinElmer), 12.5 nmol [1-14C]-plamitate (PerkinElmer),

and 12.5 nmol [1-14C]-oleate (PerkinElmer) for 2 hr. Cells were washed three

times with PBS before harvest in Cellstripper (Cellgro). Total lipid from cells

was prepared by the Bligh and Dyer method (Bligh and Dyer, 1959). Concen-

trated neutral lipids were dissolved in chloroform: methanol (2:1, v/v) and lipid

fractions were separated by TLC (Silica 60 F254, Merck) using the organic

mobile solvents hexane/diethylether/acetic acid (70:30:1 v/v). Lipids dots

were visualized under UV light, and radioactivity was determined using a scin-

tillation counter and normalized to protein concentrations.

Clearance of 125I-VLDL Particles

The rate of VLDL particle clearance from plasma was determined using
125I-labeled VLDL (Biomedical Technologies, Inc.). In brief, 3-month-old

chow-diet-fed WT and Lrp6mut/mut mice were fasted for 4 hr at the beginning

of light cycle to remove chylomicron. Mice were injected with 200 ml i.v. bolus

of 125I-VLDL (15 mg in 10 mM TrisCl [pH 7.4], 150 mM NaCl, and 0.2% [w/v]

BSA). Blood collection was performed at 2 (baseline), 30, 60, 120, and

240 min, and plasma was separated immediately. To separate VLDL fraction
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from plasma, plasma in 750 ml KBr solution (d = 1.006 g/mL) was placed in

an ultracentrifuge (Thermo Scientific, NC) and spun at 90,000 rpm for 3 hr at

4�C. The radioactivity of 125I-labeled VLDL in plasma at each time point was

determined by gamma counter after isopropanol precipitation of apoB. The

remaining amount of 125I-VLDL apoB was calculated as a percentage of the

initial concentration 2 min after injection.

Measurement of apoB Secretion In Vivo

The accumulation of 35S-methionine-labeled apoB in plasma was used to

determine VLDL production rate. Briefly, 3-month-old chow-diet-fed WT and

Lrp6mut/mut mice were fasted for 6 hr. The mice were anesthetized with 30%

isoflurane in propylene glycol, followed by i.p. injection of 200 ml bolus contain-

ing 200 mCi 35S-methionine and 1,000 mg/kg i.p. Poloxamer-407 (P407,

BASF), an inhibitor of lipoprotein lipase in sterile PBS. Blood samples were

collected at 30, 60, and 120 min after injection. Total protein synthesis after in-

jection was calculated by measuring radioactivity of TCA precipitable protein

in plasma. Adjusted volumes of plasma in sample buffer were applied to

SDS-PAGE gel and visualized by Coomassie blue staining (SimplyBlue,

Invitrogen) and scanned for densitometry.

TG Synthesis Using P407 Injection

To measure hepatic TG production, mice were injected with P407 at

1,000 mg/kg BW after 4 hr fasting. Plasma samples were collected at 0, 1,

2, 6, and 24 hr following injection. TG in plasma at each time point was

measured using an enzymatic kit (Wako). The TG production rates were

calculated from the differences in plasma TG levels over a given interval

following detergent injection.

Cholesterol and Cholesterol Ester Biosynthesis In Vitro

The cholesterol synthesis was determined by measuring the incorporation of

[1,2-14C]-acetate into cellular sterol. Isolated primary hepatocytes of Ldlr�/�

and Ldlr�/�/Lrp6mut/mut mice were incubated with 25.0 nmol of [1,2-14C]-

acetate for 72 hr at 37�C. [1,2-3H]-cholesterol was added to the aliquots as

an internal standard (0.04 mCi/sample), and the solutions were saponified us-

ing KOH in 100% ethanol (60�C for 1 hr). Concentrated lipid aliquot resolved in

small volume of dichlromethane was applied to TLC (Silica gel 60, EMD), using

petroleum ether/diethyl ether/acetic acid (70:30:1). Cholesterol dots were

visualized with 1% ferric (III) chloride in 50% aqueous ethanol and were

scraped off for radioactivity determination.

Cholesterol ester synthesis was determined by incubating primary hepato-

cytes with [1-14C]-oleate for 4 hr, using same steps as described above.

Neutral lipid collection and TLC separation were performed as described

above. Cholesterol ester fractions were scraped off, and the radioactivity

was determined. Each condition was assayed in quadruples and normalized

to internal standard and protein concentrations in the original lysates.

In Vitro Assessment of b-Oxidation

The b-oxidation was assessed by trapping radioactive CO2 as described

elsewhere (Krieg et al., 2004). Briefly, isolated primary hepatocytes from

3-month-old WT and Lrp6mut/mut mice were incubated in vitro with 0.5 mCi

[1-14C]-palmitic acid in William’s medium for 2 hr. Culture flasks were tightly

attached to customized CO2 capture devices (Adams and Chittenden Scienti-

fic Glass). At the end of the 2 hr incubation period, reactionswere rapidly termi-

nated by addition of 5 N H2SO4, and cells were incubated for additional 30 min

to complete CO2 effervescence from the culture medium. The radioactivity of

the filter paper was determined.

Nile Red Staining

Isolated primary hepatocytes were cultured on collagen-coated glass cover-

slips. Cells were fixed with 4% paraformaldehyde in PBS and stained with

0.1 mg/mL Nile red for 30 min. Specimens were examined by Nikon Ti-E

Eclipse inverted microscope using excitation emission filters at 488 and

561 nm, respectively. Images were acquired at same setting of laser output,

gain, and offset for three independent experiment, and 20 cells were

randomly selected and analyzed from each coverslip. Similar experiment

was carried out after primary hepatocytes were treated with rmWnt3a for

72 hr.
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Fatty Acids Composition by Gas Chromatography

Lipid was extracted from liver tissues by the Folch method (Folch et al., 1957),

and fatty acids were saponified by KOH and methylated with boron fluoride-

methanol (BF3) in methanol (Morrison and Smith, 1964). Fatty acid methyl es-

ters were analyzed by gas chromatography (Varian model CP-3800 equipped

with a CP-8200 autosampler, Varian Inc.). Separation of fatty acid methyl

esters was accomplished on a fused silica capillary column (100 m 9

0.25 mm ID) (model CP-7420, Varian Inc.). An authentic standard (GLC

68-D, Nu-Chek Prep) was used to identify each peak.

Immunoblotting

Cytoplasmic and nuclear proteins were prepared using NE-PER nuclear and

cytoplasmic extraction kit (Thermo Scientific, #78833). Cell lysates were

processed and applied to SDS-PAGE and were immunoblotted using target

primary antibodies followed by appropriate HRP-conjugated secondary anti-

bodies. Enhanced chemiluminescence reagents were applied to develop the

blots, and blots were quantified with Bio-Rad Image Lab.

Quantitative RT-PCR

Total RNA was isolated from cultured cells using RNeasy Plus Mini Kit

(QIAGEN), and complementary DNA was synthesized from 5 mg of total RNA

primed with random hexamer and using Superscripts II reverse transcriptase.

Real-time PCR amplification was performed using specific primers (Tables S2

and S3) and iQ SYBRGreen Supermix (Bio-Rad). Reactions were performed in

quadruple with an 18S internal control. Relative quantification of mRNA levels

was expressed as fold increase relative to the control.

Intraperitoneal Insulin Tolerance Tests

Mice were fasted for 6 hr and i.p. injected with 0.75 U/kg insulin (Sigma). Blood

glucose and insulin levels were monitored from tail veins at 0, 15, 30, 45, 60,

and 120 min using a glucometer (OneTouch Ultra2, LifeScan). For the insulin

signaling experiment, mice were fasted for 6 hr and i.p. injected with

0.75 U/kg insulin. After 20 min, mice were sacrificed and tissues were snap

frozen for further analysis of immunoblotting.

Analysis of Liver Function and Histology

Six-month-old WT and Lrp6mut/mut mice fed HCD for 3 months were sacrificed

for microscopic analysis of lipid content and in vivo function test. Plasma was

prepared for biochemical analysis. Aspartate aminotransferase, alanine

aminotransferase, total bilirubin, albumin, and total protein were measured

by 7600-020 clinical analyzer (Hitachi). Liver tissues were embedded in

Tissue-Tek OCT cryostat molds (Leica) and frozen at �80�C. These tissues

were used to generate 10-mm-thick sections in a cryostat. Tissue sections

were stained in 0.5% oil red O and counterstained with Mayer’s hematoxylin

or with hematoxylin and eosin for gross histological examinations.

Rapamycin, IGF1, and Wnta3a Treatment In Vitro

Isolated primary hepatocytes were cultured with 100 nM rapamycin for 12 hr

and stimulated with 1 mg/mL recombinant mouse IGF1 for 15 min. Whole-

cell lysates were analyzed by immunoblotting for the measurement of total

and phosphorylated proteins. For Wnt3a treatment, isolated primary hepato-

cytes were treated with 100 ng/mL recombinant mouse Wnt3a (rmWnt3a,

R&D Systems) for 12 hr, and the lysates were immunoblotted to examine pro-

tein and phosphoprotein expressions.

Intraperitoneal rmWnt3a Administration

Mice were injected with i.p. with 25 mg/kg rmWnt3a every other day for

3 weeks. Mice were sacrificed, and plasma was collected for lipid profiling

as described. Liver tissues were harvested for immunoblotting.

In Vitro Measurement of Fatty Acids Uptake

Isolatedprimary hepatocytes ofWT, Lrp6mut/mut, Ldlr�/�, and Ldlr�/�/Lrp6mut/mut

micewere serum starved overnight, followed by insulin stimulation (100 nM) for

4 hr. Insulin-stimulated primary hepatocytes were incubated with 25.0 nmol of

[1,2-14C]-acetate, 12.5 nmol [1-14C]-palmitate, and 12.5 nmol [1-14C]-oleate

for 30 min. Uptake was terminated using ice-cold PBS supplemented with

2%BSA.Whole lysate was subjected to radioactivity counting. Each condition
Cell M
was assayed in quadruples, and protein concentration of parallel cultures was

measured using Bradford assay.

In Vitro Uptake of LDL and VLDL

Isolated primary hepatocytes of WT and Lrp6mut/mut mice were serum starved

overnight, followed by treatment with 125I-LDL or 125I-VLDL (Biomedical Tech-

nologies, Inc.). For binding assays, cells were prechilled at 4�C followed by

adding 10 mg/mL 125I-LDL in DMEM supplemented with lipoprotein-deficient

serum for 2 hr at 4�C. Cells were incubated with 2 ml of sodium dextran sulfate

(4 mg/mL, Sigma). An aliquot was placed in gamma counter to determine the

total amount of 125I-LDL bound to the cell surface. Cells were harvested, and

the lysate was used to measure protein concentration. For LDL or VLDL

uptake, cells were incubated in lipoprotein-deficient serum with 10 mg/mL
125I-LDL or 125I-VLDL for 2 hr at 37�C. Harvested cell lysate was applied for

radioactivity determination as described previously.

VLDL1 and VLDL2 Separation

Large VLDL (VLDL1; S(f) = 60–400) and small VLDL (VLDL2; S(f) = 20–60) were

separated by ultracentrifugation density gradient technique after Lindgren,

Jensen, and Hatch as described previously (Al-Shayji et al., 2007). TG concen-

tration was then measured in each component with colorimetric enzymatic kit

(Wako).

IGF1 and IGF1R Inhibitor

Primary mice hepatocytes were cultured on collagen-coated tissue culture

dishes in William’s medium supplemented with primary hepatocytes mainte-

nance supplements (GIBCO). Cells were serum starved overnight before the

addition of 1 mM picropodophylin (PPP, Calbiochem) for 24 hr or/and

100 nM recombinant human IGF1 (R&D Systems) for 15 min or 24 hr. Whole-

cell lysates were analyzed by immunoblotting as described previously.

Statistical Analysis

All mice studies included seven mice in each group and were repeated at least

twice. All in vitro studies were carried out in quadruple. Comparisons between

two groups were performed using Student’s t test. For multiple comparisons,

LSD test in conjunction with ANOVAwas carried out. Data are mean ± SD, and

statistical significance is defined as p < 0.05.
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