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Abstract
Recently, Al-Fhaid and Mohiuddine (Adv. Differ. Equ. 2013:203, 2013) and Mohiuddine
and Alghamdi (Adv. Differ. 2012:141, 2012) got some results in intuitionistic fuzzy
normed spaces using ideas of intuitionistic fuzzy sets due to Atanassov and fuzzy
normed spaces due to Saadati and Vaezpour. In this note, we show that the
mentioned results follow directly from well-known theorems in fuzzy normed spaces.
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1 Introduction
Intuitionistic fuzzy normed spaces were investigated by Saadati and Park []. They intro-
duced and studied intuitionistic fuzzy normed spaces based both on the idea of intuition-
istic fuzzy sets due to Atanassov [] and the concept of fuzzy normed spaces given by
Saadati and Vaezpour in []. Next Deschrijver et al. [] modified the concept of intuition-
istic fuzzy normed spaces and introduced the notation ofL-fuzzy normed space. Recently,
Al-Fhaid and Mohiuddine [] and Mohiuddine and Alghamdi [] got some results in in-
tuitionistic fuzzy normed spaces. In this note we prove that the topology τ(μ,ν) generated
by an intuitionistic fuzzy normed space (X,μ,ν,∗,�) coincides with the topology τμ gen-
erated by the generalized fuzzy normed space (X,μ,∗), and thus, the results obtained in
[] and [] are immediate consequences of the corresponding results for fuzzy normed
spaces.

2 Preliminaries
A binary operation ∗ : [, ] × [, ] → [, ] is a continuous t-norm if it satisfies the fol-
lowing conditions:
(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) a ∗  = a for all a ∈ [, ],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b≤ d, for each a,b, c,d ∈ [, ].
Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b =min(a,b).
A binary operation � : [, ] × [, ] → [, ] is a continuous t-conorm if it satisfies the

following conditions:
(a) � is associative and commutative,
(b) � is continuous,
(c) a �  = a for all a ∈ [, ],
(d) a � b ≤ c � d whenever a ≤ c and b≤ d, for each a,b, c,d ∈ [, ].
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Two typical examples of a continuous t-conorm are a � b = min(a + b, ) and a � b =
max(a,b).
In , Saadati and Vaezpour [] introduced the concept of fuzzy normed spaces.

Definition . Let X be a real vector space. A function μ : X ×R → [, ] is called a fuzzy
norm on X if for all x, y ∈ X and all s, t ∈R,

(μ) μ(x, t) =  for t ≤ ;
(μ) x =  if and only if μ(x, t) =  for all t > ;
(μ) μ(cx, t) = μ(x, t

|c| ) if c �= ;
(μ) μ(x + y, s + t)≥ μ(x, s) ∗ μ(y, t);
(μ) μ(x, ·) is a non-decreasing function of R and limt→∞ μ(x, t) = ;
(μ) for x �= , μ(x, ·) is continuous on R.

For example, if a ∗ b = ab for a,b ∈ [, ], (X,‖ · ‖) is normed space and

μ(x, t) =
t

t + ‖x‖

for all x, y, z ∈ X and t > . Then μ is a (standard) fuzzy normed and (X,μ, ·) is a fuzzy
normed space.
Saadati and Vaezpour showed in [] that every fuzzy norm (μ,∗) on X generates a

first countable topology τμ on X which has as a base the family of open sets of the form
{Bμ(x, r, t) : x ∈ X, r ∈ (, ), t > } where Bμ(x, r, t) = {y ∈ X : μ(x– y, t) >  – r} for all x ∈ X,
r ∈ (, ) and t > .

3 Intuitionistic fuzzy normed spaces
Saadati and Park [] defined the notion of intuitionistic fuzzy normed spaces with the help
of continuous t-norms and continuous t-conorms as a generalization of fuzzy normed
space due to Saadati and Vaezpour [].

Definition . The -tuple (X,μ,ν,∗,�) is said to be an intuitionistic fuzzy normed space
if X is a vector space, ∗ is a continuous t-norm, � is a continuous t-conorm, and μ, ν are
fuzzy sets on X × (,∞) satisfying the following conditions for every x, y ∈ X and t, s > :

(a) μ(x, t) + ν(x, t)≤ ,
(b) μ(x, t) > ,
(c) μ(x, t) =  if and only if x = ,
(d) μ(αx, t) = μ(x, t

|α| ) for each α �= ,
(e) μ(x, t) ∗ μ(y, s)≤ μ(x + y, t + s),
(f ) μ(x, ·) : (,∞)→ [, ] is continuous,
(g) limt→∞ μ(x, t) =  and limt→ μ(x, t) = ,
(h) ν(x, t) < ,
(i) ν(x, t) =  if and only if x = ,
(j) ν(αx, t) = ν(x, t

|α| ) for each α �= ,
(k) ν(x, t) � ν(y, s)≥ ν(x + y, t + s),
(l) ν(x, ·) : (,∞)→ [, ] is continuous,

(m) limt→∞ ν(x, t) =  and limt→ ν(x, t) = .
In this case (μ,ν) is called an intuitionistic fuzzy norm.
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Example . Let (X,‖ · ‖) be a normed space. Denote a ∗ b = ab and a � b =min(a + b, )
for all a,b ∈ [, ] and let μ and ν be fuzzy sets on X × (,∞) defined as follows:

μ(x, t) =
t

t + ‖x‖ , ν(x, t) =
‖x‖

t + ‖x‖

for all t ∈ R+. Then (X,μ,ν,∗,�) is an intuitionistic fuzzy normed space.

Saadati and Park proved in [] that every intuitionistic fuzzy norm (μ,ν) onX generates a
first countable topology τ(μ,ν) on X which has as a base the family of open sets of the form
{B(μ,ν)(x, r, t) : x ∈ X, r ∈ (, ), t > } where B(μ,ν)(x, r, t) = {y ∈ X : μ(x – y, t) >  – r,ν(x –
y, t) < r} for all x ∈ X, r ∈ (, ) and t > .

Lemma. Let (X,μ,ν,∗,�) be an intuitionistic fuzzy normed space.Then, for each x ∈ X,
r ∈ (, ) and t > , we have B(μ,ν)(x, r, t) = Bμ(x, r, t).

Proof It is clear that B(μ,ν)(x, r, t)⊆ Bν(x, r, t).
Now, suppose that y ∈ Bμ(x, r, t). Then μ(x – y, t) >  – r, so, by condition (i) of Defini-

tion ., we have

 = μ(x – y, t) + ν(x – y, t) >  – r + ν(x – y, t).

Hence ν(x – y, t) < r, and consequently y ∈ B(μ,ν)(x, r, t). The proof is finished. �

From Lemma ., we deduce the following.

Theorem. Let (X,μ,ν,∗,�) be an intuitionistic fuzzy normed space.Then the topologies
τ(μ,ν) and τμ coincide on X.
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