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INTRODUCTION 

 

Surimi, a stabilized myofibrillar protein from fish, is the 

primary ingredient in fish paste or imitation crab. It is 

prepared by separation, washing, and mincing to eliminate 

undesirable blood, lipids, enzymes, and sarcoplasmic 

proteins (Vilhelmsson, 1997; Park and Morrissey, 2000). In 

general, surimi is light in color, bland in odor, low in fat, 

and extremely functional due to the unique gelling 

properties of the myofibrillar proteins. These properties 

make surimi a robust functional ingredient for fabricating 

new food products (Han-Ching and Leinot, 1993; Lanier, 

2000). Numerous studies have been conducted on surimi 

containing fish meat. In addition, application of surimi 

technology in the production of surimi-based products using 

the proteins from other animal species could provide a new 

approach for increasing its utilization and functional 

properties.  

Animal meat is of much interest in the development of 

surimi-based products such as those made from beef, pork 

and chicken (Park et al., 1996; Srinivasan and Xiong, 1996; 

Kristinsson and Hultin, 2003). Pork leg meat, for instance, 

has been reported to have high myofibrillar protein content 

allowing increased gel forming capacity in surimi. Thus 

chicken or pork meat is an attractive substitute for fish meat 

surimi (Jin et al., 2007), with spent laying hens providing a 

particularly economical source of surimi-based products. 

Indeed, it was recently shown that spent laying hen meat 

has potential as filler in surimi-based products (Hur et al., 

2011). Therefore, the addition of myofibrillar proteins from 

spent laying hens to surimi-based imitation fish paste (IFP) 
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ABSTRACT: This study investigated on the effects of adding mechanically deboned chicken meat (MDCM) hydrolysates on the 

quality properties of imitation fish paste (IFP) during storage. IFP was prepared from Alaska Pollack, spent laying hens surimi and 

protein hydrolysates which were enzymatically extracted from MDCM. The study was designed as a 34 factorial design with three 

MDCM hydrolysate content groups (0%, 0.4%, and 0.8%) and four storage times (0, 2, 4, and 6 weeks). Addition of MDCM 

hydrolysates increased crude fat content but lowered water content (p<0.05). The breaking force of IFP, an indicator of gel formation, 

increased in treated groups compared to control (p<0.05). Angiotensin I-converting enzyme (ACE) activity was inhibited and free 

radical scavenging activity increased with increasing MDCM hydrolysate content (p<0.05). In conclusion, the addition of MDCM to IFP 

improves gel characteristics. Additionally, protein hydrolysates from MDCM serve as a potential source of ACE inhibiting peptides. 
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holds promise in promoting the utilization of such products. 

It is important for the meat industry to develop new 

products to satisfy emerging consumer demands for high 

quality foods. Protein hydrolysates, rich in low molecular 

weight peptides (di- and tri-peptides, with minimal free 

amino acids), are a good dietary source due to their high 

nutritional value and therapeutic properties (Bhaskar et al., 

2007). In recent years, research has focused on the 

generation of bioactive peptides from food sources 

including meat and meat by-products (Daoud et al., 2005; 

Li et al., 2007). Peptides have been shown to exert 

antioxidant, antimicrobial, and antihypertensive effects 

(Saiga et al., 2003a; Jang et al., 2008; Liu et al., 2009; 

Escudero et al., 2010). Some peptides possess 

antihypertensive activity through their ability to inhibit 

Angiotensin I-converting enzyme (ACE) (Arihara et al., 

2001). Also, bioactive peptides can be used as components 

in functional foods. Protein hydrolysates have been shown 

to enhance the emulsifying and foaming properties of fish 

(Shahidi et al., 1995). These peptides need first to be 

released from the original protein during food processing or 

digestion in order to exhibit biological activity and little is 

known about this process in meat and meat products.  

Mechanically deboned chicken meat (MDCM) has a 

high content of heme pigments, connective tissue, and fat 

(Yang and Froning, 1992). It is dark in color, has undesired 

textural properties, and is susceptible to lipid oxidation. 

However, MDCM is one of the most common raw materials 

used to produce processed poultry products. Also, MDCM 

is widely used in the food industry for upgrading the 

functional and nutritional properties of proteins, thereby 

creating value-added products. Thus, MDCM hydrolysis 

may be used as a potential starting material for the 

generation of bioactive peptides.  

The aims of the present investigation were to study the 

effects of added MDCM hydrolysates on the gel properties, 

oxidative stability, and angiotensin I-converting enzymes 

(ACE) inhibitory activities of IFP made from Alaska 

Pollack and spend laying hen meat. 

 

MATERIALS AMD METHODS 

 

Sample preparation 

Frozen Alaska Pollack were purchased from Han-sung 

Food Co. Ltd. (Pusan, Korea), cut into 500 g blocks while 

frozen, packed into polyethylene bags, and stored at 20C 

until use. Spent laying hens also were obtained at the same 

time from a commercial slaughterhouse. Spent laying hen 

myofibrillar protein was collected by the pH adjustment 

(Jin et al., 2008). MDCM hydrolysates were obtained by the 

protein hydrolysates method. Three batches were collected 

on different days for experimental replication. IFP samples 

were divided into three groups: Control (C); composed of 

commercial IFP containing spent laying hen meat, T1; 

consisted of IFP sample containing 0.4% MDCM 

hydrolysate, and T2; consisted of IFP sample containing 

0.8% MDCM hydrolysate. The composition of the IFP is 

presented in Table 1 and a flow diagram depicting IFP 

preparation is shown in Figure 1. 

pH method: The external fat tissue, bone, and skin were 

removed from the muscles, and the lean muscle was cut into 

approximately 3.03.02.0 cm
3 
cubes and ground through a 

Table 1.The basic formulation of imitation fish paste 

Ingredients (%) Control T1 T2 

Alaska Pollack 59.70 59.70 59.70 

Spent laying hen surimi 14.93 14.93 14.93 

Fresh egg white  4.72 4.72 4.72 

Soy protein 0.94 0.94 0.94 

Sugar 1.51 1.51 1.51 

Salt 1.51 1.51 1.51 

Monosodium glutamate 1.26 1.26 1.26 

Seasoning mix 0.31 0.31 0.31 

Wheat starch 6.30 6.30 6.30 

Distilled water 8.82 8.42 8.02 

MDCM1 hydrolysates - 0.4 0.8 

Total 100 100 100 
1 Mechanically deboned chicken meat. 

 

Figure 1. Manufacturing process of imitation fish paste. 
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3 mm diameter hole using a mincer. The minced samples 

were combined with six times volume of distilled water and 

homogenized with a Polytron homogenizer (T25-B, IKA 

Sdn. Bhd., Malaysia) at 8,000 rpm for 30 s. The pH of the 

homogenate was then adjusted to pH 11.0 by the addition of 

1 mol NaOH and centrifuged at 10,000g for 25 min, after 

which the top layer of fat and bottom layer of connective 

tissue were discarded. The middle layer containing the 

myofibrillar protein was then adjusted to pH 5 by addition 

of 1 N HCl solution, after which it was centrifuged at 

10,000g for 25 min. The resulting sediment was then used 

for the manufacture of IFP.  

Preparation of the protein hydrolysates: In this study, 

one- and two-stage hydrolysis was employed. The nerves, 

skin, and visible fat were removed from the meat, which 

was then fragmented, ground, and homogenized with 

distilled water (meat:water ratio, 1:3 w/w). The homogenate 

was heated at 43C and the pH was adjusted to 7.0 with 2 N 

NaOH. Five percent of Protarmex) was added and the 

reaction pH was maintained at a constant pH by the addition 

of 2 N NaOH. The hydrolytic process was terminated by 

heating the mixture at 85C for 20 min, ensuring 

inactivation of the enzyme. The resulting slurry was 

centrifuged (Union 5KR, Hanil, Gangneung, Korea) at 

8,000 rpm for 10 min to remove insoluble fractions. The 

hydrolysate slurry was then heated to 50C and the pH was 

adjusted to 7.0 with 2 N NaOH. Bromelain (1%) was added 

to the mixture and the reaction pH was maintained by the 

addition of 2 N NaOH. After heating at 90C for 15 min to 

inactivate the enzyme, the hydrolysate was centrifuged at 

8,000 rpm for 20 min to remove insoluble fractions. The 

degree of hydrolysis (DH) was determined using the 20% 

(w/v) trichloroactic acid (TCA) method, as described in the 

semi-micro Kjeldahl procedure. DH was defined as the 

percentage ratio of the total nitrogen in two-stage 

hydrolysate (A) to the total nitrogen in one-stage 

hydrolysate (B), and calculated as ([A-B]/B) 100 (4.36% 

crude protein and 24.7% DH). The protein hydrolysate was 

then stored at 4C until use. 

 

Proximate composition 

The proximate composition analysis of IFP batters 

including moisture, crude protein, crude fat, and crude ash, 

was performed according to AOAC methods 950.46, 992.15, 

985.15, and 920.153 for sausage batter (AOAC, 2000). 

Moisture, protein, fat, and ash parameters were determined 

in triplicate from IFP product.  

 

Gel characteristics 

The gel characteristics of cooked IFP samples were 

determined according to the method described by 

Phatcharat et al. (2006). Three cylindrical pieces 3.5 cm 

wide and 3 cm thick were maintained at 20C prior to 

measuring. The breaking force, deformation, gel strength 

and jelly strength were measured using a texture analyzer 

(EZ-test, Shimadzu, Tokyo, Japan) equipped with a 

cylindrical plunger (diameter 5 mm, depression speed 80 

mm/min). 

 

Water-holding capacity (WHC) 

The water-holding capacity of IFP samples was 

determined by the method described by Hughes et al. 

(1997). Samples (approximately 10 g) were placed in 50 

mL plastic centrifuge tubes and heated for 15 min in a water 

bath (90C). The samples were then cooled to room 

temperature and centrifuged at 9,000g at 4C for 20 min 

(Union 5KR, Hanil, Korea). The supernatant was eliminated 

and the WHC of the remaining pellets were calculated as 

follows: WHC (%) = 1([weight of sample before heating-

weight of sample after heating and centrifugation]/total 

water content in the sample100). 

 

2,2-diphenyl-1-picryhydrazla hydrate (DPPH) radical 

scavenging activity 

The DPPH radical scavenging activity measurement was 

modified according to the method of Bersuder et al. (1998). 

500 L of each peptide fraction was mixed with 500 L of 

ethanol and 250 L of a DPPH solution (0.5 mM 1,1-

diphenyl-2-picrylhydrazyl/ethanol). The mixtures were 

incubated for 30 min in the dark at room temperature and 

the reduction of DPPH radicals was measured at 517 nm. 

DPPH radical scavenging activity was calculated as: DPPH
· 

radical scavenging activity (%) = ([absorption of control 

absorption of sample]/absorption of control)100. The 

control was conducted in the same manner, with the 

exception that distilled water was used instead of sample. 

 

Lipid oxidation 

Lipid oxidation was determined using the thiobarbituric 

acid reactive substances (TBARS) method (Buege and Aust, 

1978). Cooked IFP sample (5 g) was weighed into a 50 mL 

test tube and homogenized with 15 mL of deionized 

distilled water using the Polytron homogenizer for 15 s at 

the highest speed (T25basic, IKA, Selangor, Malaysia). The 

IFP sample homogenate (2 mL) was transferred to a 

disposable test tube (13100 mm) and butylated 

hydroxyanisole (10%, 50 L) and thiobarbituric 

acid/trichloroacetic acid (TBA/TCA) solutions (4 mL) were 

added. The sample was mixed using a vortex mixer, 

incubated in a boiling water bath for 15 min to allow color 

development, and cooled at room temperature. Absorbance 

was determined at 531 nm against a blank containing 2 mL 

of deionized distilled water and 4 mL of TBA/TCA solution. 

The TBARS measure was expressed in mg of 

malondialdehyde (MDA) per kg of sample. 
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Angiotensin I-converting enzyme (ACE) inhibitory 

activity 

ACE activity assay: The activity of ACE was 

determined using hippuryl-His-Leu (HHL) with the 

methods reported by Janitha et al. (2002). The assay was 

conducted in a Borate buffer (0.1 M, pH 8.3). The assay 

volume consisted of 150 L of the ACE enzyme solution 

and 40 L of assay sample. All of the solutions were 

incubated for 10 min at 37C. 5 mL of HHL (0.3 M) and 

100 L of 0.1 M Borate buffer (pH 8.3) were added and 

incubated for 30 min. 1 M HCl (150 L) was added to stop 

ACE activity. The reaction mixture obtained was used to 

quantitate the hippuric acid produced due to ACE activity 

on the substrate. 

HPLC determination of hippuric acid content: A 

reversed-phase C18 column (Bonclone C18, 10 M, 501.0 

mm) protected by a guard column (Bondclone C18, 5 M, 

2504.6 mm, Phenomenex Co., Torrance, CA, USA) was 

employed. The injection volume used was 20 L. Elution of 

hippuric acid was detected by monitoring the absorbance at 

228 nm. The control reaction mixture contained 40 L of 

buffer instead of the assay sample. The percent inhibition of 

enzyme activity was calculated as follows: ACE inhibition 

(%) = ([hippuric acid of control-hippuric acid of sample] 

/hippuric acid of control)100. The concentration of 

hydrolysate needed to inhibit 50% of ACE activity was 

defined as the IC50 value. 

 

Statistical analysis 

The study was designed as a 34 factorial experiment 

with treatment (control, T1 and T2) and storage time (0, 2, 4, 

and 6 weeks). The experiment was replicated three times. 

Data were analyzed using the general linear model (GLM) 

(SAS, 2000). Duncan’s multiple test was used to determine 

the statistical significance among the means at a 95% 

significance level.  

 

RESULTS AND DISCUSSION 

 

Proximate composition 

The proximate composition of IFP with added MDCM 

hydrolysates is shown in Table 2. In this study, the IFP 

showed no significant difference in crude protein compared 

to the control during storage. However, all treatments with 

MDCM hydrolysates had lower moisture content compared 

to control at 0 and 6 weeks storage periods (p<0.05). Crude 

fat content in the MDCM hydrolysate-added groups was 

significantly higher than in the control at week 0 of storage. 

Likewise, the ash content in the 0.8% MDCM hydrolysate-

added sample was significantly lower than in the other 

groups at 6 weeks of storage (p<0.05). The functional and 

textural properties of surimi depend on many factors 

including thermal conditions and various gelling and non-

gelling ingredients (Nowasd et al., 2000). In general, high 

protein, low fat, and adequate water are required to make 

high quality surimi-based products (Jin et al., 2007), 

Moisture and fat are critical factors in surimi products 

(Uddin et al., 2006) and excessive lipids may adversely 

affect quality, due to oxidized lipids interacting with 

proteins (Smith, 1987). Also, protein concentration greatly 

affects the gel properties (Luo et al., 2004). However, we 

assumed that the protein contents would not influence the 

physical properties of IFP in this study because protein 

showed no consistent trends among the samples.  

 

Gel characteristics  

Gel characteristics of IFP with added MDCM 

hydrolysates are shown in Table 3. The breaking force 

values increased during storage in T1 and T2. The breaking 

force was lower in T2 as compared to T1 until 2 weeks 

storage (p<0.05). The gel strength and jelly strength showed 

consistent trends among the IFP samples; however, 

treatment with MDCM hydrolysates imparted higher 

breaking force values than control group at 4 and 6 weeks. 

Also, deformation, gel strength, and jelly strength were 

improved with added MDCM compared to the control 

group at 4 or 6 weeks (p<0.05). Protein concentration has a 

major positive effect on the breaking force (Luo et al., 

2008). It has also been reported (Sylvia et al., 1994) that the 

gel-forming ability of surimi increases with decreasing 

water content, a result of higher myofibril protein 

concentrations and increased cross-link density. Therefore, 

Table 2. Proximate composition of imitation fish paste batter with 

added MDCM hydrolysates 

Treatments1 

(g/100 g) 

Storage periods (weeks) 

0 6 

Moisture C 69.740.10Aa 69.220.11Ab 

T1 68.870.12B 68.670.30B 

T2 69.000.10B 68.730.17B 

Crude protein C 18.160.17 18.820.32 

T1 18.390.52 18.720.54 

T2 17.280.18b 18.020.08a 

Crude fat C 0.800.02Bb 1.200.01a 

T1 1.020.06A 1.100.20 

T2 1.070.09A 1.150.05 

Ash C 0.760.13 0.710.03A 

T1 0.870.17 0.730.01A 

T2 0.750.12a 0.490.01Bb 

Data are meansstandard deviation. n =3. 
A,B Means with different superscript capital letters in a column within each 

treatment differ significantly (p<0.05). 
a,b Means with different superscript small letters in a row within each 

storage time differ significantly (p<0.05). 
1 Treatments are the same as in Table 1. 
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our results indicate that the gel characteristics are favorably 

influenced by changes of proximate compositions and the 

addition of MDCM to IFP.  

 

Water holding capacity (WHC), DPPH radical 

scavenging activity and lipid oxidation 

Water holding capacity (WHC), DPPH radical 

scavenging activity, and lipid oxidation of IFP with added 

MDCM hydrolysates are shown in Table 4. The WHC was 

lower when MDCM hydrolysates were added compared to 

the control group during storage (p<0.05). During cooking, 

various meat proteins denature causing structural changes, 

shrinkage of meat fibers, and gel formation of myofibrillar 

proteins (Tornberg, 2005). Therefore, our current results 

suggest that the addition of MDCM to IFP may not directly 

affect WHC, but that with extensive degradation of muscle 

fibers an apparent WHC reduction occurs. 

All treatment samples demonstrated increased DPPH 

radical scavenging activity during storage, while IFP 

showed significantly decreased DPPH radical scavenging 

activity after 2 weeks (p<0.05). DPPH radical scavenging 

activity was higher in the MDCM hydrolysate treatment 

groups compared to the control up until 4 weeks. The free 

radical scavenging activity and antioxidant activity; 

including the ability to donate hydrogen, to stabilize or 

terminate radicals, to sequester pro-oxidative metal ions, 

and to form a physical barrier around fat droplets, is 

determined by a specific amino acid composition and 

sequence (Kong and Xiong, 2006). Additionally, 

hydrolysate antioxidant activity depends upon the enzyme 

used. It has been reported (Wu et al., 2003) that DPPH 

activity improved for mackerel protein hydrolysate 

Table 3. Changes in gel characteristics in imitation fish paste with added MDCM hydrolysates during cold storage 

Treatments1 
Storage periods (weeks) 

0 2 4 6 

Breaking force 

(g) 

C 379.677.51A 408.0020.07A 382.3320.53B 357.0026.46B 

T1 374.676.43Ac 394.7410.74Abc 435.3324.66Aa 417.0010.00Aab 

T2 341.3316.77Bc 355.008.66Bc 433.3312.58Aa 398.03.61Ab 

Deformation 

(mm) 

C 6.910.21a 6.710.06a 5.810.32Cb 5.710.21Bb 

T1 6.670.25 6.470.35 6.310.12B 6.610.35A 

T2 6.710.21 6.510.15 6.910.23A 6.770.15A 

Gel strength 

(g/cm2) 

C 262.3212.96Aa 273.7015.58a 231.4337.19Bab 203.367.96Bb 

T1 249.935.95AB 262.7925.52 274.6318.13AB 275.6318.99A 

T2 228.9714.58Bc 231.008.49c 299.2712.61Aa 269.565.40Ab 

Jelly strength 

(g/mm) 

C 193.623.82A 207.9210.22A 202.6023.43 181.1813.47B 

T1 190.163.27Ab 206.348.94Aa 221.1312.56a 212.765.09Aa 

T2 173.398.54Bc 180.004.41Bc 220.946.40a 202.991.83Ab 

Data are meansstandard deviation. n = 3.  

A-C Means with different superscript capital letters in a column within each treatment differ significantly (p<0.05). 
a-c Means with different superscript small letters in a row within each storage time differ significantly (p<0.05). 
1 Treatments are the same as in Table 1. 

Table 4. Changes in water-holding capacity (WHC), DPPH radical scavenging activity and TBARS in imitation fish paste with added 

MDCM hydrolysates during cold storage 

Treatments1 
Storage periods (weeks) 

0 2 4 6 

WHC 

(%) 

C 69.740.10Aa 69.400.10Ab 69.710.02Aa 69.220.11Ac 

T1 68.820.12B 69.050.09B 68.970.12B 68.670.30B 

T2 69.000.10B 68.610.14C 68.580.25C 68.730.17B 

DPPH 

(%) 

C 19.701.00Cb 21.761.66Ca 17.631.21Bc 13.911.16d 

T1 21.200.46Bb 23.691.69Ba 19.001.29Ac 14.151.11d 

T2 23.980.91Ab 25.441.42Aa 20.650.84Ac 14.440.74d 

TBARS 

(mg/100 g) 

C 0.510.03c 2.270.01b 2.620.06a 2.490.09Cab 

T1 0.490.04c 2.500.02b 2.560.04ab  2.620.04Ba 

T2 0.430.03d 2.500.05c 2.600.04b 2.820.01Aa 

Data are meansstandard deviation. n = 3.  

A-B Means with different superscript capital letters in a column within each treatment differ significantly (p<0.05). 
a-c Means with different superscript small letters in a row within each storage time differ significantly (p<0.05). 
1 Treatments are the same as in Table 1. 
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generated by Protease N. Another group (Wu et al., 2004) 

found that porcine hemoglobin hydrolysates, prepared 

through hydrolysis by Alcalase followed by Flavourzyme, 

exhibited high ferrous ion chelating abilities and DPPH 

radical scavenging activity. In our research, the DPPH 

radical scavenging activities of the Alcalase hydrolysates 

were similar to those reported by Wu et al. (2004). 

The TBARS value increased in correlation with 

increasing storage periods in all IFP samples. In the 

treatment groups, TBARS values rapidly increased at 2 

weeks (p<0.05) while they did not differ significantly 

among IFP samples until 4 weeks. TBARS values were 

higher in the MDCM hydrolysate treatment groups 

compared to the control at 6 weeks (p<0.05). Ahn et al. 

(1993) reported that differences in fat content, fatty acid 

composition, and the classes of lipids present effected the 

lipid oxidation of stored turkey patties. Meat products with 

a high degree of unsaturation are more susceptible to lipid 

oxidation (Morrissey et al., 1998). Accordingly, lipid 

oxidation in the present study was influenced by fat content 

(Table 2). Previously, Sakanaka and Tachibana (2006) 

reported reduction of TBARS values in beef homogenate by 

egg-yolk protein hydrolysates. However, hydrolysates 

possess a lower antioxidant activity in meatballs (Flaczyk et 

al., 2006). Hydrolysates at doses ranging from 1% to 2% 

slowed lipid oxidation of pork patties but their activity 

remained weaker than synthetic antioxidants (Pena-Ramos 

and Xiong, 2003).  

 

Angiotensin I-converting enzyme (ACE) inhibitory 

activity 

The ACE inhibitory activity in IFP with added MDCM 

hydrolysates is shown in Figure 2. ACE inhibitory activity 

of IFP showed a decreasing trend with increasing storage 

time. However, the ACE activity in the IFP with added 

treatments was lower than that of control. Addition of 0.8% 

MDCM hydrolysates was found to be more effective at 

inhibiting ACE activity of IFP compared to addition of 

0.4% MDCM hydrolysates (p<0.05). ACE inhibitory 

peptides have been discovered in various animal sources 

such as porcine and chicken muscle. Specific ACE 

inhibitory peptides, Met-Asn-Pro-Asn (IC50 = 66.6 M), 

Asn-Pro-Pro (IC50
 
= 290.5 M), and Thr-Asn-Pro (IC50 = 

207.4 M) were discovered in a porcine myosin hydrolysate 

(Arihara et al., 2001). Gly-Phe-Hyp-Gly-Thr-Hyp-Gly-Leu-

Hyp-Gly-Phe (IC50 = 42 M) was isolated from chicken 

breast muscle hydrolysate (Saiga et al., 2003b). Ahhmed et 

al. (2009) reported that mixing 5% meat hydrolysate from 

the porcine muscle biceps femoris with normal diet in rats 

resulted in clear positive effects on a common lifestyle-

related disease such as hypertension. ACE plays an 

important role in the regulation of blood pressure as well as 

fluid and salt balance in mammals. Therefore, our results 

support the conclusion that MDCM hydrolysates can be 

used as a good source of health-promoting constituents in 

functional foods. 
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Figure 2. Changes in angiotensin I-converting enzyme (ACE) inhibitor activity (%) in imitation fish paste with added MDCM 

hydrolysates. Data are meansstandard deviation. n = 3. A-C Means with different superscript capital letters within each treatment differ 

significantly (p<0.05). a-c Means with different superscript small letters within each storage time differ significantly (p<0.05).          
1 Treatments are the same as in Table 1. 
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