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a b s t r a c t

In this paper, we study (covariant) α-completely positive maps on group systems. We first
introduce a notion of α-completely positive maps of groups into (locally) C∗-algebras and
show that bounded α-completely positive maps on discrete groups induce α-completely
positive linear maps on group C∗-algebras. We establish the (covariant) KSGNS type
representation theorem for (covariant) α-completely positive maps of group systems into
locally C∗-algebras. These constructions provide a projective covariant J-representation of
a group system into a locally C∗-algebra.
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1. Introduction

An indefinite inner product space is a vector space equippedwith a symmetric orHermitian bilinear form [v,w] forwhich
[v, v] can be positive, negative or zero. In the most important special case, it is a Hilbert space equipped with the indefinite
inner product given by [v,w] = (Jv,w)where J is a bounded, invertible and Hermitian operator [2]. Such a space was first
mathematically studied by Pontryagin for studying a mechanics problem. It is known that in massless quantum field theory
the state space will be a space with indefinite metric. Since the positivity is lack in a local quantum field theory, the GNS-
construction on an indefinite inner product is of increasing interest in the general (axiomatic) quantum field theory [1,3].
In particular, in the gauge quantum field theory, the locality is in conflict with positivity and then from the axiomatic point
of view, it is better to keep the locality condition and to give up the positivity condition which leads to the modification of
the axiom of positivity.

Motivated by these physical facts, Heo–Hong–Ji [5] introduced a notion of α-completely positive linear maps between
C∗-algebras as a natural generalization of completely positive maps between C∗-algebras, and Heo–Ji [6] proved the
Radon–Nikodým type theorem for the class of α-completely positive maps and constructed a covariant representation
associated to a covariant α-completely positive maps. Here, positivity is inherent in Hermitian maps in terms of the map
α. The α-complete positivity provides a positive definite inner product associated to the indefinite one, and the interplay
between these two is indeed the characteristic feature of Krein spaces among all indefinite inner product spaces.

In this paper, we first introduce a notion of a (covariant) α-completely positive map of a topological group into a (locally)
C∗-algebra, which is a counterpart of a (covariant)α-completely positive linearmap between (locally) C∗-algebras [5–8].We
construct a (covariant) KSGNS (Kasparov–Stinespring–Gelfand–Naimark–Segal) type representation of a group on a Krein
module over a (locally) C∗-algebra, which is associated to a (covariant) α-completely positive map of a group (system) [8].
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We now give a brief overview of the organization of the paper. In Section 2, we define a notion of an α-completely
positive map of a topological group with an involution into a (locally) C∗-algebra. We prove a KSGNS type theorem for an
α-completely positive map of a group into a C∗-algebra and construct an α-completely positive linear map of C(Tn), which
is induced by an α-completely positive map of Zn. More generally, we show that bounded α-completely positive maps on
discrete groups induce α-completely positive linear maps on group C∗-algebras.

Section 3 contains a covariant version of the KSGNS type theorem for a covariant α-completely positive map of a group
under some equivariance assumption of themapα and an action of group systems. In Section 4,we briefly reviewdefinitions
and properties of Hilbert modules over locally C∗-algebras and we establish the KSGNS representation theorem for an α-
completely positivemapof a topological group into a locallyC∗-algebra. Finally, in Section 5we study a (projective) covariant
α-completely positive map of a (semi-)group system into a locally C∗-algebra and construct the associated (projective)
covariant J-representations.

2. α-completely positive maps on groups

A locally C∗-algebra is a complete Hausdorff (complex) topological ∗-algebra of which the topology is determined by
the collection of all continuous C∗-seminorms on it. It was first systematically studied by Inoue [9] as a generalization of
a C∗-algebra, and then Phillips [12] studied locally C∗-algebras that are needed for representable K -theory. It was known
that locally C∗-algebras are useful for the study of non-commutative algebraic topology and quantum field theory, etc. We
refer [9,12] and its references for examples of locally C∗-algebras.

We now introduce a notion of an α-completely positive map on a topological group with an involution which is a
counterpart of α-completely positive linear maps between (locally) C∗-algebras [5–7].

Definition 2.1. Let G be a topological group with an involution α, that is, α2
= idG, α(g)−1 = α(g−1) and α(e) = e where

e is a unit element of G and let A be a (locally) C∗-algebra. A map φ : G→ A is called α-completely positive if

(i) φ

α(g1g2)


= φ


α(g1)α(g2)


= φ(g1g2) for all g1, g2 ∈ G,

(ii) for all g1, . . . , gn ∈ G, the operator matrix

φ(α(g−1i )gj)

n
i,j=1 is positive,

(iii) there exist a constant K > 0 such that
φ(gi)∗φ(gj)

n
i,j=1 ≤ K


φ

α(gi)−1gj

n
i,j=1

for every g1, . . . , gn ∈ G.
(iv) there exist a constantM(g) > 0 such that

φ(α(ggi)−1 ggj)
n
i,j=1 ≤ M(g)


φ(α(gi)−1gj)

n
i,j=1

for every g, g1, . . . , gn ∈ G.

It follows from (ii) in Definition 2.1 that φ(α(g−1))∗ = φ(g) for all g ∈ G. LetB be a C∗-algebra and let X, Y be HilbertB-
modules. We denote by LB(X, Y ) the set of all right B-module maps T : X → Y for which there is an operator T ∗ : Y → X ,
called the adjoint of T , such that ⟨Tx, y⟩Y = ⟨x, T ∗y⟩X (x ∈ X, y ∈ Y ). It follows from the uniform boundedness theorem
that each operator T in LB(X, Y ) is bounded. We write LB(X) for LB(X, X), which becomes a C∗-algebra with the operator
norm. For a detailed information on Hilbert C∗-modules, we refer to [11].

Let J be a (fundamental) symmetry on a Hilbert B-module X , i.e., J = J∗ = J−1. Then we define a B-valued indefinite
inner product ⟨·, ·⟩J by

⟨x, y⟩J = ⟨x, Jy⟩, (x, y ∈ X).

In this case, the pair (X, J) is called a Krein B-module. For each T ∈ LB(X), there exists an operator T J
∈ LB(X) such that

⟨T (x), y⟩J = ⟨x, T J(y)⟩J , (x, y ∈ X).

The operator T J is called the J-adjoint of T and we can see that T J
= JT ∗J . We denote by UJ(X) the set of all J-unitary

operators in LB(X), i.e. T JT = TT J
= I . For more detailed study for indefinite inner product spaces, we refer to [2].

A representation of G on X means a homomorphism π : G → LB(X). A unitary representation π of G on X is a
representation of G on X such that π(g)∗ = π(g−1) for every g ∈ G. A representation π : G→ LB(X) is called a J-unitary
representation of G on a Krein B-module (X, J) if

π(g−1) = π(g)J ≡ Jπ(g)∗J for all g ∈ G.

Note that even if π : G → UJ(X) is a J-unitary representation, the operator π(g) in general is not a unitary for all g ∈ G.
However, if π(g) commutes with J , then π(g) becomes a unitary operator.

Throughout this paper,B, X and G denote a (locally) C∗-algebra, a HilbertB-module with aB-valued inner product ⟨·, ·⟩
and a (topological) group, respectively, unless otherwise specified.
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Let C[G, X] be the set of finitely supported functions from a group G into X . Then C[G, X] becomes a rightB-module with
the natural operations

(f1 + f2)(g) = f1(g)+ f2(g), (λ · f )(g) = λf (g), and (f · b)(g) = f (g)b
for all g ∈ G, λ ∈ C and b ∈ B. We can identify an element f ∈ C[G, X] with


g δg ⊗ f (g) where δg(g ′) is 1 if g = g ′ or 0

otherwise. Thus, we will use the identification C[G, X] = C[G] ⊗ X where C[G] denotes a group algebra.
In the following theorem, we will give a KSGNS type representation on a Krein C∗-module associated to an α-completely

positive map on a group.

Theorem 2.2. If φ : G → LB(X) is an α-completely positive map, then there exist a Krein B-module (Yφ, Jφ), a Jφ-unitary
representation πφ : G→ LB(Yφ) and an adjointable operator Vφ : X → Yφ such that
(i) φ(g) = V ∗φπφ(g)Vφ for all g ∈ G;
(ii) the set [πφ(G)Vφ(X)] is dense in Yφ ;
(iii) V ∗φπφ(g)

∗πφ(g ′)Vφ = V ∗φπφ(α(g
−1)g ′)Vφ for all g, g ′ ∈ G.

If, in addition, φ(e) = idX , then Vφ is an isometry.

Proof. The proof is standard, but we give a proof for readers’ convenience and the proof of Theorem 3.2. We first define a
B-valued sesquilinear form ⟨·, ·⟩ on C[G, X] by

⟨f1, f2⟩ =

g,g ′


f1(g), φ(α(g−1)g ′)f2(g ′)


X (2.1)

where f1 =


g δg ⊗ f1(g) and f2 =


g ′ δg ′ ⊗ f2(g ′) are in C[G, X]. Then the form ⟨·, ·⟩ is positive semi-definite since
⟨f , f ⟩ ≥ 0 for all f ∈ C[G, X]. By the Cauchy–Schwarz inequality, the space Nφ = {f ∈ C[G, X] : ⟨f , f ⟩ = 0} becomes a
B-submodule of C[G, X]. Hence, the B-valued sesquilinear form (2.1) induces the B-valued inner product on the quotient
B-module C[G, X]/Nφ . Let Yφ be the completion of the quotient space C[G, X]/Nφ with respect to the norm induced by the
inner product.

We see that the involution α on G induces the involution J on C[G, X] given by

J(f ) = J


g

δg ⊗ f (g)


=


g

δα(g) ⊗ f (g). (2.2)

Now we define an indefinite inner product [·, ·] on the quotient space C[G, X]/Nφ by
f1 +Nφ, f2 +Nφ


=


g,g ′


f (g), φ(g−1g ′)f (g ′)


X .

Since the indefinite inner product [·, ·] is separately continuous, by the continuity, it can be extended to the whole space Yφ .
We denote by Jφ the extension of J to Yφ . Moreover, it is obvious that

f1 +Nφ, f2 +Nφ


=

f1 +Nφ, J(f2 +Nφ)


.

From the properties of α-completely positive maps, we see that the operator Jφ is a fundamental symmetry on Yφ , that is,
Jφ = J∗φ = J−1φ . Hence, the pair (Yφ, Jφ) is a Krein B-module.

For each x ∈ X , we define a map Vφ(x) : G → X by

Vφx


(g) = x · δe(g) where e denotes the unit element of G. By

identifying C[G, X]/Nφ with C[G] ⊗ X/Nφ , we can regard Vφx as δe ⊗ x+Nφ . We easily see that Vφ is isometric whenever
φ(e) = idX . Let f ∈ C[G, X] and x ∈ X . Then we have that

x, V ∗φ (f +Nφ)

X =


g


x, φ(α(e)g)f (g)


X =


g


x, φ(g)f (g)


X ,

so that V ∗φ (f + Nφ) =


g φ(g)f (g). Since ∥V
∗

φ (f + Nφ)∥
2
≤ K∥f + Nφ∥

2 for any f ∈ C[G, X], V ∗φ is bounded. Thus, the
operator V ∗φ can be extended to the whole space Yφ .

For each g ∈ G, we define a linear operator πφ(g) : C[G, X]/Nφ → C[G, X]/Nφ by

πφ(g)(f +Nφ) =

g ′
δgg ′ ⊗ f (g ′)+Nφ (f ∈ C[G, X]).

Clearly, we have that [πφ(g)f ](g ′) = f (g−1g ′) and πφ(gg ′) = πφ(g)πφ(g ′) for all g, g ′ ∈ G. By (iv) in Definition 2.1, we
obtain that for each g ∈ Gπφ(g)(f +Nφ)

2 ≤ M(g)


g ′,g ′′


f (g ′), φ


α(g ′)−1g ′′


f (g ′′)


X


= M(g)

f +Nφ

2.
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Therefore, πφ(g) can be extended to Yφ as a bounded linear operator, which we still denote by the same notation πφ(g). On
the other hand, we obtain that for any f1, f2 ∈ C[G, X]

πφ(g)(f1 +Nφ), f2 +Nφ


=


g ′,g ′′


f1(g ′), φ


α(g ′)−1α(g−1α(g ′′))


f2(g ′′)


=

f1 +Nφ, Jφπφ(g−1)Jφ(f2 +Nφ)


.

Thus, we have that πφ(g)∗ = Jφπφ(g−1)Jφ , which implies that πφ is a Jφ-unitary representation of G on Yφ .
Moreover, for any g, g ′ ∈ G and x ∈ X we have that

V ∗φπφ(g)
∗π(g ′)Vφ(x) = V ∗φ Jφπφ(g

−1)(δα(g ′) ⊗ x)

= φ(g−1α(g ′))x = φ(α(g−1)g ′)x
= V ∗φπφ(α(g

−1)g ′)Vφ(x),

so that V ∗φπφ(g)
∗πφ(g ′)Vφ = V ∗φπφ(α(g

−1)g ′)Vφ . �

We call the quadruple (πφ, Vφ, Yφ, Jφ) in Theorem 2.2 the minimal KSGNS dilation of an α-completely positive map φ of
G into LB(X).

Remark 2.3. Let B be a C∗-algebra. In Theorem 2.2, if φ : G → B is an α-completely positive map, then we get a GNS
type representation theorem as that in [4] for completely positive maps on a topological group. More precisely, there
exist a Krein B-module (Xφ, Jφ), a Jφ-unitary representation πφ : G → LB(Xφ) and a vector xφ ∈ Xφ such that the set
{πφ(g)(xφ · b) : g ∈ G, b ∈ B} is total in Xφ and φ(g) = ⟨xφ, πφ(g)xφ⟩ for any g ∈ G. �

The notion of α-completely positive linear maps between C∗-algebras was introduced in [5] and was systematically
studied in [5–8].We shouldmention that, in general, it is not easy to prove theα-complete positivity of linearmaps between
C∗-algebras.

LetZn be the Cartesian product of n copies of the integerswith an involutionα. If amapψ : Zn
→ LB(X) isα-completely

positive, by Theorem 2.2, there exists the minimal KSGNS dilation (πψ , Vψ , Yψ , Jψ ) of ψ . Let Tn be the Cartesian product of
n copies of the unit circle and let zi be the ith coordinate function on Tn. For any I = (i1, . . . , in) ∈ Zn, we set z I = z i11 · · · z

in
n .

Let σ : C(Tn)→ LB(Yψ ) be a homomorphism given by

σ(zi) = πψ (ei), (i = 1, . . . , n) (2.3)

where ei is the n-tuple that is 1 in the ith entry and 0 in the remaining entries. Then we see that σ(z I) = πψ (I) for each
I ∈ Zn and that α naturally induces the linear involutionα on C(Tn) given byα(z I) = zα(I).

Proposition 2.4. If a mapψ : Zn
→ LB(X) is α-completely positive, then there is anα-completely positive linear map ψ from

C(Tn) into LB(X) such that ψ(z I) = ψ(I) for every I ∈ Zn.

Proof. Let (πψ , Vψ , Yψ , Jψ ) be theminimal KSGNS dilation ofψ as in Theorem 2.2 and let σ be defined as in (2.3). We define
a map ψ of C(Tn) into LB(X) byψ(f ) = V ∗ψσ(f )Vψ (f ∈ C(Tn)). (2.4)

It is obvious from the definition thatψ(z I) = ψ(I). To prove theα-complete positivity of themapψ , it is enough to consider
monomials of form z I(I ∈ Zn) due to the linearity and continuity. For any I, I ′ ∈ Zn, we have that

ψ α(z I) ·α(z I ′) = V ∗ψσ

zα(I)+α(I

′)

Vψ =


ψ

α(I + I ′)


= ψα(z I · z I ′),

ψ

I + I ′


= ψz I · z I ′.

From the linearity and continuity, we obtain that for all f1, f2 ∈ C(Tn)ψα(f1) ·α(f2) = ψα(f1 · f2) = ψ(f1 · f2).
For anym ∈ N, take monomials z I , z I1 , . . . , z Im ∈ C(Tn) and elements x1, . . . , xm ∈ X . Then we have that


xi,ψ(α(z Ii)∗z Ij)xj = m

i,j=1


xi, ψ(α(−Ii)+ Ij)xj


≥ 0
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where the inequality follows from the condition (ii) in Definition 2.1. We also have that
m

i,j=1


xi,ψ(α(z Iz Ii)∗z Iz Ij)xj = m

i,j=1


xi, V ∗ψπψ (α(−Ii − I)+ I + Ij)Vψxj


≤ M(I)

m
i,j=1


xi,ψ(α(z Ii)∗z Ij)xj

where the inequality follows from (iv) in Definition 2.1. Hence, ψ is anα-completely positive linear map from C(Tn) into
LB(X). �

Let G be a locally compact group with a left Haar measure µ and we denote by L1(G) the space of absolutely integrable
functions with respect to µ. Then L1(G) becomes a ∗-algebra with operations of convolution and involution;

f1 ∗ f2(g) =

G
f1(h)f2(h−1g)dµ(h) and f ∗(g) = ∆(g)−1f (g−1)

where∆ is a modular function of G. The algebra L1(G) is unital if G is discrete. The group C∗-algebra C∗(G) is the closure of
the universal representation πu of Gwhere πu is the direct sum of all irreducible representations (up to unitary equivalence)
of G. Equivalently, the group C∗-algebra C∗(G) is the closure of L1(G)with respect to the norm

∥f ∥ = sup

∥π(f )∥ : π is a ∗ -representation of L1(G)


.

Wenow consider a discrete groupΓ with an involution α. The involution α onΓ induces a linear involutionα : C[Γ ] →
C[Γ ] given byαn

i=1 si δgi

=
n

i=1 si δα(gi). Clearly, we have thatα2
= idC[Γ ] andα(δe) = δe, which implies thatα is an

involution on a group algebra C[Γ ]. Suppose that φ : Γ → LB(X) is α-completely positive. Now, we define a linear map
Φ : C[Γ ] → LB(X) by

Φ


n

i=1

si δgi


=

n
i=1

siφ(gi). (2.5)

Sinceα is isometric andα(f )∗ = α(f ∗), the mapα extends by continuity to a linear Hermitian involution on a group C∗-
algebra C∗(Γ ). In the remaining part of this section, we consider an α-completely positive linearmap on a group C∗-algebra,
which is induced by an α-completely positive map on a group.

Theorem 2.5. If φ : Γ → LB(X) is bounded and α-completely positive, the linear map Φ : C[Γ ] → LB(X) given
by (2.5) extends to anα-completely positive linear map on the group C∗-algebra C∗(Γ ).

Proof. Let f1 =
n

i=1 si δgi and f2 =
m

i=j tj δhj be in C[Γ ]. Then we have that

Φ
α(f1) ∗α(f2) =



i,j

s̄itjφ

α(gihj)



i,j

s̄itjφ(gihj)
=


Φ
α(f1 ∗ f2)

Φ

f1 ∗ f2


.

We also have thatΦ(f1)∗ =


i s̄iφ

α(g−1i )


= Φ

α(f ∗1 ) = Φ(f ∗1 ). Thus,Φ is a linear Hermitian map on C[Γ ].
Let x1, . . . , xn ∈ X and let f1, . . . , fn ∈ C[Γ ]with fi =


k sikδgik . Then we have that

i,j


xi,Φ

α(fi)∗ ∗α(fj)xj =
i,j


k,l

s̄iksjl

xi, φ


α(gik)−1gjl


xj

≥ 0

where the inequality follows from the α-complete positivity of φ. We also obtain that
i,j


xi,Φ(fi)∗Φ(fj)xj


=


i,j


k,l

s̄iksjl

xi, φ(gik)∗φ(gjl)xj


≤ K


i,j


xi,Φ

α(fi)∗ ∗ fjxj.
Moreover, we have that

i,j


xi,Φ

α(δg ∗ fi)∗ ∗ (δg ∗ fj)xj =
i,j


k,l

s̄iksjl

xi, φ


α(ggik)−1ggjl


xj


≤ M(g)

i,j


xi,Φ

α(fi)∗ ∗ fjxj
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where the inequality follows from (iv) in Definition 2.1. Let f =


k skδgk be in C[Γ ]. Then we have that
i,j


xi,Φ

α(f ∗ fi)∗ ∗ (f ∗ fj)xj ≤
i,j


k

2|sk|2

xi,Φ

α(δgk ∗ fi)∗ ∗ (δgk ∗ fj)xj
≤ M(f )


i,j


xi,Φ

α(fi)∗ ∗ (fj)xj ,
whereM(f ) = 2maxk{M(gk)}


k |sk|

2. It also follows from the boundedness ofφ that∥Φ(f )∥ = ∥


k skφ(gk)∥ ≤ ∥φ∥·∥f ∥1
where ∥ · ∥1 is the L1-norm on C[Γ ]. Hence,Φ is anα-completely positive and bounded linear map on C[Γ ] into LB(X), so
thatΦ extends to anα-completely positive linear map on C∗(Γ ). �

3. Covariant α-completely positive maps on group systems

Let G,H be topological groups. We denote by Aut(G) the group of all automorphisms of G endowed with the pointwise
convergence topology. The action θ of H on G means a continuous homomorphism of H into Aut(G). We will refer to this
triple (G,H, θ) as a group system. For example, let H = SL2(R) and let G be the 3-dimensional Heisenberg group. It is known
that H acts as automorphisms on G.

Definition 3.1. Let (G,H, θ) be a group system with an involution α on G and let U be a strongly continuous unitary
representation of H into U(X)where U(X) is a group of all unitary elements in LB(X).

(1) A map φ : G→ LB(X) is called (θ,U)-covariant if

φ(θh(g)) = Uhφ(g)U∗h for all g ∈ G and h ∈ H.

(2) Two maps θ and α are equivariant if θh ◦ α = α ◦ θh for all h ∈ H .

The following theorem is a covariant version of Theorem 2.2.

Theorem 3.2. Let (G,H, θ) be a group system with a continuous involution α on G and let U be a strongly continuous unitary
representation of H into U(X). Suppose that φ : G→ LB(X) is a (θ,U)-covariant and continuous α-completely positive map
and that θ and α are equivariant. Then there exist

(a) a Krein B-module (Yφ, Jφ)
(b) a Jφ-representation πφ : G→ LB(Yφ),
(c) an adjointable operator Vφ : X → Yφ ,
(d) a strongly continuous unitary representationθ : H → LB(Yφ),

such that

(i) φ(g) = V ∗φπφ(g)Vφ for all g ∈ G,
(ii) the set [πφ(G)Vφ(X)] is dense in Yφ ,
(iii) V ∗φπφ(g)

∗πφ(g ′)Vφ = V ∗φπφ(α(g
−1)g ′)Vφ for all g, g ′ ∈ G,

(iv) θhπφ(g)θ ∗h =θhπφ(g)θ Jφ
h = πφ(θh(g)) for all g ∈ G and h ∈ H,

(v) θhVφ = VφUh for all g ∈ G and h ∈ H.

Proof. Here, we use the same notations as in the proof of Theorem 2.2. Since the map φ : G → LB(X) is α-completely
positive, there exist a Krein B-module (Yφ, Jφ), a Jφ-unitary representation πφ : G→ LB(Yφ) and an adjointable operator
Vφ : X → Yφ satisfying properties (i)–(iii). Hence, it is sufficient to construct a unitary representationθ of H on Yφ satisfying
properties (iv) and (v).

Suppose that two maps θ and α are equivariant. For each h ∈ H , we define a linear mapθh : C[G, X] → C[G, X] by

θh 
g

δg ⊗ f (g)


=


g

δθh(g) ⊗ Uhf (g).

Let f1 =


g δg ⊗ f1(g) and f2 =


g ′ δg ′ ⊗ f2(g ′) be elements in C[G, X]. We obtain from the covariance property of φ thatθh(f1),θh(f2) =
g,g ′


Uhf1(g), φ


α(θh(g)−1)θh(g ′)


Uhf2(g ′)


=


g,g ′


f1(g), φ


α(g)−1g ′


f2(g ′)


=


g

δg ⊗ f1(g),

g ′
δg ′ ⊗ f2(g ′)


.
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Since Nφ is invariant under the linear mapθh, by passing to the quotient, we get an isometric linear map on C[G, X]/Nφ ,
again denoted byθh. Then we have thatθh

g

δg ⊗ f1(g)+Nφ


,

g ′
δg ′ ⊗ f2(g ′)+Nφ


=


g,g ′


f1(g), φ(α(g)−1θh−1(g

′))U∗h f2(g
′)


=


g

δg ⊗ f1(g)+Nφ,

g ′
δθh−1 (g

′) ⊗ Uh−1 f2(g
′)+Nφ


which implies thatθ ∗h =θh−1 . Sinceθ is clearly a group homomorphism, we have thatθ is a unitary representation.

To show the continuity ofθ , it suffices to consider simple tensors of the form δg ⊗ ξ +Nφ . For a net {hι} in H converging
to h, we have thatθhι(δg ⊗ ξ +Nφ)−θh(δg ⊗ ξ +Nφ), δg ′ ⊗ η +Nφ


=

Uhιξ, [φ(α(θhι(g

−1))g ′)− φ(α(θh(g−1))g ′)]η

+

(Uhι − Uh)ξ , φ(α(θh(g−1))g ′)η


→ 0

since U is a unitary representation and φ and α are continuous. Moreover, we can obtain thatθhπ(g)θ ∗h = π(θh(g)) for all
g ∈ G and h ∈ H . However, eachθh commutes with Jφ , so thatθhπ(g)θ ∗h = θhπ(g)θ Jφ

h for every h ∈ H . Furthermore, we
have thatθhVφ(x) = δθh(e) ⊗ Uhx+Nφ = VφUh(x), (x ∈ X),

which implies thatθhVφ = VφUh for all h ∈ H . This completes the proof. �

Remark 3.3. Let B be a unital C∗-algebra and u a strongly continuous unitary representation of H into U(B)where U(B)
is the group of unitary elements in B. In Theorem 3.2, if φ : G → B is a (θ, u)-covariant and continuous α-completely
positive map, then we can get a covariant version of Remark 2.3, which is also similar to Theorem 3.2 in [4].

More precisely, there are a Krein B-module (Xφ, Jφ) with a generating vector xφ ∈ Xφ , a Jφ-representation πφ : G →
LB(Xφ), an adjointable operator wφ : B → Xφ and a strongly continuous unitary representationθ : H → LB(Xφ) such
that
(i) φ(g) = ⟨xφ, π(g)xφ⟩ for all g ∈ G,
(ii) the set {π(g)(xφ · b) : g ∈ G, b ∈ B} is total in Xφ ,
(iii) θhπφ(g)θ ∗h = πφ(θh(g)) for all g ∈ G and h ∈ H ,
(iv) θhwφ = wφuh for all g ∈ G and h ∈ H ,
(v) w∗φπφ(g)wφ = mφ(g) for all g ∈ G,

where m is the left multiplication operator on B. If, in addition, φ(e) = idB , thenwφ can be chosen an isometry.

4. α-completely positive maps of groups into locally C∗-algebras

We recall that a locally C∗-algebra is a complete Hausdorff (complex) topological ∗-algebra of which the topology is
determined by the collection of all continuous C∗-seminorms on it. We denote by S(A) the set of all continuous C∗-
seminorms on a locally C∗-algebra A. For each p ∈ S(A), the kernel ker(p) = {a ∈ A : p(a) = 0} becomes a closed
ideal in A. Then Ap = A/ ker(p) is a C∗-algebra with the norm induced by p. We denote by qp the canonical map from A
onto Ap and by ap = qp(a) the image of a in Ap. Since S(A) can be considered as a directed set with the order p ≥ q if
p(a) ≥ q(a)(a ∈ A), for any p ≥ q in S(A) there is a canonical surjective map qpq : Ap → Aq such that qpq(ap) = aq for all
ap ∈ Ap. Then the set {Ap, qpq : Ap → Aq, p ≥ q} becomes an inverse system of C∗-algebras and the inverse limit lim

←−p
Ap

is a locally C∗-algebra which is isomorphic to A [12].
LetMn(A) denote the ∗-algebra of all n×nmatrices overAwith the usual algebraic operations and the topology obtained

by regarding it as a direct sum of n2 copies of A. Then Mn(A) is a locally C∗-algebra and it is isomorphic to lim
←−p

Mn(Ap),
where p runs through S(A). The topology on the locally C∗-algebra Mn(A) is determined by the family of C∗-seminorms
{pn : p ∈ S(A)}, where pn([aij]) =

[qp(aij)]

Mn(A)

.

Definition 4.1. Let A be a locally C∗-algebra, and let E be a (complex) vector space which is a right A-module, compatibly
with the algebra structure. Then E is called a pre-Hilbert A-module if it is equipped with an A-valued inner product
⟨·, ·⟩ : E × E → A which is linear in the second variable and satisfies the following properties:
(i) ⟨ξ, ξ⟩ ≥ 0, and the equality holds only if ξ = 0,
(ii) ⟨ξ, η⟩ = ⟨η, ξ⟩∗,
(iii) ⟨ξ, ηa⟩ = ⟨ξ, η⟩a.

We say that E is a Hilbert A-module if E is complete with respect to the seminorms ∥ξ∥p = p(⟨ξ, ξ⟩)1/2 for p ∈ S(A).
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In the remaining part of sections, A and E denote a locally C∗-algebra and a Hilbert A-module, respectively, unless
specified otherwise.

For any p ∈ S(A), let Np = {ξ ∈ E : p(⟨ξ, ξ⟩) = 0}. We write Ep for the Hilbert Ap-module E/Np with

(ξ +Np)qp(a) = ξa+Np and ⟨ξ +Np, η +Np⟩ = qp(⟨ξ, η⟩).

We denote by Qp the canonical map from E onto Ep and ξp denotes the image Qp(ξ). For any p ≥ q in S(A), there is a
canonical surjective map Qpq : Ep → Eq such that Qpq(ξp) = ξq for all ξp ∈ Ep. Then {Ep,Qpq : Ep → Eq, p ≥ q} is an inverse
system of Hilbert C∗-modules in the sense that

Qpq(ξpap) = Qpq(ξp)qpq(ap) for ξp ∈ Ep, ap ∈ Ap,

⟨Qpq(ξp),Qpq(ηp)⟩ = qpq(⟨ξp, ηp⟩) for ξp, ηp ∈ Ep,

Qqr ◦ Qpq = Qpr for p ≥ q ≥ r.

Then the inverse limit lim
←−p∈S(A)

Ep is a Hilbert A-module with

(ξp)p∈S(A)(ap)p∈S(A) =

ξpap


p∈S(A) and


(ξp)p∈S(A), (ηp)p∈S(A)


=

⟨ξp, ηp⟩


p∈S(A)

and it is isomorphic to the Hilbert A-module E .
LetLA(E) be the set of all adjointable operators on E . The strict topology onLA(E) is defined by the family of seminorms

{∥ · ∥p,ξ : p ∈ S(A), ξ ∈ E}, where

∥T∥p,ξ = ∥Tξ∥p + ∥T ∗ξ∥p.

Since T (Np) ⊆ Np for each p ∈ S(A) and T ∈ LA(E), we can define a linear map (qp)∗ : LA(E)→ LAp(Ep) by
(qp)∗(T )


Qp(ξ)


= Qp


T (ξ)


, (T ∈ LA(E), ξ ∈ E). (4.1)

We denote by Tp the operator (qp)∗(T ). The topology on LA(E) is given by the family of seminorms {p̃}p∈S(A) where
p̃(T ) = ∥Tp∥. Then LA(E) becomes a locally C∗-algebra. The connecting maps of the inverse system {LAp(Ep) : p ∈ S(A)}
are denoted by (qpq)∗ : LAp(Ep)→ LAq(Eq) and the connecting maps are defined as follows:

(qpq)∗(Tp)

Qp(ξ)


= Qpq


Tp(Qp(ξ))


for p ≥ q.

Then the family {LAp(Ep), (qpq)∗, p ≥ q} is an inverse systemofC∗-algebras and the inverse limit lim
←−p

LAp(Ep) is isomorphic
to LA(E). We also refer to [12] for inverse limits of Hilbert C∗-modules and Banach spaces.

In the following theorem, we give a Krein representation associated with an α-completely positive map of a topological
group into a locally C∗-algebra, which is a generalization of Theorem 2.2.

Theorem 4.2. If ρ : G → LA(E) is an α-completely positive map, then there exist a Krein A-module (Fρ, Jρ), a Jρ-unitary
representation πρ : G→ LA(Fρ) and an adjointable operator Vρ : E → Fρ such that

(i) ρ(g) = V ∗ρπρ(g)V for all g ∈ G,
(ii) the set [πρ(G)Vρ(E)] is dense in Fρ ,
(iii) V ∗ρπρ(g)

∗πρ(g ′)Vρ = V ∗ρπρ(α(g
−1)g ′)Vρ for all g, g ′ ∈ G.

Proof. For each p ∈ S(A), we consider the linear map ρp : G→ LAp(Ep) given by

ρp = (qp)∗ ◦ ρ,

where (qp)∗ : LA(E)→ LAp(Ep) is defined as in (4.1).
We claim that the map ρp is α-completely positive. Indeed, it is easy to see that

ρp

gg ′

= ρp


α(g)α(g ′)


= ρp


α(gg ′)


for all g, g ′ ∈ G.

Let g1, . . . , gn ∈ G and ξp,1, . . . , ξp,n ∈ Ep. Then we have that
n

i,j=1


ξp,i, ρp(α(g−1i )gj)ξp,j


=

n
i,j=1


Qp(ξi), (qp)∗


ρ(α(g−1i )gj)


Qp(ξj)


=

n
i,j=1

qp

⟨ξi, ρ


α(g−1i )gj


ξj⟩

≥ 0

and that
ρp(gi)∗ρp(gj)


=

(qp)∗(ρ(gi)∗ρ(gj))


≤ K


ρp(α(gi)−1gj)


where the constant K is in the condition (iii) of Definition 2.1.
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For g, g1, . . . , gn ∈ G, we obtain that
ρp

α(ggi)−1ggj


≤ M(g)


(qp)∗


ρ(α(gi)−1gj)


= M(g)


ρp

α(gi)−1gj


where the inequality follows from the condition (iv) in Definition 2.1. By Theorem2.2, there exist a KreinAp-module (Fp, Jp),
a Jp-representation πp : G→ LAp(Fp) and an adjointable operator Vp : Ep → Fp such that

(i) ρp(g) = V ∗p πp(g)Vp for all g ∈ G,
(ii) the set [πp(G)Vp(Ep)] is dense in Fp,
(iii) V ∗p πp(g)∗πp(g ′)Vp = V ∗p πp(α(g−1)g ′)Vp for all g, g ′ ∈ G.

In construction of the Krein C∗-module (Fp, Jp), we know that Fp is the completion of the quotient space C[G] ⊗ Ep/Np
where Np = {x ∈ C[G] ⊗ Ep : ⟨x, x⟩p = 0}. We define a linear map Ψpr : C[G] ⊗ Ep → C[G] ⊗ Er by

Ψpr(δg ⊗ ξp) = δg ⊗ Qpr(ξp) = δg ⊗ ξr .

For every g, g ′ ∈ G and ξp, ηp ∈ Ep we have that
Ψpr(δg ⊗ ξp),Ψpr(δg ′ ⊗ ηp)


=

Qpr(ξp), ρr(α(g−1)g ′)Qpr(ηp)


= qpr


⟨δg ⊗ ξp, δg ′ ⊗ ηp⟩


.

Hence, the map Ψpr induces a linear map from C[G] ⊗ Ep/Np into C[G] ⊗ Er/Nr that can be extended to a linear map, still
denoted by Ψpr , from Fp into Fr . Therefore, the set

{Fp,Ap,Ψpr : Fp → Fr , p ≥ r}

is an inverse system of Hilbert C∗-modules.
From the proof of Theorem 4.6 in [10], we obtain the following isomorphisms

LA(E,F ) = lim
←−
p

LAp(Ep,Fp) and LA(F ) = lim
←−
p

LAp(Fp).

Since Ψpr ◦ Vp = Vr ◦ Qpr holds for p, r ∈ S(A)with p ≥ r , we have that
Vp

p∈S(A) ∈ lim

←−
p

LAp(Ep,Fp).

Moreover, we have that Ψpr ◦ πp(g) = πr(g) ◦ Ψpr for all g ∈ G, so that
πp(g)


p∈S(A) ∈ lim

←−
p

LAp(Fp).

The map πρ : G → lim
←−p

LBp(Fp) given by πρ(g) =

πp(g)


p∈S(A) is a representation of G on Fρ . From the equality

ρp(a) = V ∗p πp(a)Vp, we obtain that

ρ(g) = V ∗ρπρ(g)Vρ where Vρ =

Vp

p∈S(A).

From the relation V ∗ρpπρp(g)
∗πρp(g

′)Vρp = V ∗ρpπρp(α(g
−1)g ′)Vρp , it follows that

V ∗ρπρ(g)
∗πρ(g ′)Vρ =


V ∗ρpπρp(α(g

−1)g ′)Vρp

p∈S(A) = V ∗ρπρ(α(g

−1)g ′)Vρ .

Since πρp is a Jp-unitary representation of G, we also have that

πρ(g−1) =

πρp(g

−1)

p∈S(A) =


πρp(g)

Jp

p∈S(A) = πρ(g)

Jρ ,

which implies that πρ is a Jρ-unitary representation of G on Fρ . Finally, it follows from the density of πp(G)

Vp(Ep)


in Fp

that the set πρ(G)

Vρ(E)


is dense in Fρ . �

5. Covariant α-completely positive maps of groups into locally C∗-algebras

In this section we establish a (projective) covariant representation theorem for α-completely positive maps of groups
equipped with (semi-)group actions into locally C∗-algebras.

Let (G,H, θ) be a group system and let (E, J) be a Krein A-module. An operator v ∈ LA(E) is called a J-unitary if
vJv = vvJ = idE where vJ = Jv∗J . A (J-)unitary representation u of H on E is a map from H into LA(E) such that each uh is
a (J-)unitary, uhh′ = uhuh′ and the map h → uh(ξ) is continuous for every ξ ∈ E .

Definition 5.1. Let (E, J) be a Krein A-module over a locally C∗-algebra.
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(1) A linear map ρ : G → LA(E) is called (θ, u)-covariant if ρ(θh(g)) = uhρ(g)u∗h for all g ∈ G and h ∈ H where u is a
unitary representation of H on E .

(2) A covariant J-representation π of G on (E, J) is a pair (π, v) satisfying

π(θh(g)) = vhπ(g)v
J
h for all g ∈ G and h ∈ H,

where π is a J-representation of G on (E, J) and v is a J-unitary representation of H on (E, J).

In the following theorem, we give a covariant representation of a group system which is associated with a covariant
α-completely positive map of a group into a locally C∗-algebra. This may be regarded as a generalization of Theorem 3.2.

Theorem 5.2. Let (G,H, θ) be a group system with an involution α on G and let ρ : G→ LA(E) be α-completely positive. If ρ
is (θ, u)-covariant and if the maps α and θ are equivariant in the sense that α ◦ θh = θh ◦ α for all h ∈ H, then there exist

(a) a Krein A-module (Fρ, Jρ)
(b) a covariant Jρ-unitary representation πρ of G into LA(Fρ),
(c) an adjointable operator Vρ : E → Fρ ,
(d) a unitary representation v : H → LA(Fρ),

such that

(i) ρ(g) = V ∗ρπρ(g)V for all g ∈ G,
(ii) the set [πρ(G)Vρ(E)] is dense in Fρ ,
(iii) V ∗ρπρ(g)

∗πρ(g ′)Vρ = V ∗ρπρ(α(g
−1)g ′)Vρ for all g, g ′ ∈ G,

(iv) vhVρ = Vρuh for all g ∈ G and h ∈ H.

Proof. Wewill follow the notations in the proof of Theorem4.2. Sinceρ is strict continuous andα-completely positive, there
exist a KreinA-module (Fρ, Jρ), a Jρ-unitary representationπρ : G→ LA(Fρ) and an adjointable operator Vρ ∈ LA(E,Fρ)
such that properties (i)–(iii) hold. Since Fρ = lim

←−p
Fp where Fp is the completion of C[G]⊗ Ep/Np, we may assume that Fρ

is the completion of C[G] ⊗ Ep/Np. For each h ∈ H , we define a linear map vh : Fρ → Fρ by

vh

δg ⊗ Qp(ξ)+Np


= δθh(g) ⊗ Qp


uh(ξ)


+Np, (g ∈ G, ξ ∈ E).

Suppose that α and θ are equivariant, that is, α ◦ θh = θh ◦ α for all h ∈ H . Let g, g ′ ∈ G, ξ, η ∈ E and h ∈ H . Then we
obtain that

vh

δg ⊗ Qp(ξ)+Np


, δg ′ ⊗ Qp(η)+Np


= qp


uh(ξ), ρ


θh(α(g)−1)g ′


η


=

δg ⊗ Qp(ξ)+Np, δθh−1 (g

′) ⊗ Qp

u∗h(η)


+Np


,

which implies that v ∗h = vh−1 . We also have that

vhπρ(g)v ∗h

δg ′ ⊗ Qp(ξ)+Np


= δθh(gθh−1 (g

′)) ⊗ Qp

uhu∗h(ξ)


+Np

= πρ

θh(g)


δg ′ ⊗ Qp(ξ)+Np


.

By linearity and continuity of πρ(g) and vh, we have that vhπρ(g)v ∗h = πρ

θh(g)


for all g ∈ G and h ∈ H . Moreover,

we see from equivariance of α and θ that Jρ commutes with vh for each h ∈ H , so that v ∗h = v
Jρ
h . Thus, we obtain that

vhv
Jρ
h = v

Jρ
h vh = idFρ and that

vhπρ(g)v ∗h = vhπρ(g)v
Jρ
h for all g ∈ G and h ∈ H.

Finally, we have that for any h ∈ H and ξ ∈ E

vhVp

Qp(ξ)


= δe ⊗ Qp


uh(ξ)


+Np = Vp


Qp

uh(ξ)


,

which means that vhVρ = Vρuh. This completes the proof. �

Let S be a unital semigroup. We denote by τ an action of S on a topological group G, which means that τs(τt(g)) = τst(g)
and τe(g) = g for all s, t ∈ S, where e is a unit element of S. Let T = {z ∈ C : |z| = 1} be the unit circle in C. A multiplier
on S is a function σ : S × S→ T satisfying the equations

σ(r, s)σ (rs, t) = σ(r, st)σ (s, t) and σ(s, e) = σ(e, s) = 1

for all r, s, t ∈ S. A projective isometric σ -representation of S on E is a map w : S → LA(E) which has the following
properties;

(a) ws is an isometry for each s ∈ S,
(b) wst = σ(s, t)wswt for all s, t ∈ S.
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Definition 5.3. Letw be a projective isometric σ -representation of S on E . A linear map ρ : G→ LA(E) is called projective
(τ , w)- covariant if

ρ(τs(g))ws = wsρ(g) for all s ∈ S and g ∈ G.

Let S be a left-cancellative discrete semigroup with a unit and let σ be a multiplier on S. We denote byE the Hilbert A-
module of all square summable E-valued functions defined onS with the obvious operations and anA-valued inner product.
Let S act on G by τ as an automorphism of G in the sense that s → τs is a homomorphism of S into the automorphism group
Aut(G).

Suppose that α and τ are equivariant in the sense that α ◦ τs = τs ◦ α for all s ∈ S. We claim that if ρ is an α-completely
positive map of G into LA(E), then the mapρ : G→ LA(E) defined byρ(g)f (s) = ρτs(g)f (s), (g ∈ G, f ∈ E, s ∈ S) (5.1)

is also α-completely positive.
Indeed, it is not hard to see thatρ(α(g1)α(g2)) =ρ(α(g1g2)) =ρ(g1g2) for every g1, g2 ∈ G.

Let g1, . . . , gn ∈ G and f1, . . . , fn ∈ E . Then we have that
n

i,j=1


fi,ρ(α(gi)−1gj)fj =

s∈S

n
i,j=1


fi(s), ρ(α(τs(ai)−1)τs(aj))fj(s)


≥ 0,

where the equality follows from the equivariance of α and τ . We also obtain that
n

i,j=1

⟨fi,ρ(gi)∗ρ(gj)fj⟩ ≤ K ′

s∈S

n
i,j=1


fi(s), ρ(α(τs(gi)−1)τs(gj))


fj(s)


= K ′

n
i,j=1


fi,ρ(α(gi)−1gj)fj ,

which means the condition (iii) in Definition 2.1. Similarly, we obtain that for someM(g)ρα(ggi)−1ggj ≤ M(g)
ρα(gi)−1gj .

Thus,ρ is α-completely positive.
For example, if we define a mapWs (s ∈ S) onE by

Wsf

(r) =


σ(s, t)f (t), if r = st for some t ∈ S,
0, if r ∉ s S,

thenW is a projectiveσ -isometric representation ofS onE and themapρ definedby (5.1) is projective (τ ,W )-covariant (see
Example 3.4 in [8]). Hence, if ρ is α-completely positive, thenρ is projective (τ ,W )-covariant and α-completely positive.

Let G, A and E be as above and let a left-cancellative semigroup S act on G by τ . Suppose that ρ : G → LA(E) is
α-completely positive and thatw is a projective isometric σ -representation of S on E .

Theorem 5.4. If ρ is projective (τ , w)-covariant and if α and τ are equivariant, then there exist a quadruple (Fρ, Jρ, πρ, Vρ)
as in Theorem 4.2 and a projective isometric σ -representation v : S→ LA(Fρ) such that πρ is projective (τ , v)-covariant.

Proof. Since ρ is α-completely positive, then there exists a Krein quadruple (Fρ, Jρ, πρ, Vρ) as in Theorem 4.2. We may
assume that Fρ is the completion of C[G] ⊗ Ep/Np. For each s ∈ S, we define a linear map vs in LA(Fρ) by

vs

g ⊗ Qp(ξ)+Np


= τs(g)⊗ Qp


ws(ξ)


+Np, (g ∈ G, ξ ∈ E).

We claim that v is a projective isometric σ -representation, For g1, g2 ∈ G, ξ, η ∈ E and s, t ∈ S, we have that
vs

g1 ⊗ Qp(ξ)+Np


, vs

g2 ⊗ Qp(η)+Np


=

ρp

τs(α(g1)−1g2)


Qp

ws(ξ)


,Qp


ws(η)


=

g1 ⊗ Qp(ξ)+Np, g2 ⊗ Qp(η)+Np


,

where the second equality follows from the equivariance of α and τ .
Moreover, we obtain that

vst

g ⊗ Qp(ξ)+Np


= σ(s, t)τs


τt(g)


⊗ Qp


ws

wt(ξ)


+Np

= σ(s, t)vsvt

g ⊗ Qp(ξ)+Np


,

which implies that v is a projective isometric σ -representation. It follows immediately from the definition of v that π is
projective (τ , v)-covariant and that vsVρ = Vρws for any element s ∈ S. �
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