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1. Introduction

Anindefinite inner product space is a vector space equipped with a symmetric or Hermitian bilinear form [v, w] for which
[v, v] can be positive, negative or zero. In the most important special case, it is a Hilbert space equipped with the indefinite
inner product given by [v, w] = (Jv, w) where J is a bounded, invertible and Hermitian operator [2]. Such a space was first
mathematically studied by Pontryagin for studying a mechanics problem. It is known that in massless quantum field theory
the state space will be a space with indefinite metric. Since the positivity is lack in a local quantum field theory, the GNS-
construction on an indefinite inner product is of increasing interest in the general (axiomatic) quantum field theory [1,3].
In particular, in the gauge quantum field theory, the locality is in conflict with positivity and then from the axiomatic point
of view, it is better to keep the locality condition and to give up the positivity condition which leads to the modification of
the axiom of positivity.

Motivated by these physical facts, Heo-Hong-Ji [5] introduced a notion of «-completely positive linear maps between
C*-algebras as a natural generalization of completely positive maps between C*-algebras, and Heo-Ji [6] proved the
Radon-Nikodym type theorem for the class of «-completely positive maps and constructed a covariant representation
associated to a covariant -completely positive maps. Here, positivity is inherent in Hermitian maps in terms of the map
«. The a-complete positivity provides a positive definite inner product associated to the indefinite one, and the interplay
between these two is indeed the characteristic feature of Krein spaces among all indefinite inner product spaces.

In this paper, we first introduce a notion of a (covariant) «-completely positive map of a topological group into a (locally)
C*-algebra, which is a counterpart of a (covariant) «-completely positive linear map between (locally) C*-algebras [5-8]. We
construct a (covariant) KSGNS (Kasparov-Stinespring-Gelfand-Naimark-Segal) type representation of a group on a Krein
module over a (locally) C*-algebra, which is associated to a (covariant) «-completely positive map of a group (system) [8].
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We now give a brief overview of the organization of the paper. In Section 2, we define a notion of an «-completely
positive map of a topological group with an involution into a (locally) C*-algebra. We prove a KSGNS type theorem for an
«a-completely positive map of a group into a C*-algebra and construct an «-completely positive linear map of C(T"), which
is induced by an «-completely positive map of Z". More generally, we show that bounded «-completely positive maps on
discrete groups induce «-completely positive linear maps on group C*-algebras.

Section 3 contains a covariant version of the KSGNS type theorem for a covariant «-completely positive map of a group
under some equivariance assumption of the map « and an action of group systems. In Section 4, we briefly review definitions
and properties of Hilbert modules over locally C*-algebras and we establish the KSGNS representation theorem for an «-
completely positive map of a topological group into a locally C*-algebra. Finally, in Section 5 we study a (projective) covariant
«o-completely positive map of a (semi-)group system into a locally C*-algebra and construct the associated (projective)
covariant J-representations.

2. a-completely positive maps on groups

A locally C*-algebra is a complete Hausdorff (complex) topological x-algebra of which the topology is determined by
the collection of all continuous C*-seminorms on it. It was first systematically studied by Inoue [9] as a generalization of
a C*-algebra, and then Phillips [12] studied locally C*-algebras that are needed for representable K-theory. It was known
that locally C*-algebras are useful for the study of non-commutative algebraic topology and quantum field theory, etc. We
refer [9,12] and its references for examples of locally C*-algebras.

We now introduce a notion of an «-completely positive map on a topological group with an involution which is a
counterpart of «-completely positive linear maps between (locally) C*-algebras [5-7].

Definition 2.1. Let G be a topological group with an involution ¢, that is, & = id¢, «(g) ™' = a(g~!) and a(e) = e where
e is a unit element of G and let 2 be a (locally) C*-algebra. A map ¢ : G — 2 is called «-completely positive if

(i) p(a(g182)) = P(a(gna(g)) = (g1g) forallgy, g; € G,
(i) forallgy, ..., g, € G, the operator matrix [(;S(oc(gf‘)gj)]?j:l is positive,
(iii) there exist a constant K > 0 such that

(6@ e@)] _, <K[b(a@ g,
forevery g¢,...,g, € G.
(iv) there exist a constant M(g) > 0 such that
[platee) " gg)]},_, < M@[o@ g,
forevery g, gy,...,8, € G.

It follows from (ii) in Definition 2.1 that ¢ (x(g~"))* = ¢(g) forallg € G.Let B be a C*-algebra and let X, Y be Hilbert 8-
modules. We denote by .£ 3 (X, Y) the set of all right B8-module maps T : X — Y for which there is an operator T* : Y — X,
called the adjoint of T, such that (Tx, y)y = (x, T*y)x(x € X, y € Y). It follows from the uniform boundedness theorem
that each operator T in £ (X, Y) is bounded. We write £5(X) for L£5(X, X), which becomes a C*-algebra with the operator
norm. For a detailed information on Hilbert C*-modules, we refer to [11].

Let J be a (fundamental) symmetry on a Hilbert 8-module X, i.e., ] = J* = J~'. Then we define a 8-valued indefinite
inner product (-, -); by

xyy=&Jy), &yeX).
In this case, the pair (X, J) is called a Krein 8-module. For each T € .£5(X), there exists an operator T/ € .£g(X) such that
<T(X)ay>] = (X, Tj(V))]’ (X,yEX).

The operator T’ is called the J-adjoint of T and we can see that ! = JT*]. We denote by U;(X) the set of all J-unitary
operators in £5(X),i.e. VT = TT/ = I. For more detailed study for indefinite inner product spaces, we refer to [2].

A representation of G on X means a homomorphism 7 : G — Lg(X). A unitary representation m of G on X is a
representation of G on X such that 7 (g)* = w(g~!) forevery g € G. Arepresentation 7 : G — £ (X) is called a J-unitary
representation of G on a Krein 8-module (X, J) if

ng H=n(g =Jr(g)* forallg €G.

Note that evenif 7 : G — U;(X) is a J-unitary representation, the operator 7 (g) in general is not a unitary for allg € G.
However, if 7 (g) commutes with J, then 77 (g) becomes a unitary operator.

Throughout this paper, 8, X and G denote a (locally) C*-algebra, a Hilbert 8-module with a 8-valued inner product (-, -)
and a (topological) group, respectively, unless otherwise specified.
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Let C[G, X] be the set of finitely supported functions from a group G into X. Then C[G, X] becomes a right 8-module with
the natural operations

i+ =A@ +HE. (- =A@, and (b)) =f(@b

forallg € G, A € Cand b € 8. We can identify an element f € C[G, X] with ), 8; ® f(g) where §,(g") is 1ifg = g’ or 0
otherwise. Thus, we will use the identification C[G, X] = C[G] ® X where C[G] éenotes a group algebra

In the following theorem, we will give a KSGNS type representation on a Krein C*-module associated to an o-completely
positive map on a group.

Theorem 2.2. If ¢ : G — Lg(X) is an a-completely positive map, then there exist a Krein 8-module (Yy, J4), a J-unitary
representation gy : G — Lg(Yy4) and an adjointable operator V : X — Yy such that

(i) ¢(g) = Vymy(g)Vy forallg € G;
(ii) the set [y (G)Vy(X)]is dense in Yy,
(iii) V374(8)*7s(8")Vy = Vimy(a(g~ g )V, forallg, g' € G.
If, in addition, ¢ (e) = idy, then V is an isometry.
Proof. The proof is standard, but we give a proof for readers’ convenience and the proof of Theorem 3.2. We first define a
B-valued sesquilinear form (-, -) on C[G, X] by

(. f) = Z (@), p(a(g™Hg"Hf(E)), (2.1)
8.8
where fi = Y 8 ® fi(g) and f, = Z 8y @ fo(g’) are in C[G, X]. Then the form (-, -) is positive semi-definite since

(f.f) = Ofor aﬁf € C[G, X]. By the Cauchy Schwarz inequality, the space Ny = {f € C[G, X] : (f,f) = 0} becomes a
B-submodule of C[G, X]. Hence, the B8-valued sesquilinear form (2.1) induces the B8-valued inner product on the quotient
B-module C[G, X]/Ny. Let Y, be the completion of the quotient space C[G, X]/ N, with respect to the norm induced by the
inner product.

We see that the involution « on G induces the involution J on C[G, X] given by

1 =] (Z 5 ®f(g)) = bam ®f(@). (2.2)
g g

Now we define an indefinite inner product [-, -] on the quotient space C[G, X]/ Ny by

[fi 4 Mo o+ No] =D [f(@). 082 (&), -

-84

Since the indefinite inner product [, -] is separately continuous, by the continuity, it can be extended to the whole space Y.
We denote by J, the extension of J to Y. Moreover, it is obvious that

(i Voo fo + Ng | = (fr + Np J (o + Np)).
From the properties of «-completely positive maps, we see that the operator J4 is a fundamental symmetry on Y, that is,
Js :]; :](;l. Hence, the pair (Yy, J) is a Krein 8-module.
For each x € X, we define amap Vy4(x) : G — X by (V¢x) (g) = x - 8.(g) where e denotes the unit element of G. By

identifying C[G, X/ N, with C[G] ® X /Ny, we can regard Vyx as 8. ® X + Ny. We easily see that V, is isometric whenever
¢(e) = idy. Let f € C[G, X] and x € X. Then we have that

(Vi + Nl =D (v p@@2)f @) = D _{x. p@)f @)y

g g

so that V;(f + Ny) = Zg ¢(g)f (g). Since ||Vq’§(f + N¢)||2 < K|f + N¢I|2 for any f € CJG, X], Vd’; is bounded. Thus, the
operator V;; can be extended to the whole space Y.
For each g € G, we define a linear operator 74(g) : C[G, X]/Ny — C[G, X1/ Ny by

o (@ + Ng) = D e ®F(E) + Ny (f € CIG,X]).
g/

Clearly, we have that [4(g)f1(g") = f(g7'g’) and 74(gg’) = 7,(g)7y(g’) forall g, g’ € G. By (iv) in Definition 2.1, we
obtain that foreach g € G

M) D (F@). (@) 'g")f &),

g.g"

M@) [If + N5 |-

|76 (@) (f + M) |

IA
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Therefore, 7y (g) can be extended to Y, as a bounded linear operator, which we still denote by the same notation 74 (g). On
the other hand, we obtain that for any f1, f, € C[G, X]

(Te @ (i + Np). fo + Ny) = Z(ﬁ(g’)a P(a(g) (g a(@)))f2(8")
g/’g//

= {fi + Ny Jos (8 Vs (o + Np))-

Thus, we have that g (8)* = J47s & Jo, which implies that 7 is a J4-unitary representation of G on Y.
Moreover, for any g, g’ € G and x € X we have that

Ve (@) (@)W () = VyJps(8 ") Bag) @ X)

= ¢(g 'a(g))x = p(a(g Hg)x
Vi (a(g™ gV (),

so that V74 (8)*7s(8")Vy = Vimg(a(g~NgNVy. O

We call the quadruple (g, Vg, Yy, Jo) in Theorem 2.2 the minimal KSGNS dilation of an «-completely positive map ¢ of
G into £ g(X).

Remark 2.3. Let B be a C*-algebra. In Theorem 2.2, if ¢ : G — B is an a-completely positive map, then we get a GNS
type representation theorem as that in [4] for completely positive maps on a topological group. More precisely, there
exist a Krein 8-module (X, J5), a Js-unitary representation 7y : G — £Lg(Xp) and a vector x4 € X, such that the set
{3 (g)(x4 - b) : g € G, b € B}istotal in Xy and ¢(g) = (x4, m4(g)xy) foranyg € G. O

The notion of a-completely positive linear maps between C*-algebras was introduced in [5] and was systematically
studied in [5-8]. We should mention that, in general, it is not easy to prove the a-complete positivity of linear maps between
C*-algebras.

Let Z" be the Cartesian product of n copies of the integers with an involution «. Ifamap ¢ : Z" — £g(X) is «-completely
positive, by Theorem 2.2, there exists the minimal KSGNS dilation (7, Vi, Yy, Jy) of . Let T" be the Cartesian product of

n copies of the unit circle and let z; be the ith coordinate function on T". Forany I = (i1, ..., iy) € Z", we setz' = zi‘ e z,’;".
Leto : C(T") — L3(Yy) be a homomorphism given by

o(z)=my(e), (=1,...,n) (2.3)
where e; is the n-tuple that is 1 in the ith entry and 0 in the remaining entries. Then we see that o (z') = 7y (I) for each

I € Z" and that « naturally induces the linear involution & on C(T") given by &(z') = z*®.

Proposition 2.4. Ifamap  : Z" — Lg(X) is a-completely positive, then there is an &-completely positive linear map 1; from
C(T") into £ (X) such that ¥ (z') = v () foreveryI € Z".

Proof. Let (7y, Vy, Yy, Jy) be the minimal KSGNS dilation of ¢ as in Theorem 2.2 and let o be defined as in (2.3). We define
amap ¢ of C(T") into £z (X) by

V() =Vio(H)Vy ( €Ca)). (24)

It is obvious from the definition that fﬁ (z") = ¥ (I). To prove the &-complete positivity of the map fﬁ itis enough to consider
monomials of form z' (I € Z") due to the linearity and continuity. For any I, I’ € Z", we have that

T 1y Yy (Sa)adl) _ (et +1) = Jf(a(ll 'ZI/)),
7 (aeh-aeh) =vio (z ) v = :1//(1+1/)=17f(z’.z").

From the linearity and continuity, we obtain that for all f;, f, € C(T")
J(aql) a(h) = IZ(501 f)) = V(i - fo).

For any m € N, take monomials z', z'1, ..., z'm € C(T") and elements 1, . .., Xn» € X. Then we have that

m

(xi, ¥ @ (") 2h)x)) = Z(x,-, Y(@(~=1) +1)x) > 0

ij=1
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where the inequality follows from the condition (ii) in Definition 2.1. We also have that

Y @22 %) = (i Vi (a1 — D) + 1+ )Vyx;)

ij=1 ij=1
m ~
< M) Y i Y@ 2Nx)
ij=1
where the inequality follows from (iv) in Definition 2.1. Hence, 1} is an @-completely positive linear map from C(T") into
LgX). O

Let G be a locally compact group with a left Haar measure p and we denote by L!(G) the space of absolutely integrable
functions with respect to . Then L!(G) becomes a x-algebra with operations of convolution and involution;

fixfa(g) = ff1(h)fz(h71g)du(h) and f*(g) =A@ 'f@g™)
G

where A is a modular function of G. The algebra L'(G) is unital if G is discrete. The group C*-algebra C*(G) is the closure of
the universal representation i, of G where 7, is the direct sum of all irreducible representations (up to unitary equivalence)
of G. Equivalently, the group C*-algebra C*(G) is the closure of L!(G) with respect to the norm

IfIl = sup{llw (F)| : 7 isa * -representation of L' (G)}.

We now consider a discrete group I" with an involution «.. The involution « on I” induces a linear involution & : C[I"] —
C[I'] given by & (D", 5i 8g;) = D1, Si Sa(g)- Clearly, we have that &@* = id¢(r) and &(8.) = 8, which implies that & is an
involution on a group algebra C[I"]. Suppose that ¢ : I’ — Lg(X) is a-completely positive. Now, we define a linear map
@ :C[I'] = £Lz(X) by

@ (Zsi agi) =) sib(@). (25)
i=1 i=1

Since « is isometric and @ (f)* = a(f*), the map a extends by continuity to a linear Hermitian involution on a group C*-
algebra C*(I'). In the remaining part of this section, we consider an «-completely positive linear map on a group C*-algebra,
which is induced by an «-completely positive map on a group.

Theorem 25. If ¢ : I' — Lg(X) is bounded and a-completely positive, the linear map @ : C[I'] — J£Lg(X) given
by (2.5) extends to an a-completely positive linear map on the group C*-algebra C*(I').

Proof. Letf; = Y [ s 8z and f, = Z:lj tj 8, be in C[I"]. Then we have that

st (eaihy)

D @) *d(f) = st(&h)

_ {¢E&Ul * f2))
T @(fi % f).

We also have that @ (f;))* = Y, Sip(ae(g; D)) = @ (a(fy)) = @ (f;"). Thus, @ is a linear Hermitian map on C[I"].
Letxi,...,x, € Xandletfy, ..., f, € C[I'1withfi = )", sidg, . Then we have that

Y e@@RTxIH))x) =Y Z suesit (Xi» & (cr(gi) ' gi)x;) = 0
i.j ij
where the inequality follows from the o-complete positivity of ¢. We also obtain that
D oo @x) =Y susilxi. dgi) " d(gix)
Lj ij okl

<KZX,, (@()* = f)x;).

Moreover, we have that

D i (G * )" * (B x£)x;) ZZs,ksﬂ xi. ¢ (e (ggi) ' 281) )
ij

ij

< M(g)z xi, (@ (f)* * f;)x)
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where the inequality follows from (iv) in Definition 2.1. Let f = )", 58, be in C[I"]. Then we have that
D (i @@ =)+ Fxf)x) < Y0256l (i, P (TS, * )7 * By +))x;)
ij ij k

< M(f)z Xi, (T * (f))x),

where M (f) = 2 max{M(gx)} >, |s|2. It also follows from the boundedness of ¢ that ||® (f)|| = || Y oeske@oll < lloll-If Il
where || - ||; is the L'-norm on C[I"]. Hence, @ is an &-completely positive and bounded linear map on C[I"] into £ 5 (X), s0
that @ extends to an @-completely positive linear map on C*(I"). O

3. Covariant ¢-completely positive maps on group systems

Let G, H be topological groups. We denote by Aut(G) the group of all automorphisms of G endowed with the pointwise
convergence topology. The action 6 of H on G means a continuous homomorphism of H into Aut(G). We will refer to this
triple (G, H, ) as a group system. For example, let H = SL,(R) and let G be the 3-dimensional Heisenberg group. It is known
that H acts as automorphisms on G.

Definition 3.1. Let (G, H, 6) be a group system with an involution o on G and let U be a strongly continuous unitary
representation of H into U (X) where U(X) is a group of all unitary elements in .£ g (X).

(1) Amap ¢ : G — Lg(X) is called (0, U)-covariant if
¢ (0n(g)) = Uppp(g)U; forallg € Gand h € H.
(2) Two maps 6 and « are equivariant if 6, o« = « o O, for all h € H.

The following theorem is a covariant version of Theorem 2.2.

Theorem 3.2. Let (G, H, 0) be a group system with a continuous involution « on G and let U be a strongly continuous unitary
representation of H into U(X). Suppose that ¢ : G — Lg(X) is a (8, U)-covariant and continuous c-completely positive map
and that 6 and « are equivariant. Then there exist

(a) aKrein 8-module (Yy, J5)
(b) ajs-representation g : G — Lg(Yyp),
(c) an adjointable operator Vg : X — Yy, 5
(d) a strongly continuous unitary representation 6 : H — £g(Yy),
such that
(i) ¢(g) = Vymy(g)Vy forallg € G,
(ii) the set [y (G)Vy(X)] is dense in Yy,
(iii) V7 (8)*ms(8")Vy = Vimg(a(g~ gV, forallg, g € G,
(iv) Oprp(€)8," = 67 (208, = 74 (6n(g)) forallg € Gand h € H,
(V) 6,V = VyUy forallg € Gand h € H.

Proof. Here, we use the same notations as in the proof of Theorem 2.2. Since the map ¢ : G — Lz (X) is a-completely
positive, there exist a Krein 8-module (Yy, J), a Jo-unitary representation 4 : G — £Lg(Yy) and an adjointable operator

Vy 1 X — Yy satisfying properties (i)-(iii). Hence, it is sufficient to construct a unitary representation 6 of Hon Yy satisfying
properties (iv) and (v).
Suppose that two maps 6 and « are equivariant. For each h € H, we define a linear map 9,., C[G, X] — C[G, X] by

O (Z 3 ®f (g)> = Z(Seh(g> ® Unf(g).
g g

Letfi = >, 8; ® fi(g) and f = ),/ 8y ® f2(g’) be elements in C[G, X]. We obtain from the covariance property of ¢ that

(Bn(), Bh(1)) = D (Unf1(@), $((Br(@)™)0n(g")) Unfa(8)
8.8

=Y (i@, p(a@ g )f(&))
g.g

= <Z 8, ® f1(8), Z5g’ ®f2(g/)>-
g g
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Since N is invariant under the linear map 511, by passing to the quotient, we get an isometric linear map on C[G, X]/ N,
again denoted by 6;. Then we have that

<5h(2 8, ®fi(g) + w¢), Y by ®h(EH + N¢> =Y (i@, ¢((®) 01 (& NUs(g))
g g g.g

= <Z 8g ® fi(g) + Ng, Zagh_l(g/) ® Uhqu(g/) + ,A/¢>
g g

which implies that 0% = ’9‘,171. Since 6 is clearly a group homomorphism, we have that fisa unitary representation.
To show the continuity of 8, it suffices to consider simple tensors of the form §; ® & 4 . For a net {h,} in H converging
to h, we have that

(6 (8 ® & + Ny) — Bh(S @ & + Ny), 8y ® 1+ )
= (Un. [ (Bh, (g7 1)g") — d(@Gr(e™)eNIn) + ((Un, — Un)E. dp((6(g~"))g)m) — 0
since U is a unitary representation and ¢ and « are continuous. Moreover, we can obtain that 5h71 (g)g * = (6p(g)) for all

g € Gand h € H. However, each 511 commutes with Jg, so that 5h71 (g)gh* = 5,,71 (g)ah]‘” for every h € H. Furthermore, we
have that

0V () = Sgy0 @ Unx + Ny = VpUp(®),  (x € X),
which implies that 5,,V¢ = VU for all h € H. This completes the proof. O

Remark 3.3. Let B be a unital C*-algebra and u a strongly continuous unitary representation of H into U(8) where U(B)
is the group of unitary elements in 8. In Theorem 3.2,if ¢ : G — B is a (8, u)-covariant and continuous o-completely
positive map, then we can get a covariant version of Remark 2.3, which is also similar to Theorem 3.2 in [4].

More precisely, there are a Krein 8-module (X, J4) with a generating vector X, € X,, a Jg-representation wy : G —
£L5(Xy), an adjointable operator wy : 8 — X, and a strongly continuous unitary representation §:H—> £ 8(Xg) such
that

(i) ¢(g) = (xy, w(g)xy) forallg € G,

(i) the set {m(g)(xs - b) : g € G, b € B} is total in X,
(iiii) By (2)6," = 74 (64 (2)) forallg € Gand h € H,
(iv) 5hw¢ = wyup forallg e Gand h € H,

(v) wj;nq;(g)wd, = My forallg € G,

where m is the left multiplication operator on 8. If, in addition, ¢(e) = idg, then w, can be chosen an isometry.

4. a-completely positive maps of groups into locally C*-algebras

We recall that a locally C*-algebra is a complete Hausdorff (complex) topological x-algebra of which the topology is
determined by the collection of all continuous C*-seminorms on it. We denote by S(+) the set of all continuous C*-
seminorms on a locally C*-algebra +. For each p € S(+), the kernel ker(p) = {a € 4 : p(a) = 0} becomes a closed
ideal in 4. Then A, = +/Kker(p) is a C*-algebra with the norm induced by p. We denote by q, the canonical map from 4
onto 4, and by a, = q,(a) the image of a in #,. Since S(+4) can be considered as a directed set with the order p > q if
p(a) > q(a)(a € A), forany p > qin S(A) there is a canonical surjective map qpq : 4, — 4, such that qp(a,) = a4 for all
ap € #p. Then the set {Ap, qpq : Ap — A, p = q} becomes an inverse system of C*-algebras and the inverse limit 1(i£11J Ay

is a locally C*-algebra which is isomorphic to 4 [12].

Let M, (+) denote the x-algebra of all n x n matrices over - with the usual algebraic operations and the topology obtained
by regarding it as a direct sum of n® copies of . Then M, () is a locally C*-algebra and it is isomorphic to l(iﬂ]p M, (Ap),
where p runs through S(.4). The topology on the locally C*-algebra M, (+) is determined by the family of C*-seminorms
{pn : p € S(A)}, where py([az]) = [[[ap(ap]],, -

Definition 4.1. Let 4 be a locally C*-algebra, and let & be a (complex) vector space which is a right A-module, compatibly
with the algebra structure. Then € is called a pre-Hilbert 4A-module if it is equipped with an +-valued inner product
(-,-) : & x & > A which is linear in the second variable and satisfies the following properties:

(i) (&, &) = 0, and the equality holds only if ¢ = 0,
(ii) (§,m) = (n, &),
(iii) (&, na) = (&, n)a.

We say that & is a Hilbert A-module if & is complete with respect to the seminorms ||§ ||, = p((§, ENV2 forp € S(A).
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In the remaining part of sections, A and & denote a locally C*-algebra and a Hilbert 4-module, respectively, unless
specified otherwise.
Foranyp € S(4A),let N, = {§ € & : p({§, §)) = 0}. We write §, for the Hilbert A,-module &/, with

E+M)gy(a) =Ea+ N, and (£ + Np, N+ M) = q,((§, ).

We denote by Q, the canonical map from & onto &, and &, denotes the image Q,(£). For any p > ¢ in S(4), there is a
canonical surjective map Qpq : &, — &; such that Quq(§,) = &, forall§, € §,.Then {&,, Qyq : &, — &;, p > q} is aninverse
system of Hilbert C*-modules in the sense that

Qg (pap) = Qpq(€p)dpq(ap) foréy € &, ap € A,
<qu(§p)7 qu(’/p)) = qpq(@pv 77p>) for Ep, Np € 8137
QuoQy=Qy forp>qg=>r.

Then the inverse limit lim &y is a Hilbert A-module with
<—pes(4)

(ép)peS(A)(ap)peS(A) = (épap)pes(%) and <(Ep)peS(A)s (np)peS(A)> = ((ép’ np>)pes(ﬂ)

and it is isomorphic to the Hilbert A-module &.
Let .£ 4 (&) be the set of all adjointable operators on &. The strict topology on £ 4 (&) is defined by the family of seminorms
{Il - llp,e : p € S(A), & € &}, where

ITlp.e = ITEMp + ITEIlp-
Since T(MN,) C N, foreachp € S(A) and T € L£,4(€), we can define a linear map (qp)+ : L4(E) — L4, (&) by

[(@)«(D](Q &) = Q(T®)), (T € £4(6), & €8). (4.1)

We denote by T, the operator (q,).(T). The topology on £,4(€) is given by the family of seminorms {p}pes4) Where
p(T) = ||Ty|l. Then £, (&) becomes a locally C*-algebra. The connecting maps of the inverse system {£4,(&,) : p € S(A)}
are denoted by (qpq)« : L4, (&) = L.4,(&;) and the connecting maps are defined as follows:

[(@0)(Tp)](Qu(&)) = Quq(Tp(Qy(£))) forp = g.

Then the family {£ 4,(&,), (dpg)+, P > q} is aninverse system of C*-algebras and the inverse limit l(ir_np £ 4,(8p) isisomorphic

to £ 4(&). We also refer to [12] for inverse limits of Hilbert C*-modules and Banach spaces.
In the following theorem, we give a Krein representation associated with an «-completely positive map of a topological
group into a locally C*-algebra, which is a generalization of Theorem 2.2.

Theorem 4.2. If p : G — L,4(&) is an a-completely positive map, then there exist a Krein 4-module (¥,,],), a ]J,-unitary
representation i, : G — £ 4(¥,) and an adjointable operator V,, : & — F, such that

(i) p(g) = Vyim,(g)V forallg € G,
(ii) the set [7,(G)V,(€)] is dense in F,,

(iii) V7, (8)*m,(g")V, = Vim,(a(g~")g")V, forallg, g’ € G.
Proof. For eachp € S(4), we consider the linear map p, : G — £, (&) given by
Pp = (Qp)« 0 p,
where (qp)« : L4(8) —> L4,(&p) is defined as in (4.1).
We claim that the map pj is a-completely positive. Indeed, it is easy to see that

rp(gg") = pp(a(@)a(g)) = py(a(gg)) forallg, g’ €G.

Letgy,...,gn € Gand &1, ..., &y € &,. Then we have that
D o ool NgIERT) = D _(QuED. (@)« (p((g )g))Q (&)
ij=1 i,j=1
= > ay((& p(x(g Hg)E) =0
ij=1
and that

[p (@) Pp(8)] = (@)« (p(@)*P(g))] < K[pp(ex(g)'g)]

where the constant K is in the condition (iii) of Definition 2.1.
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Forg, g1,..., 8 € G, we obtain that
[1op(r(g8)~"2g) ] < M(@) [(@p)«(p(a (@) 'g))] = M(@) [pp(c(2)'g))]

where the inequality follows from the condition (iv) in Definition 2.1. By Theorem 2.2, there exist a Krein 4,-module (£, J,),
a Jp-representation 1, : G — L4, (¥,) and an adjointable operator V,, : €, — F, such that

(i) pp(g) =V mp(g)V, forallg € G,
(ii) the set [7,(G)V,(&p)] is dense in F,

(iii) Vymy(8)* mp(8)Vp = V;np(a(g‘])g/)vp forallg,g’ € G.

In construction of the Krein C*-module (#,, J,), we know that %, is the completion of the quotient space C[G] ® &,/ N,
where N, = {x € C[G] ® &, : (X, x), = 0}. We define a linear map ¥, : C[G] ® &, — C[G] ® & by

(8 ® &p) = 85 ® Qur(§p) =65 ® &;.
For every g, g’ € Gand &,, 1, € &, we have that
(Do (85 ® &), ¥pr By @ mp)) = (Qur (§p), or (&™) Qr ()
= qpr(<8g ® Ep» 8g’ ® 7]p>)

Hence, the map ¥, induces a linear map from C[G] ® &,/ into C[G] ® &, /N that can be extended to a linear map, still
denoted by ¥, from ¥, into #;. Therefore, the set

{Fp, Ap, Ypr : Fp —> Fr, p =1}

is an inverse system of Hilbert C*-modules.
From the proof of Theorem 4.6 in [ 10], we obtain the following isomorphisms

£A(8,T):l(ir_n£Ap(€pa?p) and oCA(?):LilLﬁAP(?p)
p p

Since ¥, o V, = V; o Qp holds for p, r € S(A) with p > r, we have that

(Vp)pes(,,q,) € @ °C=A>p (EP’ %)
p

Moreover, we have that ¥, o 7,(g) = 71,(g) o ¥y, forallg € G, so that

(75(8)) pes ) € M Lo, (Fp).
p

The map 7, : G — 1<i£1p Lz, (Fp) given by 7,(g) = (np(g))pesw is a representation of G on ,. From the equality
pp(a) =V, mp(a)V,, we obtain that
p(g) =V, 7,(8)V, whereV, = (V) .-

From the relation V;pnpp (8)*mp, (g’)vpp = V;pnpp (x (g‘l)g’)Vp , it follows that
Vo, (8) 7y (8N = (V5,7 (@87 DENWp, ) pesny = Voo (@87 ENV,.
Since 7, is a J,-unitary representation of G, we also have that
78" = (7, (gil))pesm) = (7 (g)]p)pesm) = 7,(8)"

which implies that 7, is a J,-unitary representation of G on ¥,,. Finally, it follows from the density of 7,(G) [Vp(Sp)] in %,
that the set 77,,(G)[V,,(€)] is dense in F,. O

5. Covariant «-completely positive maps of groups into locally C*-algebras

In this section we establish a (projective) covariant representation theorem for o-completely positive maps of groups
equipped with (semi-)group actions into locally C*-algebras.

Let (G, H, 0) be a group system and let (&,]) be a Krein 4-module. An operator v € J£,4(&) is called a J-unitary if
Vv = v = idg where v/ = Jv*]. A (J-)unitary representation u of H on & is a map from H into £, (&) such that each uy, is
a (J-)unitary, upy = upuy and the map h — uy(£) is continuous for every & € 6.

Definition 5.1. Let (&, J) be a Krein A-module over a locally C*-algebra.
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(1) Alinearmap p : G — £,4(&) is called (8, u)-covariant if p(64(g)) = upp(g)u} forallg € Gand h € H whereuis a
unitary representation of H on €.
(2) A covariant J-representation 7 of G on (&, J) is a pair (i, v) satisfying
T (Or(g)) = vhn(g)v,’1 forallg e Gandh € H,
where 7 is a J-representation of G on (&, J) and v is a J-unitary representation of H on (&, J).

In the following theorem, we give a covariant representation of a group system which is associated with a covariant
«a-completely positive map of a group into a locally C*-algebra. This may be regarded as a generalization of Theorem 3.2.

Theorem 5.2. Let (G, H, 0) be a group system with an involution « on G and let p : G — £ 4(&) be a-completely positive. If p
is (6, u)-covariant and if the maps o and 6 are equivariant in the sense that « o 6, = 6, o « for all h € H, then there exist

(a) aKrein A-module (%,,],)

(b) a covariant ] ,-unitary representation i, of G into £ ,(F,),
(c) an adjointable operator V,, : § — %,

(d) a unitary representation v : H — £ 4(F,),

such that

(i) p(g) =V 7, (g)V forallg € G,
(ii) the set [7,(G)V,(&)]is dense in F,,

(ifi) Vim,(g)*m,(g")V, = Vim,(a(g~")g")V, forallg, g’ € G,
(iv) vV, =V, u, forallg € Gand h € H.

Proof. We will follow the notations in the proof of Theorem 4.2. Since p is strict continuous and «-completely positive, there
exist a Krein A-module (¥,, J,), aJ,-unitary representation, : G — £ (¥,) and an adjointable operatorV, € £L (&, ¥,)
such that properties (i)-(iii) hold. Since ¥, = l(ian Fp where ¥, is the completion of C[G] ® &,/V,, we may assume that F,

is the completion of C[G] ® &,/N,. For each h € H, we define a linear map v, : ¥, — ¥, by
Uh (8 ® Q&) + Np) = 8g,0) ® Qu(un(§)) + Ny, (2 €G, §€68).

Suppose that « and 6 are equivariant, thatis,« o 6, = 6, o forallh € H.Letg, g’ € G,€,n € & and h € H. Then we
obtain that

<vh (8, ® Q(E) + M), 8y ® Q) + wp> = qp (un(®), p(Bn ()" ")g')n))

= (8 ® Q&) + Np. 85,y &) ® Qo () + Ny,

which implies that v, = v;-1. We also have that

T, (@) (8 ® Qp(€) + M) = oe0,1 e ® Qp(untty(€)) + N
=Ty (eh(g)) (Sg’ ® Qp(g) + va)'
By linearity and continuity of 7,(g) and v,, we have that v,7,(g)v,* = 7, (Qh(g)) forallg € Gand h € H. Moreover,

we see from equivariance of & and 6 that J, commutes with v, for each h € H, so that v, = v{f . Thus, we obtain that

Un v{f’ = v{f’ vy = idg, and that

VnTT, (8) V" = v, (g)v{f forallg € Gand h € H.
Finally, we have that foranyh € Hand & € &
V5 (Q(&)) = 8e ® Q(un(®)) + Ny =V (Q(n(8))) -
which means that v,V, = V,up. This completes the proof. O

Let 4 be a unital semigroup. We denote by 7 an action of § on a topological group G, which means that z;(7;(g)) = t(g)
and 7.(g) = g foralls, t € &, where e is a unit element of 8. Let T = {z € C : |z| = 1} be the unit circle in C. A multiplier
on 4 is a function o : § x § — T satisfying the equations

o(r,s)o(rs,t) =o(r,st)o(s,t) and o(s,e) =o(e,s) =1
forall r,s,t € 4. A projective isometric o-representation of § on & isamap w : § — £4(&) which has the following
properties;

(a) ws is an isometry for each s € 4§,
(b) wy = o (s, t)wswy foralls, t € 8.
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Definition 5.3. Let w be a projective isometric o -representation of § on &. Alinear map p : G — £ 4(&) is called projective
(T, w)- covariant if

p(ts(g))ws = wsp(g) forallse Sandg € G.

Let & be a left-cancellative discrete semigroup with a unit and let o be a multiplier on §. We denote by € the Hilbert A-
module of all square summable &-valued functions defined on § with the obvious operations and an +A-valued inner product.
Let 8 act on G by 7 as an automorphism of G in the sense that s — 7, is a homomorphism of § into the automorphism group
Aut(G).

Suppose that « and 7 are equivariant in the sense that o o 7y = 7; o & for all s € 4. We claim that if p is an a-completely
positive map of G into £ 4 (&), then the map 0 : G — £,4(&) defined by

[p@f]s) = p(x@) (), EeGCfeEsed) (5.1)

is also a-completely positive.
Indeed, it is not hard to see that

pla(gna(gr)) = p(a(gig) = 0(g1g) foreverygi, g €G.
Letgy,...,g € Gandfy, ..., fr € €. Then we have that

> (i Ble@) ') = D ) (). pla(ta) ) s(@))fis)) = 0,

ij=1 sed ij=1

where the equality follows from the equivariance of o and t. We also obtain that

i, (&) pEfi) =K i(8), p(a(Ts(g) )Ts(g))fi(s
(fi. 0(g)" P (g)fi) ' (fi(s), pla(ts(g) ™ Hs(8)) (fi(9)))

ij=1 ses ij=1
n
= K'Y {fi. Blel@) 'g)f),
ij=1
which means the condition (iii) in Definition 2.1. Similarly, we obtain that for some M(g)
[7(c(e2) "ag)] < M(@) [P(e(@)'g)]-
Thus, p is a-completely positive.

For example, if we define a map W (s € §) on 3 by

__Jo(s,t)f(t), ifr =stforsomet € 4§,
[Warl = {o, ifr¢ss,

then W is a projective o -isometric representation of § on € and the map p defined by (5.1)is projective (t, W)-covariant (see
Example 3.4 in [8]). Hence, if p is a-completely positive, then § is projective (t, W)-covariant and «-completely positive.

Let G, 4 and & be as above and let a left-cancellative semigroup § act on G by 7. Suppose that p : G — L4(&) is
a-completely positive and that w is a projective isometric o -representation of $ on €.

Theorem 5.4. If p is projective (t, w)-covariant and if « and t are equivariant, then there exist a quadruple (¥,,],, 7y, V)
as in Theorem 4.2 and a projective isometric o -representation v : 8 — £ 4(F,) such that m, is projective (t, v)-covariant.

Proof. Since p is a-completely positive, then there exists a Krein quadruple (¥,,J,, 7,, V,) as in Theorem 4.2. We may
assume that ¥, is the completion of C[G] ® &,/N,. For each s € §, we define a linear map v; in £ 4(F,) by

Us(g®Qp(E)+=Np):ts(g)®Qp(ws(§:))+eva (g€G §€é).
We claim that v is a projective isometric o -representation, For g;, g, € G, &, n € § ands, t € 4, we have that
(Us(gl ®Qy(§) + Np)s Us(gZ ®Qy(m) + Np)) = (pp(Ts(a(g1)71g2))Qp(ws($))s Qp(ws(n)»
= (281 @ Q&) + Np. 22 @ Q1) + M),

where the second equality follows from the equivariance of « and .
Moreover, we obtain that

Vst (8 ® Qp(§) + M) = (5. )Ts(n(8)) ® Qo(ws(we(8))) + Ny
= O‘(S, f)USUt(g ® Qp(g) + ‘NP)’

which implies that v is a projective isometric o-representation. It follows immediately from the definition of v that r is
projective (z, v)-covariant and that v;V, = V,w; for any elements € 8. O
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