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Abstract

We consider the nonlinear elliptic problem

−�u = up in ΩR, u > 0 in ΩR, u = 0 in ΩR

where p > 1 and ΩR = {x ∈ RN : R < |x| < R + 1} with N � 3. It is known that as R → ∞, the number
of nonequivalent solutions of the above problem goes to ∞ when p ∈ (1, (N + 2)/(N − 2)), N � 3. Here
we prove the same phenomenon for any p > 1 by finding O(N − 1)-symmetric clustering bump solutions
which concentrate near the set {(x1, . . . , xN ) ∈ ΩR : xN = 0} for large R > 0.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the semilinear elliptic equation{
�u + up = 0 in ΩR,

u > 0 in ΩR,

u = 0 on ∂ΩR

(1.1)
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where 1 < p < ∞ and ΩR is an expanding annulus in R
N , N � 3, i.e.

ΩR :=
{

x = (x1, . . . , xN) ∈R
N : R2 < |x|2 :=

N∑
i=1

x2
i < (R + 1)2

}
(1.2)

with R large enough.
If the domain ΩR is a ball and p ∈ (1, (N + 2)/(N − 2)), problem (1.1) has a unique

solution which is radially symmetric in virtue of the classical result of Gidas, Ni and Niren-
berg [12]. On the other hand, it is not difficult to show for p ∈ (1, (N + 2)/(N − 2)) that even
though the annulus ΩR has a rotational symmetry, a least energy solution of (1.1) is not radi-
ally symmetric for large R > 0. In past decades, Coffman [9], Li [15], Byeon [4–6], Catrina and
Wang [8] found many nonequivalent (nonradial) solutions of (1.1) in the subcritical case, i.e.
p < (N + 2)/(N − 2). Here we say functions u and v on ΩR are nonequivalent if u(·) �= v(g ·)
for any g ∈ O(N). Even more, it is known in [15] and [6] that for some supercritical exponent
p > (N +2)/(N −2), there exist nonradial solutions of (1.1) for large R > 0. In fact, for a typical
closed subgroup O(k)×O(N −k) ⊂ O(N) with any integer 2 � k � N/2, it is known in [6] that
for p ∈ (1, (N − k + 2)/(N − k − 2)), there are two O(k) × O(N − k)-symmetric solutions uR

and vR of (1.1) such that uR concentrates near {(x1, . . . , xN) ∈ ΩR | xk+1 = · · · = xN = 0} for
large R > 0 and vR near {(x1, . . . , xN) ∈ ΩR | x1 = · · · = xk = 0} for large R > 0. The concen-
tration sets are special cases of locally minimal orbital sets defined in [6], where the solutions
concentrating around locally minimal sets were found. All solutions in the works cited above
are locally minimal energy solutions in the class of G-symmetric functions for some closed sub-
group G ⊂ O(N). Even though those solutions were found for some supercritical exponents
p > (N + 2)/(N − 2), only finite type of solutions of (1.1) have been known. On the other hand,
it was shown by Kazdan and Warner [14] that problem (1.1) always has a radial solution even
for any p > 1. So it is natural to wonder whether for any p > 1, there exist many nonequivalent
nonradial solutions of (1.1) for large R > 0.

In this paper, we answer positively to the question by finding clustering bumps in the class of
O(N − 1)-symmetric functions. More precisely, we look for solutions to (1.1) which are radial

with respect to x1, . . . , xN−1 variables. We define s =
√∑N−1

i=1 x2
i and z = xN . Then, a func-

tion u(x1, . . . , xN) solves problem (1.1) if and only if v(s, z) := u(x1, . . . , xN−1, xN) solves the
following two dimensional problem⎧⎪⎨⎪⎩

�s,zv + N − 2

s

∂v

∂s
+ vp = 0 in AR,

v > 0 in AR,

v = 0 on ∂AR

(1.3)

where

AR := {
(s, z) ∈ R

2: R <
∣∣(s, z)∣∣< R + 1

}
(1.4)

is an expanding annulus in the plane as R → ∞. Therefore, we are led to look for solu-
tions of (1.3) which is even with respect to s ∈ R. We note that for any t (R) > 0 with
limR→∞ t (R) = 0,

lim inf
{|s|: (s, z) ∈ AR, |z| � t (R)R

}= ∞.

R→∞
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Thus, as R → +∞, we are brought to consider the following limit problem{
�u + up = 0 in S,

u > 0 in S,

u = 0 on ∂S

(1.5)

where S is an infinite strip S := (0,1)×R (see Section 2.2). The basic cell in our construction is
a solution of (1.5) which does exist for any p > 1 and is unique up to a translation. Then, for any
integer k, provided R is large enough, we build solutions to (1.3) gluing together k basic cells,
which are suitably rotated and translated. The solution we find concentrates at k different points
(sR

1 , zR
1 ), . . . , (sR

k , zR
k ) as R → ∞, where limR→∞(sR

i /R, zR
i /R) = (1,0) for any i = 1, . . . , k.

It is clear that if a solution v of (1.3) concentrates at a point (sR
i , zR

i ) as R → +∞, then the
corresponding solution u of (1.1) concentrates on the (N − 2)-dimensional set

Γ R
i =

{
(x1, . . . , xN) ∈R

N :
N−1∑
i=1

x2
i = sR

i , xN = zR
i

}
as R → +∞.

Therefore, for any integer k provided R is large enough, we construct solutions of (1.1) which
possess O(N − 1)-symmetry and concentrate on k different (N − 2)-dimensional spheres
Γ R

1 , . . . ,Γ R
k whose normalized sets Γ R

1 /R, . . . ,Γ R
k /R collapse to the unit sphere S

N−2 =
{(x1, . . . , xN−1,0) ∈ R

N : (x1)
2 + · · · + (xN−1)

2 = 1} as R → +∞. More precisely, our main
result reads as follows.

Theorem 1.1. For any p ∈ (1,∞) and l ∈ N there exists an Rl = Rl(p) > 0 such that for all
R > Rl , Eq. (1.1) has a solution UR,l such that

(i) for any Θ ∈ O(N − 1), s =√
(x1)2 + · · · + (xN−1)2 and z = xN ,

UR,l

(
Θ(x1, . . . , xN−1), xN

)= UR,l(x1, . . . , xN−1, xN) := UR,l(s, z);

(ii) there exist l different points (sR
1 , zR

1 ), . . . , (sR
l , zR

l ) with |(sR
i , zR

i )| = R + 1/2, si > 0 for
i = 1, . . . , l such that

lim
R→∞ min

{∣∣(sR
i , zR

i

)− (
sR
j , zR

j

)∣∣: 1 � i �= j � l
}= ∞, lim

R→∞
(
sR
i

/
R,zR

i

/
R
)= (1,0)

and

lim
R→∞

∥∥∥∥∥UR,l(s, z) −
l∑

i=1

u0
((

ΘR
i

)−1
(s, z) − (R,0)

)∥∥∥∥∥
L∞(ΩR∩{s>0})

= 0,

where the matrix ΘR
i ∈ O(2) is defined so that

(
sR
i , zR

i

)= ΘR
i

(
R + 1

2
,0

)
and u0 is the unique solution of (1.5) which is even with respect to the second variable.
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In particular, for l1 �= l2 ∈ N, the solutions UR,l1 and UR,l2 of Eq. (1.1) are nonequivalent in
the sense that UR,l1(·) �= UR,l2(g ·) for any g ∈ O(N).

From Theorem 1.1, we see that for any p > 1, the number of nonequivalent solutions of (1.1)
goes to ∞ as R → ∞. Let us recall some recent results concerning existence of multi-bump
positive solutions in expanding tubular domains. Let M be a compact m-dimensional smooth
submanifold of RN and MR = {Rx ∈ RN : x ∈ M}. We define

DR := {
x ∈ R

N : dist(x,MR) � 1
}
.

The set DR is an annulus if M = SN−1. For p ∈ (1, (N + 2)/(N − 2)) with N � 3 and p > 1
with N = 2, we consider a problem{

�u + up = 0 in DR,

u > 0 in DR,

u = 0 on ∂DR.

(1.6)

For general M , there is no radial symmetry of the domain DR . Thus, we cannot use the principle
of symmetric criticality by Palais [16] to get multi-bump solutions. Even though, the existence of
multi-bump solutions to the subcritical problem (1.6) was established by Dancer and Yan in [11]
and by Ackermann, Clapp and Pacella in [1] under a nondegeneracy assumption for a solution of
the limit problem ⎧⎨⎩�u + up = 0 in B(0,1) ×R

m ⊂R
N,

u > 0 in B(0,1) ×R
m,

u = 0 on ∂B(0,1) ×R
m.

(1.7)

The same result in a more general context – possibly in a degenerate setting – was obtained by
Byeon and Tanaka [7] using a variational method. More precisely, their results claim that for
any integer k, provided R is large enough, there exists a k-bumps solution which is obtained
by gluing k different bubbles which solve the limit problem (1.7). It is not certain whether we
can find many nonequivalent solutions of (1.3) for any p > 1 without any symmetry of M when
R > 0 is large. On the other hand, if M is rotationally invariant with respect to a fixed line, that is,
O(N − 1)-symmetric, we can obtain the same result with Theorem 1.1 by the same argument in
this paper.

The proof of our result relies on the Lyapunov–Schmidt reduction argument. The paper is
organized as follows. In Section 2 we construct a set of approximate solutions. In Section 3 we
study a linear problem and in Section 5 we reduce the problem to a finite dimensional one. In
Section 6 we study the reduced problem and in Section 7 we prove Theorem 1.1.

Notation.

– The letters c and C will be used throughout the paper to denote positive constants which may
vary from line to line. On the other hand, constants with subscripts C0,C1, . . . are reserved
for fixed quantities (particularly independent of R).

– We will use big O and small o notations to describe the limit behavior of a certain quantity
as R → ∞.
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– The Laplacian � represents ∂2

∂x2
1

+ · · · + ∂2

∂x2
N

or ∂2

∂s2 + ∂2

∂z2 , depending on the dimension of

the domain of functions for which the operator � acts.
– Given any domain D, λ1(D) is the first Dirichlet eigenvalue of the Laplacian in D.
– For a domain D, C∞

c (D) is the space of compactly supported smooth functions in D. If D is
a domain such that λ1(D) > 0, e.g., D = ΩR or S, then H 1

0 (D) is defined as the completion
of C∞

c (D) with respect to the norm ‖v‖H 1(D) := (
∫
D

|∇v|2)1/2.
– H 1(R2) is the completion of C∞

c (R2) with respect to the norm ‖v‖H 1(R2) := (
∫
R2 |∇v|2 +

|v|2)1/2.
– c+ = max{c,0} for any c ∈ R.
– B((s, z); r) denotes the ball of radius r > 0 with the center (s, z) ∈ R

2.

2. Preliminaries

2.1. The symmetric Sobolev space H with a weighted Sobolev norm

Let

H̃ = {
U ∈ H 1

0 (ΩR): U(Θx) = U(x) for any Θ ∈ O(N − 1) × {1} ⊂ O(N)
}

be a Hilbert space whose inner product and norm are given by

〈u,v〉H 1(ΩR) =
∫

ΩR

∇u(x) · ∇v(x) dx, ‖u‖H 1(ΩR) =
( ∫

ΩR

∣∣∇u(x)
∣∣2 dx

)1/2

.

Also for the two dimensional annulus AR defined in (1.4), let H be the completion of {u ∈
C∞

c (AR): u(s, z) = u(−s, z)} with respect to the norm

‖u‖H =
( ∫

AR

∣∣∇u(s, z)
∣∣2|s|N−2 ds dz

)1/2

,

which becomes a Hilbert space endowed with the inner product

〈u,v〉H =
∫

AR

∇u(s, z) · ∇v(s, z)|s|N−2 ds dz.

It is easy to check that the map Φ : H̃ →H defined by

Φ(U)(s, z) = U(x1, . . . , xN−1, xN) where s2 =
N−1∑
i=1

x2
i and z = xN (2.1)

gives an isomorphism.
Note that if 1 < p � 2∗ − 1 := N+2

N−2 then U ∈ H̃ is a solution of (1.1) if and only if u =
Φ(U) ∈H is a critical point of the functional IR :H →R given by
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IR(u) = 1

2

∫
AR

∣∣∇u(s, z)
∣∣2|s|N−2 ds dz − 1

p + 1

∫
AR

u(s, z)
p+1
+ |s|N−2 ds dz. (2.2)

We will look for a critical point in H of the functional IR with the required properties. In Sec-
tion 7 we will use the same argument even when p is supercritical (p > 2∗ − 1) provided the
functional IR is suitable modified.

2.2. Properties of u0 and an approximation for solutions

In [3], [11, Proposition A.1] (see also [7, Lemma 6.1]), it was proved that (1.5) has a solu-
tion u0 such that u0 is symmetric with respect to the s-axis and the line {s = 1/2}, and

u0(s, z) = c
(
1 + o(1)

)
e−π |z| sinπs in S for some c > 0 (2.3)

and

∣∣u0(s, z)
∣∣, ∣∣∇u0(s, z)

∣∣, ∣∣D2u0(s, z)
∣∣� c1e

−c2|z| in S for some c1, c2 > 0.

Moreover, Dancer [10] proved that u0 is the unique solution of (1.5) up to translation and has the
following nondegeneracy property.

Lemma 2.1. Given any p ∈ (1,∞), suppose that φ0 ∈ L∞(S)∩H 1
loc(S) solves the linear problem

{
�φ + pu

p

0 φ = 0 in S,

φ = 0 on ∂S.

Then φ0 = c
∂u0
∂z

for some c ∈R.

Here the nondegeneracy is known only for two dimensional strips.
Using u0 as a building block, we are going to construct an approximation of solutions (1.1) in

the following way.
First, we fix α ∈ (0,1) and we set

S̃R := {
(s, z): s ∈ (R−α,1 − R−α

)
, |z| � R

1−α
2
}

so that SR := (R,0) + S̃R ⊂ AR . Then we define

uR(s, z) := 1

(1 − 2R−α)
2

p−1

· u0

(
s − R − R−α

1 − 2R−α
,

z

1 − 2R−α

)
in SR. (2.4)

It is straightforward to check that uR satisfies �uR + u
p
R = 0 in SR and u = 0 on ∂SR ∩ {s =

R + R−α or R + 1 − R−α}.
Moreover, in order to extend uR to a function in H 1

0 (AR) or H 1(R2), we need to introduce
a truncation function. Choose a function ψR ∈ C∞(R2) satisfying
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0 �ψR(s, z) = ψR(z) � 1, ψR(z) = ψR(−z), (2.5)

ψR(z) =
{

1 if |z| � R
1−α

2 /2,

0 if |z| � R
1−α

2 ,
(2.6)

∥∥∥∥∂ψR

∂z

∥∥∥∥
L∞(R2)

= O
(
R

α−1
2
)

and

∥∥∥∥∂2ψR

∂z2

∥∥∥∥
L∞(R2)

= O
(
Rα−1). (2.7)

Now let ΛR be the configuration space

ΛR :=
{
P = (p1, . . . , pl) = (

(s1, z1), . . . , (sl, zl)
)
: |pi | = R + 1

2
,

si �
(

R + 1

2

)
− R

Rπ(1+ε1)M1
, |pi − pj |� M1 logR for i �= j

}
(2.8)

where ε1 and M1 are small positive numbers which will be determined later. Define also
Θi ∈ O(2) by

Θi =
(

cos θi − sin θi

sin θi cos θi

)
(2.9)

where θi ∈ (−π/2,π/2) is determined by the relation pi = Θi(R + 1/2,0) = (R + 1/2)(cos θi,

sin θi). Then, we set

vR,P (s, z) =
{∑l

i=1(ψRuR)(Θ−1
i (s, z)) if s � 0,

vR,P (−s, z) if s < 0
(2.10)

for P = (p1, . . . , pl) ∈ ΛR . It is useful to point out that

suppvR,P ⊂ CR := AR ∩
{
(s, z):

(
1 − 2

Rπ(1+ε1)M1

)
R < s < R + 1

}
. (2.11)

We will find a solution of (1.1) having the form VR,P + W where

VR,P = Φ−1(vR,P ) (2.12)

and Φ is the isomorphism between H̃ and H defined in (2.1). Note that (1.1) is equivalent to
an equation of W ∈ H̃ given by

L(W) = −(E + N(W)
)

in ΩR, W = 0 on ∂ΩR (2.13)

where ΩR is the annulus in R
N defined in (1.2),

L(W) = �W + pV
p−1
R,P W, (2.14)

E = �VR,P + V
p (2.15)
R,P
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and

N(W) = (V vR,P + W)
p
+ − V

p
R,P − pV

p−1
R,P W. (2.16)

2.3. A technical lemma

Before starting the proof of Theorem 1.1, we introduce the following elementary but quite
useful lemma.

Lemma 2.2. For each M > 0, there is C = C(M) > 0 such that

1.

∣∣∣∣∣
(

k∑
i=1

ti+

)p

−
k∑

i=1

(ti)
p
+

∣∣∣∣∣� C
∑
i �=j

|ti tj |min{ p
2 ,1}

and

2.

∣∣∣∣∣
(

k∑
i=1

ti+

)p+1

−
k∑

i=1

(ti)
p+1
+ − (p + 1)

∑
i �=j

(ti)
p−1
+ tj

∣∣∣∣∣� C
∑
i �=j

|ti tj |min{ p+1
2 ,2}

for |t1|, . . . , |tk|� M .

3. Invertibility of the operator L

Let R > 0 be fixed and let VR : ΛR → H be a map such that VR(P ) = vR,P . If each compo-
nent pi of P = (p1, . . . , pl) ∈ ΛR is written as pi = (R +1/2)(cos θi, sin θi), we choose a vector
τi := (0, . . . , (− sin θi, cos θi), . . . ,0) in the tangent space TP ΛR of ΛR at P and then we define

(Zi)R,P := ∂VR

∂τi

(P ) = d(VR)P τi ∈H, (3.1)

i.e. the directional derivative of VR along τi at P . It is easy to check that

(Zi)R,P (s, z) =
(

R + 1

2

)−1

·
[
(− sin θis + cos θiz) · ∂(ψRuR)

∂s

(
Θ−1

i (s, z)
)

− (cos θis + sin θiz) · ∂(ψRuR)

∂z

(
Θ−1

i (s, z)
)]

if s � 0 (3.2)

and (Zi)R,P (s, z) = (Zi)R,P (−s, z) for all (s, z) in the domain AR (see (1.4)) where Θi is the
matrix given in (2.9). It is useful to point out that (see (2.11)) supp(Zi)R,P ⊂ CR .

Here the notation Θ−1
i (s, z) is understood as Θ−1

i

( s
z

) ∈ R
2.

In the following, we will often omit subscripts R and P for simplicity if no ambiguity arises.
(For example, v = vR,P , Zi = (Zi)R,P and so on.)

In this section, we study the invertibility of the linear operator L in the subspace of H̃ orthog-
onal to span{Z1, . . . ,Zl} where

Zi := Φ−1(Zi). (3.3)
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Proposition 3.1. For R > 0 sufficiently large and P ∈ ΛR , if H ∈ H̃, then the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(W) = �H +

l∑
i=1

ci�Zi in ΩR,

W = 0 on ∂ΩR,

〈Zi,W 〉H 1(ΩR) = 0 for i = 1, . . . , l

(3.4)

admits a unique solution W ∈ H̃ and {c1, . . . , cl} ⊂R that satisfy

‖W‖H 1(ΩR) � C1‖H‖H 1(ΩR) (3.5)

for some C1 > 0 independent of R.

The following a priori estimate will be used in an essential way in the proof of Proposition 3.1.

Lemma 3.2. For R > 0 sufficiently large and P ∈ ΛR , a solution of (3.4) satisfies (3.5) with
C1 > 0 independent of R.

Proof. Suppose that (3.5) does not hold. Then there are sequences of numbers Rn → ∞,
(c1n, . . . , cln) ∈ R

l , points Pn = (p1n, . . . , pln) ∈ ΛRn and functions Vn = VRn,Pn , Zin =
(Zi)Rn,Pn ∈ H̃ (see (2.12) and (3.3)), Wn,Hn ∈ H̃ such that

‖Wn‖H 1(ΩR) = R
N−2

2
n , ‖Hn‖H 1(ΩR) = o

(
R

N−2
2

n

)
(3.6)

and

�Wn + pV
p−1
n Wn = �Hn +

l∑
i=1

cin�Zin in ΩRn. (3.7)

We will show that a contradiction arises. The proof is divided into three steps.

Step 1. We claim that c1n, . . . , cln = o(1).
It is clear that

⋃l
i=1 Θi(SRn) ⊂ Cn := CRn (see (2.11)) and also that the support of vn :=

Φ(Vn) is contained in Cn. Multiplying (3.7) by Zjn, integrating the result over ΩRn and using
the symmetry of elements in H̃, we get

∫
Cn

(∇wn · ∇Zjn − pv
p−1
n wnZjn

) ·
( |s|

Rn

)N−2

=
∫

(∇hn · ∇Zjn) ·
( |s|

Rn

)N−2

+
l∑

i=1

cin

∫
(∇Zin · ∇Zjn) ·

( |s|
Rn

)N−2
Cn Cn
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where wn := Φ(Wn), Zjn := Φ(Zjn) and hn := Φ(Hn) ∈ H. By (3.6), ‖wn‖H 1(Cn) is bounded,
while ‖hn‖H 1(Cn) = o(1). In addition, ‖wn‖L2(Cn) is bounded since λ1(ΩRn) is bounded away
from 0 for n large. Therefore

∫
supp Zjn

(∇wn · ∇Zjn − pv
p−1
n wnZjn

)=
l∑

i=1

cin

∫
Cn

(∇Zin · ∇Zjn) + o(1). (3.8)

Furthermore, if we denote the rotation matrix corresponding to pjn by Θjn ∈ O(2) (see (2.9))
and set ũn(s, z) = uRn(s + Rn, z), ψn(s, z) = ψRn(z) (refer to (2.4) and (2.5)) and w̃n(s, z) =
wn(Θjn(s + Rn, z)) for (s, z) ∈ S̃Rn , then we obtain

(
LHS of (3.8)

)
= −

∫
S̃Rn

{
∇(ψnw̃n) · ∇ ∂(ψnũn)

∂z
− p(ψnũn)

p−1(ψnw̃n)
∂(ψnũn)

∂z

}
+ o(1).

However, since ‖ψnw̃n‖H 1(R2) is bounded, it converges (up to a subsequence) to w0 ∈ H 1
0 (S)

weakly in H 1(R2) and it follows that

(
LHS of (3.8)

)= −
∫
S

[
∇w0 · ∇ ∂u0

∂z
− pu

p−1
0 w0

∂u0

∂z

]
+ o(1) = o(1).

On the other hand, we have

∫
Cn

(∇Zin · ∇Zjn) = δij

∫
S

∣∣∣∣∇ ∂u0

∂z

∣∣∣∣2 + o(1) (3.9)

where δij is the Kronecker delta. Thus c1n, . . . , cln = o(1) and the first claim is proved.

Let ϕn = wn − hn − ∑l
i=1 cinZin ∈ H. By (3.6) and Step 1 we deduce that ‖ϕn‖H =

R
N−2

2
n (1 + o(1)). Moreover, Φ−1(ϕn) solves

�Φ−1(ϕn) + pV
p−1
n Φ−1(ϕn) = −pV

p−1
n

(
Hn +

l∑
i=1

cinZin

)
in ΩRn. (3.10)

Step 2. We claim that

lim
n→∞

∫
pv

p−1
n ϕ2

n = 1. (3.11)
Cn
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In fact, if we multiply both sides of (3.10) by Φ−1(ϕn)/R
N−2
n and integrate over ΩRn , we get

o(1) =
∫

ARn

|∇ϕn|2
( |s|

Rn

)N−2

−
∫
Cn

pv
p−1
n ϕ2

n

( |s|
Rn

)N−2

= 1

RN−2
n

· ‖ϕn‖2
H −

∫
Cn

pv
p−1
n ϕ2

n + o(1) = 1 −
∫
Cn

pv
p−1
n ϕ2

n + o(1)

and the claim follows.

Step 3. We claim that

lim
n→∞

∫
Cn

pv
p−1
n ϕ2

n = 0. (3.12)

This contradicts (3.11) and the proof of lemma is completed.
For any j = 1, . . . , l, we set

ϕ̃jn(s, z) =
{

ψn(s + Rn, z)ϕn(Θjn(s + Rn, z)) if s > −R−α
n ,

0 otherwise

where ψn is the function defined in the previous step. It is clear that ϕ̃jn ∈ H 1
0 (Ŝn) ⊂ H 1(R2)

where Ŝn = (−R−α
n ,1) × (−R

1−α
2

n ,R
1−α

2
n ).

First we show that (up to a subsequence)

ϕ̃jn ⇀ 0 weakly in H 1(
R

2). (3.13)

Indeed, (up to a subsequence) ϕ̃jn ⇀ φj weakly in H 1(R2) for some φj ∈ H 1
0 (S) and ϕ̃jn solves

�ϕ̃jn + N − 2

s + Rn

∂ϕ̃jn

∂s
+ p(ψnũn)

p−1ϕ̃jn

= ψn

[
pv

p−1
n

(
hn +

l∑
i=1

cinZin

)(
Θj(s + Rn, z)

)]

+ ψn · N − 2

s + Rn

·
[{

(cos θj − 1)
∂ϕn

∂s
+ sin θj

∂ϕn

∂z

}(
Θj(s + Rn, z)

)]
+ [

(�ψn) · ϕn

(
Θj(s + Rn, z)

)+ 2∇ψn · ∇{ϕn

(
Θj(s + Rn, z)

)}]
+ p

[{
(ψnũn) +

∑
i �=j

(ψnuRn)
(
Θ−1

in

(
Θjn(s + Rn, z)

))}p−1

− (ψnũn)
p−1

]
ϕ̃jn

for (s, z) ∈ Ŝn. Therefore, by letting n → ∞, we find
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�φj + pu
p−1
0 φj = 0 in S and φj = 0 on ∂S. (3.14)

On the other hand, by the orthogonality assumption made in the statement of the proposition, it
holds that

0 =
∫
Cn

∇Zjn · ∇
(

ϕn + hn +
l∑

i=1

cinZin

)( |s|
Rn

)N−2

=
∫
Cn

∇Zjn · ∇ϕn + o(1)

=
∫
Ŝn

∇ ∂(ψnũn)

∂z
· ∇ϕ̃jn + o(1)

for j = 1, . . . , l. Therefore ∫
S

∇ ∂u0

∂z
· ∇φj = 0. (3.15)

Now, from (3.14), (3.15) and Lemma 2.1, we deduce φj = 0 and (3.13) is proved.
Finally, we deduce from (3.13) that

∫
Cn

pv
p−1
n ϕ2

n � Cp

l∑
i=1

∫
Cn

(ψnuRn)
p−1(Θ−1

in (s, z)
)
ϕ2

n

= Cp

l∑
i=1

∫
S̃Rn

(ψnũn)
p−1ϕ̃ 2

jn + o(1) = o(1)

for some C > 0 and so (3.12) follows. �
Proof of Proposition 3.1. Estimate (3.5) is proved in Lemma 3.2. Let us prove solvability of
problem (3.4). Set

KR =KR,P =
{

l∑
i=1

ciZi : c1, . . . , cl ∈R

}

and

K⊥
R =K⊥

R,P =
{
W ∈ H̃:

∫
ΩR

∇Zi · ∇W = 0 for any i = 1, . . . , l

}

for P ∈ ΛR . Also, let ΠR = ΠR,P : H̃ → KR be the projection map given as ΠR(W) =∑l
i=1 ciZi for W ∈ H̃ where ci (i = 1, . . . , l) is determined by the system

l∑
i=1

ci

∫
∇Zi · ∇Zj

( |s|
R

)N−2

=
∫

∇Φ(W) · ∇Zj

( |s|
R

)N−2

for j = 1, . . . , l.
CR CR
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(By (3.9), ci ’s are well-defined.) If we denote Π⊥
R = IdH̃ −ΠR : H̃ → K⊥

R , problem (3.4) can be
rewritten as

(IdK⊥
R

− K)W = Π⊥
R (H)

where K(W) := −Π⊥
R �−1(pV p−1W) is a compact operator in K⊥

R . By Lemma 3.2, IdK⊥
R

− K

is an injective operator on K⊥
R . Consequently, from the Fredholm alternative, we can conclude

that IdK⊥
R

− K is also surjective in K⊥
R , which implies the unique solvability of problem (3.4).

That concludes the proof. �
4. The nonlinear problem

In this section, we will solve the following auxiliary problem for the function W and the
parameters (c1, . . . , cl) (see Proposition 4.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩

L(W) = −(E + N(W)
)+

l∑
i=1

ci�Zi in ΩR,

w = 0 on ∂ΩR,

〈Zi,W 〉H 1(ΩR) = 0 for i = 1, . . . , l.

(4.1)

Here ΩR is the annulus in R
N defined in (1.2), L is the linear operator defined in (2.14), E is

the error term defined in (2.15), N(W) is the nonlinear term defined in (2.16) and Zi ’s are the
functions defined in (3.3).

Let us rewrite problem (4.1) in an equivalent way. First, for any U ∈ H̃, let H = Q(U) ∈ H̃
be the unique solution of

�H = U in ΩR, H = 0 on ∂ΩR.

Next, let JR : H̃ → H̃ be the operator defined by JR(H) = W where W is the unique solution of
problem (3.4). Notice that the existence of W is established in Proposition 3.1 and JR is linear.
Then problem (4.1) can be rewritten as W = −JR(Q(E + N(W))) and it reduces to finding
a fixed point of the operator TR : H → H defined by

TR(W) := −JR

(
Q
(
E + N(W)

))
.

In the following, we are going to prove that TR :FR →FR is a contraction mapping where

FR = {
w ∈ H̃: ‖W‖H 1(ΩR) � C2R

N−2
2 − π

2 (1+ε2)M1,

‖W‖L∞(ΩR) � C3R
− π

2 (1+ε2)M1
}
. (4.2)

Here ε2 ∈ (0,min{(p − 1)/2,1}), M1 > 0 is the small constant used in the definition of (2.8)
(actually not yet fixed) and C2, C3 > 0 will be determined later. We remark that the choice of the
set FR is motivated from the work of Ambrosetti, Malchiodi and Ni [2].

First of all, it is necessary to estimate the error term Q(E) and the nonlinear term Q(N(W)).
This is done in the next two lemmas.
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Lemma 4.1. Suppose that M1 > 0 is small enough. Then there exists a constant C4 > 0 such that

∥∥Q(E)
∥∥

H 1(ΩR)
� C4R

N−2
2 − π

2 (1+ε2)M1 .

Proof. We remark that

∥∥Q(E)
∥∥

H 1(ΩR)
= sup

{ ∫
ΩR

(∇Q(E) · ∇f
)
: f ∈ C∞

c (ΩR), ‖f ‖H 1(ΩR) � 1

}

� sup

{ ∫
ΩR

Ef : f ∈ C∞
c (ΩR), ‖f ‖L2(ΩR) � λ1(ΩR)−

1
2

}

� λ1(ΩR)−
1
2 ‖E‖L2(ΩR) � C

( ∫
AR

∣∣Φ(E)
∣∣2|s|N−2

) 1
2

for some C > 0 independent of R, so it is enough to estimate the weighted L2-norm of Φ(E).
By (2.11), Lemma 2.2 and Lemma 6.2, we get

∫
AR

∣∣Φ(E)
∣∣2|s|N−2 � CRN−2

( ∫
CR

∣∣�v + vp
∣∣2 + 1

R2

∫
CR

∣∣∣∣∂v

∂s

∣∣∣∣2)

� CRN−2

( ∫
CR

∣∣∣∣∣
(

l∑
i=1

vi

)p

−
l∑

i=1

v
p
i

∣∣∣∣∣
2

+ R−2

)

� CRN−2
(∑

i �=j

∫
CR

|vivj |min{p,2} + R−2
)

� CRN−2(R−π(1+ε2)M1 + R−2) (4.3)

where vi(s, z) = (ψRuR)(Θ−1
i (s, z)) and ε2 ∈ (0,min{(p − 1)/2,1}). (At this stage, we may

pick ε2 ∈ (0,min{p − 1,1}), but for Lemma 6.5 it is necessary to choose it smaller.) Therefore,
if M1 > 0 is small,

∥∥Q(E)
∥∥

H 1(ΩR)
� C

( ∫
AR

∣∣Φ(E)
∣∣2|s|N−2

) 1
2

� C4R
N−2

2 − π
2 (1+ε2)M1

for some C4 > 0. This concludes the proof. �
Lemma 4.2. There is a constant C5 > 0 such that for any w ∈FR∥∥Q(N(W)

)∥∥
H 1(ΩR)

� C5
(
C3R

− π
2 (1+ε2)M1

)min{1,p−1}‖W‖H 1(ΩR).
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Proof. We remark that we can write N(W) = ∫ 1
0 p[(V + tW)

p−1
+ − V p−1]W dt . Then we have

|N(W)| � C(|W | + |W |p−1)W , so∫
ΩR

∣∣N(W)
∣∣2 � C

(
C3R

− π
2 (1+ε2)M1

)2 min{1,p−1}‖W‖2
L2(ΩR)

� C
(
C3R

− π
2 (1+ε2)M1

)2 min{1,p−1}‖W‖2
H 1(ΩR)

(4.4)

and arguing as in the previous lemma, we get

∥∥Q(N(W)
)∥∥

H 1(ΩR)
� C

( ∫
ΩR

∣∣N(W)
∣∣2) 1

2

.

This completes the proof. �
Now, we can deduce the unique solvability of Eq. (4.1).

Proposition 4.3. For R > 0 sufficiently large and P ∈ ΛR , there is a unique solution WR,P ∈ H̃
and {(c1)R,P , . . . , (cl)R,P } for problem (4.1) such that

‖WR,P ‖H 1(ΩR) � C2R
N−2

2 − π
2 (1+ε2)M1, ‖WR,P ‖L∞(ΩR) � C3R

− π
2 (1+ε2)M1 . (4.5)

Proof. The proof proceeds in two steps.

Step 1. We first show that TR maps FR to itself. From (3.5), Lemmas 4.1 and 4.2, we obtain∥∥TR(W)
∥∥

H 1(ΩR)
� C1

(
C4 + C2C5

(
C3R

− π
2 (1+ε2)M1

)min{1,p−1})
R

N−2
2 − π

2 (1+ε2)M1 .

Therefore, if we take C2 = 2C1C4, then∥∥TR(W)
∥∥

H 1(ΩR)
� C2R

N−2
2 − π

2 (1+ε2)M1 (4.6)

once C3 is appropriately chosen and R is taken sufficiently large according to the magnitude
of C3.

Let us estimate the L∞-norm of TR(W) ∈ H̃. For simplicity, we write wT = (wT )R :=
Φ(TR(W)). Then

−�wT − N − 2

s

∂wT

∂s

= pvp−1wT + {
Φ(E) + Φ

(
N(W)

)}−
l∑

i=1

ci

(
�Zi + N − 2

s

∂Zi

∂s

)
(4.7)

in AR \ {s = 0}. By elliptic regularity [13, Theorems 9.20, 9.26], we have for any (s, z) ∈ CR

(see (2.11)),
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‖wT ‖L∞(AR,1) � C61
(‖wT ‖L2(AR,2)

+ ‖g‖L2(AR,2)

)
(4.8)

where C61 > 0, g denotes the right-hand side of (4.7) and

AR,1 = AR ∩ B
(
(s, z); r) and AR,2 = AR ∩ B

(
(s, z);2r

)
for some r > 0 sufficiently small.

Because of (4.6), it holds that

‖wT ‖L2(AR,2)
� C62R

− π
2 (1+ε2)M1 (4.9)

for some C62 > 0. Besides, applying (4.3) and (4.4), we can get

‖g‖L2(AR,2)
� C63‖wT ‖L2(AR,2)

+ ∥∥Φ(E)
∥∥

L2(AR,2)
+ ∥∥Φ(N(w)

)∥∥
L2(AR,2)

+ C63

l∑
i=1

|ci |

� C62C63R
− π

2 (1+ε2)M1 + C64R
− π

2 (1+ε2)M1 + o
(
R− π

2 (1+ε2)M1
)+ C63

l∑
i=1

|ci |

for some C63, C64 > 0. However, arguing as in Step 1 of the proof of Lemma 3.2, we estimate ci ’s
as |ci |� C65R

− π
2 (1+ε2)M1 for some constant C65 > 0 and i = 1, . . . , l. As a result, we have

‖g‖L2(AR,2)
� 2(C62C63 + C64 + C63C65l)R

− π
2 (1+ε2)M1 . (4.10)

Combining (4.8), (4.9) and (4.10), we get

‖wT ‖L∞(CR) � 2C61(C62 + C62C63 + C64 + C63C65l)R
− π

2 (1+ε2)M1

=: C6R
− π

2 (1+ε2)M1 . (4.11)

Now, we define

ΞR =
{

(x1, . . . , xn−1, z) ∈ ΩR:

√√√√n−1∑
i=1

x2
i <

(
1 − 2

Rπ(1+ε1)M1

)
R

}
.

Then by (4.7), using the fact that v and Zi ’s vanish in the corresponding two dimensional set
{(s, z) ∈ AR: s < (1 − 2R−π(1+ε1)M1)R}, we get

−�WT,R = W
p
+ in ΞR

where WT,R := TR(W).
If we let

ΨR(x1, . . . , xn) = C3R
− π

2 (1+ε2)M1 cos
π

2

(
r − R − 1

2

)
where r =

√√√√ n∑
x2
i ,
i=1
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with C3 = √
2C6, then we have

−�
(
(±WT,R) − ΨR

)
� C

p

3 R− π
2 (1+ε2)M1p −

(
π

2

)2

C3R
− π

2 (1+ε2)M1 cos
π

2

(
r − R − 1

2

)
− (N − 1)π

2r
C3R

− π
2 (1+ε2)M1 sin

π

2

(
r − R − 1

2

)

� −π2

8
C3R

− π
2 (1+ε2)M1 � 0 in ΞR

and by (4.11)

±WT,R − ΨR �
(

C6 − C3√
2

)
R− π

2 (1+ε2)M1 = 0 on ∂ΞR.

Therefore the maximum principle gives

|WT,R| � ΨR � C3R
− π

2 (1+ε2)M1 in ΞR. (4.12)

Finally, (4.11) and (4.12) imply ‖wT ‖L∞(ΩR)�C3R
− π

2 (1+ε2)M1 .

Step 2. We prove that TR is a contraction mapping.
Indeed, arguing as in the proof of Lemma 4.2, we get

∥∥TR(w1) − TR(w2)
∥∥

H 1(ΩR)
� O

(
R− π

2 (1+ε2)M1·min{1,p−1})‖w1 − w2‖H 1(ΩR)

for any w1,w2 ∈FR .

The claim follows by the contraction mapping principle. �
5. The finite dimensional reduction

For each fixed R > 0 large, we introduce the reduced energy

FR(P ) := IR

(
vR,P + Φ(WR,P )

)
, P ∈ ΛR (5.1)

where vR,P is defined in (2.10) and WR,P is given in Proposition 4.3. The following result shows
that critical points of the reduced energy FR give rise to critical points of the original func-
tional IR or equivalently to solutions of problem (1.1).

Proposition 5.1. FR : ΛR →R is of class C1. Furthermore, if F ′
R(P ) = 0, i.e. d(FR)P τ = 0 for

all τ ∈ TP ΛR , then (c1)R,P = · · · = (cl)R,P = 0 and in particular VR,P + WR,P is a solution
of (1.1) (VR,P is defined in (2.12)).
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Proof. Denote VP = VR,P , WP = WR,P , ci,P = (ci)R,P and Zi,P = (Zi)R,P for i = 1, . . . , l.
To prove FR ∈ C1(ΛR), it is enough to check that the map P ∈ ΛR �→ WP ∈ H̃ is in C1. Define
a map GR : ΛR × H̃ → H̃ by

GR(P,U) = U + Π⊥
R,P

(
VP + �−1(VP + U)

p
+
)

where Π⊥
R,P : H̃ → K⊥

R,P is the projection map (see the proof of Proposition 3.1). Clearly
GR(P,WP ) = 0 and by the Fredholm alternative the operator

∂GR

∂U
(P,WP ) = IdH̃ + pΠ⊥

R,P �−1(VP + WP )
p−1
+

is a Fredholm operator of index 0. Thus, to deduce that it is invertible, it is enough to check
the injectivity of ∂GR

∂U
(P,WP ). Suppose that f ∈ H̃ is contained in its kernel. Then there is

(c1, . . . , cl) ∈ R
l such that

�f + pV
p−1
P f = p

[
V

p−1
P − (VP + WP )p−1]f +

l∑
i=1

ci�Zi,P in ΩR.

By Proposition 3.1, it follows that

‖f ‖H 1(ΩR) � C‖WP ‖min{1,p−1}
L∞(ΩR)

‖f ‖H 1(ΩR) � CR− π
2 (1+ε2)M1·min{1,p−1}‖f ‖.

Hence f = 0 given R sufficiently large. From the implicit function theorem, we conclude that
the map P ∈ ΛR �→ WP ∈ H̃ is indeed in C1.

Now suppose that F ′
R(P ) = 0. Let us write the ith component of P as pi = (R + 1/2) ×

(cos θi, sin θi) and let τi := (0, . . . , (− sin θi, cos θi), . . . ,0) ∈ TP ΛR and ∂i = ∂
∂τi

(see the first
paragraph of Section 3). Denote also wP := Φ(WP ). Then we have, for any j = 1, . . . , l,

0 = d(FR)P τj = I ′
R(vP + wP )(∂j vP + ∂jwP )

=
l∑

i=1

ci,P

[ ∫
CR

∇∂j vP · ∇Zi,P

( |s|
R

)N−2

−
∫
CR

∇wP · ∇∂jZi,P

( |s|
R

)N−2]

= cj,P

(∫
S

∣∣∣∣∇ ∂u0

∂z

∣∣∣∣2 + o(1)

)
+
∑
i �=j

ci,P · o(1)

where the third equality comes from WP ∈ K⊥
R,P , while the fourth one is due to (3.1), (3.9)

and (4.5). This implies c1,P = · · · = cl,P = 0. �
6. The reduced energy

This section is devoted to study the reduced energy FR defined in (5.1). More precisely, our
aim is to deduce that FR has a critical point in the interior of ΛR .

We first prove that the contribution of the term wR,P = Φ(WR,P ) to the energy functional IR

is quite small.
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Lemma 6.1. The following expansion holds:

FR(P ) = IR(vR,P ) + O
(
RN−2−π(1+ε2)M1

)
for any P ∈ ΛR.

Proof. Using Taylor’s theorem and the fact that I ′
R(vR,P + wR,P )wR,P = 0, we get

FR(P ) − IR(vR,P ) = −
1∫

0

tI ′′
R(vR,P + twR,P )w2

R,P dt.

On the other hand, we have from (4.5) that

I ′′
R(vR,P + twR,P )w2

R,P =
∫

AR

|∇wR,P |2|s|N−2 −
∫

AR

p(vR,P + twR,P )
p−1
+ w2

R,P |s|N−2

= O
(
RN−2−π(1+ε2)M1

)
.

Therefore the proof is finished. �
Given P = (p1, . . . , pl) ∈ ΛR , let Θi be the corresponding orthogonal matrix to pi =

(R + 1/2)(cos θi, sin θi). Also, denote

vi,P (s, z) = vi(s, z) = (ψRuR)
(
Θ−1

i (s, z)
)

for i = 1, . . . , l (6.1)

as before. We give upper and lower estimates of interaction terms
∫
AR

(vivj )
q or

∫
AR

v
p
i vj for

p > 1, q > 0 and i �= j .

Lemma 6.2. For any q > 0 and small ε > 0, there exists a constant C = C(q, ε) > 0 such that∫
AR

(vivj )
q � CR−q(1−ε)πM1

if R is sufficiently large.

Proof. We may assume pi = (R + 1/2,0) and pj = (R + 1/2)(cos θ0, sin θ0). Let L0 be the
s-axis and L1 the line through the origin and pj . Since θ0(1 + o(1)) � M1 logR/(R + 1/2),
by (2.11), (2.3) and (2.4), we have

∫
CR

(vivj )
q �

R+1∫
R

θ0∫
0

e−q(1−ε)π ·dist((r,θ),L0)e−q(1−ε)π ·dist((r,θ),L1)r dθ dr + (S)

=
R+1∫ θ0∫

e−q(1−ε)πr[sin θ+sin(θ0−θ)]r dθ dr + (S)
R 0
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�
R+1∫
R

θ0∫
0

e−q(1−ε)πr[(1−ε)θ+(1−2ε)(θ0−θ)]r dθ dr + (S)

�
R+1∫
R

e−q(1−3ε)πrθ0

[ θ0∫
0

e−q(1−ε)επrθ dθ

]
r dr + (S)

� 2

qεπ

R+1∫
R

e−qπ(1−3ε)θ0r dr + (S)

� 2

qεπ
e−qπ(1−3ε)θ0R + (S) � 2

qεπ
R−q(1−4ε)πM1 + (S)

where (S) = (a smaller term). Hence the result follows. �
Lemma 6.3. For any ε > 0 and p > 1, if there is a pair of indices (i0, j0) such that i0 �= j0 and
|pi0 − pj0 | = M1 logR, then we have a constant C = C(p, ε) > 0 independent of (i0, j0) and
P ∈ ΛR such that ∫

AR

v
p
i0
vj0 � CR−π(1+ε)M1

provided R is large.

Proof. Assume pi = (R+1/2,0) and pj = (R+1/2)(cos θ0, sin θ0) as in the previous proof. By
our assumption, θ0(1 + o(1)) = M1 logR/(R + 1/2). Therefore, we obtain from (2.3) and (2.4)
that∫

AR

v
p
i0
vj0 =

∫
SR

v
p
i0
vj0

�
1∫

0

R+ 3
4∫

R+ 1
4

u
p
R(s, z) · uR(cos θ0s + sin θ0z,− sin θ0s + cos θ0z) ds dz

� C

(1 − 2R−α)
2(p+1)
p−1

1∫
0

R+ 3
4∫

R+ 1
4

exp

( −pπz

1 − 2R−α

)
exp

(
π(− sin θ0s + cos θ0z)

1 − 2R−α

)
ds dz

� C

[ 1∫
0

exp

(−πz(p − cos θ0)

1 − 2R−α

)
dz

]
·
[ R+ 3

4∫
R+ 1

4

exp

(−π sin θ0s

1 − 2R−α

)
ds

]

� C · R−π(1+ε)M1

for some constant C > 0. �
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By applying the previous interaction estimates, we can now prove that FR has a maximum
in the interior of the admissible set ΛR . To achieve this, we will estimate FR(P ) for any fixed
point P = (p1, . . . , pl) lying on the boundary of ΛR and deduce that it is strictly smaller than
the value of FR at a point in the interior of ΛR .

Note that two possibilities exist if P ∈ ∂ΛR : either

|pi0 − pj0 | = M1 logR for some i0 �= j0, (6.2)

or

si0 =
(

R + 1

2

)
− R

Rπ(1+ε1)M1
for some i0. (6.3)

Assume first that the case (6.2) happens. If we choose ε1 ∈ (0, ε2) arbitrarily, we get then

Lemma 6.4. Fix P = (p1, . . . , pl) ∈ ∂ΛR . If |pi0 − pj0 | = M1 logR for some i0 �= j0, then

FR(P ) � 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 − CR−π(1+ε3)M1 + O
(
R−π(1+ε1)M1

)]

for some C > 0 and 0 < ε3 < ε1.

For the proof of Lemma 6.4, the following expansion for FR is necessary.

Lemma 6.5. For sufficiently small M1 > 0, it holds that

FR(P ) = 2RN−2

[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 −
l−1∑
i=1

l∑
j=i+1

∫
CR

v
p
i,P vj,P

−
l∑

i=2

i−1∑
j=1

Cij (P ) + O
(
R−π(1+ε1)M1

)]

for any P ∈ ΛR . Here, the functions vi,P and vj,P are defined in (6.1) and P �→ Cij (P ) are
positive maps in ΛR whose definition is given in the proof.

Proof. By Lemma 2.2 and (2.11),

1

2RN−2
· IR(vR,P )

=
(

1

2

l∑
i=1

∫
CR

|∇vi |2 − 1

p + 1

l∑
i=1

∫
CR

v
p+1
i

)
+
(∑

i>j

∫
CR

∇vi · ∇vj −
∑
i �=j

∫
CR

v
p
i vj

)

+
∑
i �=j

O

( ∫
CR

(vivj )
min{ p+1

2 ,2}
)

+ O
(
R−π(1+ε1)M1

)
.

Since ε2 ∈ (ε1,min{(p − 1)/2,1}), we can pick a small ε4 > 0 such that
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∫
CR

(vivj )
min{ p+1

2 ,2} = O
(
R−πmin{ p+1

2 ,2}(1−ε4)M1
)

= o
(
R−π(1+ε2)M1

)= o
(
R−π(1+ε1)M1

)
(6.4)

for i �= j (see Lemma 6.2). Also, we have

1

2

∫
CR

|∇vi |2 − 1

p + 1

∫
CR

v
p+1
i = 1

2

∫
SR

∣∣∇(ψRuR)
∣∣2 − 1

p + 1

∫
SR

(ψRuR)p+1

=
(

1

2
− 1

p + 1

)∫
S

|∇u0|2 + O
(
R−α

)
(6.5)

for any i = 1, . . . , l, and∑
i>j

∫
CR

∇vi · ∇vj −
∑
i �=j

∫
CR

v
p
i vj =

∑
i>j

∫
CR

(∇vi · ∇vj − v
p
i vj

)−
∑
i<j

∫
CR

v
p
i vj . (6.6)

However, for i > j ,∫
CR

(∇vi · ∇vj − v
p
i vj

)= −
∫
ŠR

(
�uR + u

p
R

)
(s, z) · uR

(
Θ−1

j Θi(s, z)
)

+
∫

Γ1∪Γ2

∂uR

∂ν
(s, z) · uR

(
Θ−1

j Θi(s, z)
)+ O

(
e− π

2 R
1−α

2 )
=

(
−
∫
Γ1

+
∫
Γ2

)
∂uR

∂s
(s, z) · uR

(
Θ−1

j Θi(s, z)
)+ O

(
e− π

2 R
1−α

2 )
=: −Cij (P ) + O

(
e− π

2 R
1−α

2 )
(6.7)

where ŠR = (R + R−α,R + 1 − R−α) × R, Γ1 := {s = R + R−α} ∩ ∂(ŠR ∩ Θ−1
i Θj (ŠR)),

Γ2 := {s = R + 1 − R−α} ∩ ∂(ŠR ∩ Θ−1
i Θj (ŠR)) and ν is the unit outward vector normal to

the boundary ∂ŠR , i.e., ν = ((−1)i ,0) on Γi for i = 1,2. Note that by Hopf’s lemma, ∂uR

∂s
> 0

(< 0) on Γ1 (Γ2, respectively) and so Cij (P ) > 0. Consequently, from Lemma 6.1 and the above
estimates, the lemma follows. �
Proof of Lemma 6.4. By Lemmas 6.5 and 6.3,

FR(P ) � 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 −
∫
CR

v
p
i0
vj0 + O

(
R−π(1+ε1)M1

)]

� 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 − CR−π(1+ε3)M1 + O
(
R−π(1+ε1)M1

)]

for some C > 0 and ε3 > 0. We can select ε3 > 0 so small that ε3 < ε1. �
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If (6.3) occurs, we have the following lemma.

Lemma 6.6. Let P = ((s1, z1), . . . , (sl, zl)) ∈ ΛR . If there is an index i0 such that si0 =
(R + 1/2) − R1−π(1+ε1)M1 , then

FR(P ) � 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 − CR−π(1+ε1)M1 + O
(
R−π(1+ε2)M1

)]
(6.8)

for some C > 0.

Proof. It is sufficient to prove that

IR(vR,P ) � 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 − CR−π(1+ε1)M1 + o
(
R−π(1+ε2)M1

)]
(6.9)

since with Lemma 6.1 it implies (6.8).
Decompose

1

2RN−2
IR(vR,P ) = 1

2

∫
CR

|∇vR,P |2
(

s

R

)N−2

− 1

p + 1

∫
CR

v
p+1
R,P

(
s

R

)N−2

=: I1 − I2. (6.10)

We will estimate I1 and I2 respectively.
We keep using the notation vi and θi . By Lemma 6.2, it holds that

I1 = 1

2

l∑
i=1

∫
CR

|∇vi |2
(

s

R

)N−2

+
∑
i>j

∫
CR

∇vi · ∇vj

(
s

R

)N−2

= 1

2

l∑
i=1

∫
SR

∣∣∇(ψRuR)
∣∣2(cos θis − sin θiz

R

)N−2

+
∑
i>j

∫
CR

∇vi · ∇vj + O
(
R−π((1+ε1)+(1−ε4))M1

)

where ε4 is the small number chosen in the proof of Lemma 6.5 so that (1 + ε1) + (1 − ε4) >

2(1 − ε4) > 1 + ε2. Therefore

I1 = 1

2

(
l∑

i=1

cosN−2 θi

)∫
|∇u0|2 +

∑
i>j

∫
∇vi · ∇vj + o

(
R−π(1+ε2)M1

)
. (6.11)
S CR
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Furthermore, applying Lemma 2.2 and (6.5), we see that

I2 = 1

p + 1

l∑
i=1

∫
CR

v
p+1
i

(
s

R

)N−2

+
∑
i �=j

∫
CR

v
p
i vj

(
s

R

)N−2

+ o
(
R−π(1+ε2)M1

)

= 1

p + 1

(
l∑

i=1

cosN−2 θi

)∫
S

|∇u0|2 +
∑
i �=j

∫
CR

v
p
i vj + o

(
R−π(1+ε2)M1

)
. (6.12)

On the other hand, we have cos θi0 = 1−R1−π(1+ε1)M1(R+1/2)−1. Hence from (6.10), (6.11)
and (6.12), we get

1

2RN−2
IR(vR,P )

� l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 − R

R + 1/2

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 · R−π(1+ε1)M1

+
(∑

i>j

∫
CR

∇vi · ∇vj −
∑
i �=j

∫
CR

v
p
i vj

)
+ o

(
R−π(1+ε2)M1

)
.

Finally, by (6.6) and (6.7),

∑
i>j

∫
CR

∇vi · ∇vj −
∑
i �=j

∫
CR

v
p
i vj � O

(
e− π

2 R
1−α

2 )
.

Thus (6.9) holds. �
Finally, we deduce a lower energy estimate of FR in ΛR .

Lemma 6.7. We have the following estimate:

max
P∈ΛR

FR(P ) � 2RN−2
[
l

(
1

2
− 1

p + 1

)∫
S

|∇u0|2 + O
(
R−π(1+ε2)M1

)]
. (6.13)

Proof. Assume that l is odd, that is, l is written as l = 2l′ + 1 for some l′ ∈ N. Let p0 =
(R + 1/2,0), p2i−1 = (R + 1/2)(cos 2iθ0, sin 2iθ0) and p2i = (R + 1/2)(cos 2iθ0,− sin 2iθ0)

for i = 1, . . . , l′ where θ0 ∈ (0,π/2) is determined by the relation tan θ0 = R
1−α

2

R+R−α . Then one can
check that given the orthogonal matrix Θi which corresponds to pi for each i = 1, . . . , l (see
(2.9)), it is satisfied that Θi(SR) ∩ Θj(SR) = ∅ unless i = j .

Now by applying the fact that

θ2
0

(
1 + o(1)

)= sin2 θ0 = [(
R

1+α
2 + R− 1+α

2
)2 + 1

]−1
,

we derive
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cos 2l′θ0 = 1 − 2
(
l′
)2

θ2
0

(
1 + o(1)

)
� 1 − 4

(
l′
)2

R−(1+α) � 1 − R−π(1+ε1)M1

2
,

provided M1 small, which implies(
R + 1

2

)
cos 2l′θ0 �

(
R + 1

2

)
− R1−π(1+ε1)M1 .

Furthermore, we have

min
i �=j

|pi − pj |2 = 4

(
R + 1

2

)2

sin2 θ0 = 4

(
R + 1

2

)2[(
R

1+α
2 + R− 1+α

2
)2 + 1

]−1

� 2R1−α � M2
1 log2 R.

Therefore P0 := (p0,p1,p2, . . . , p2l′−1,p2l′) ∈ ΛR , and we obtain (6.13) from (6.5). Note
that vi and vj have disjoint compact support and (|s|/R)N−2 = O(R−α(N−2)) in the support
of vR,P0 , whose effect on the value of FR(P0) is negligible.

If l is even, we can use the point P1 := (p1,p2, . . . , p2l′−1,p2l′) ∈ ΛR to check that (6.13)
holds again. �

Collecting Lemmas 6.7, 6.4 and 6.6 and reminding that we chose 0 < ε3 < ε1 < ε2, we obtain

Proposition 6.8. For sufficiently small M1 > 0, there exists R0 > 0 such that the maximum of FR

in ΛR is attained by a point PR in the interior of ΛR for all R > R0.

7. Completion of the proof of Theorem 1.1

Putting together the results obtained in previous sections, we can now conclude the proof of
the main theorem.

Completion of the proof of Theorem 1.1. If R > 0 is large enough and fixed, from Proposi-
tion 5.1 and Proposition 6.8, we get a critical point PR ∈ ΛR of IR which gives rise to a solution
VR,PR

+ WR,PR
= Φ−1(vR,PR

+ wR,PR
) of (1.1). It is not hard to show that this solution has

the properties described in the statement of the main theorem, by employing (2.10) and (4.2).
Consequently, Theorem 1.1 is valid for 1 < p � 2∗ − 1.

Now, we consider the supercritical case, i.e. p > 2∗ − 1. Since there is a constant ρ > 0 such
that ‖vR,P + Φ(W)‖L∞(AR) � ρ for every W ∈ FR (see (4.2)) given R sufficiently large, if we
pick a function F ∈ C2(R) satisfying

F(u) =
{

u
p+1
+ for u ∈ (−∞, ρ),

(ρ + 1)p+1 for u ∈ (ρ + 1,∞),

then a critical point of the functional

ĨR(u) = 1

2

∫ ∣∣∇u(s, z)
∣∣2|s|n−2 ds dz − 1

p + 1

∫
F
(
u(s, z)

)|s|n−2 ds dz, u ∈H

AR AR
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gives a solution of (1.1) substituting up with F(u). The analogue of previous results replac-
ing up with F(u) remains to hold. Thus, Eq. (1.1) with F(u) instead of up has the desired
solution UR,l . However, it is a solution of the original problem since F(UR,l) = (UR,l)

p by the
property ‖UR,l‖L∞(AR) � ρ. This proves the remained case p > 2∗ − 1. �
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