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We consider the supercritical problem

—Au=uP"'u inD, u=0 ondD,
where D is a bounded smooth domain in RN and p is smaller
than the k-th critical Sobolev exponent Z*N’K = %:ﬁf% with 1 <
k < N — 3. We show that in some suitable torus-like domains D
there exists an arbitrary large number of sign-changing solutions
with alternate positive and negative layers which concentrate at
different rates along a x-dimensional submanifold of 9D as p
approaches 27\,,  from below.
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1. Introduction

This paper deals with the classical Lane-Emden-Fowler problem

Av+|vP"lv=0 inD, v=0 ondD, (1.1)

where D is a bounded smooth domain in RN, N >3, and p > 1. In particular, we are interested in
exploring the role of the lower dimensional Sobolev exponents Z*N,K on the existence and multiplicity
of solutions to problem (1.1). For any integer ¥ between 0 and N — 2 let us set
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N—-«k+2 .
?;,’K = m if 0 <k < N -3 and 2*N,N—2 = 4-00. (12)
If 0 <« <N -3, then 23, +1 is nothing but the «-th critical Sobolev exponent in dimension N — k.

It is well known that in the subcritical regime, i.e. p < ZN o» the compactness of the Sobolev
embedding ensures the existence of at least one positive solution and infinitely many sign-changing
solutions to (1.1).

In the critical case (i.e. p = 2§ ;) or in the supercritical case (i.e. p > 2}, ) existence of solutions
to problem (1.1) turns out to be a dellcate issue. Indeed, if the domain D is star shaped PohoZaev’s
identity [25] implies that problem (1.1) has only the trivial solution.

In the critical case, if D has nontrivial reduced homology with Z,-coefficients, Bahri-Coron [4]
proved that problem (1.1) has a positive solution in the critical case. Moreover, it was proved by
Ge-Musso-Pistoia [15] and Musso-Pistoia [18] that if D has a small hole, problem (1.1) has many
sign changing solutions, whose number increases as the diameter of the hole decreases.

In the supercritical regime the existence of a nontrivial homology class in D does not guarantee
the existence of a nontrivial solution to (1.1). Passaseo in [21,22] exhibited a domain in RY homo-
topically equivalent to the «-dimensional sphere in which problem (1.1) with p > 2% has only the

trivial solution. Recently Clapp-Faya-Pistoia [7] built domains in RN with a richer topology, namely
the cup-length is « + 1, in which problem (1.1) with p > 2*N’K has only the trivial solution. When
p =2}, the existence of infinitely many positive solutions to (1.1) was proved by Wei-Yan [26] for
suitable torus-like domains D.

It is interesting to study problem (1.1) in the almost critical case, i.e. p =2} , &€, where € is a
small positive parameter.

The peculiarity of the almost critical case when ¥ = 0 is that problem (1.1) has solutions which
blow up at one or more simple or multiple points in D as € goes to zero. Indeed, if p = Z*NO €,
positive and sign-changing solutions to (1.1) with different simple blow-up points were built by Bahri-
Li-Rey [5] and Bartsch-Micheletti-Pistoia [6], respectively. Moreover, Pistoia-Weth [24] and Musso-
Pistoia [19] proved that the number of sign-changing solutions to (1.1) with a multiple blow-up point
increases as € goes to zero. On the other hand, if p = 2*,\,,0 + €, Ben Ayed-El Mehdi-Grossi-Rey [3]
proved that problem (1.1) does not have any positive solutions with one positive blow-up point, while
Del Pino-Felmer-Musso [9] and Pistoia-Rey [23] found solutions with two or more positive blow-up
points provided the domain D has a hole. Up to our knowledge there are no results about existence
of sign-changing solutions in this case. In particular, we quote Ben Ayed-Bouh [2] who proved that
problem (1.1) does not have any sign-changing solutions with one positive and one or two negative
blow-up points.

Having in mind what happens in the almost critical case when « = 0, we wonder if the same phe-
nomenon occurs for any 1 < « < N — 2. More precisely, we ask if for some suitable domains D the
problem (1.1) has solutions which blow up at one or more simple or multiple x-dimensional mani-
folds in D as p approaches the «-th Sobolev exponent 2y, , from below. A first result in this direction
was obtained by Del Pino-Musso-Pacard [10]. If « =1 and p =2§ , — €, they proved that for some
domains D if € is different from an explicit set of values, problem (1 1) has a positive solution which
concentrates along a 1-dimensional submanifold of the boundary of D when € goes to zero. Recently,
it has been showed that if x > 2 and p approaches from below 2N « it is possible to build torus-
like domains D in which problem (1.1) has positive solutions which concentrate at a «x-dimensional
submanifold of dD. The construction was performed in the case 1 <k <N -3, p=2}, — € and
€ goes to zero and in the case k = N — 2 and p goes to +oco by Ackermann-Clapp- Plst01a [1] and
Kim-Pistoia [16], respectively.

As far as it concerns existence of sign-changing solutions, when 1<« < N—-3, p= 2N « — € and
€ is small enough or when k = N — 2 and p is large enough, Ackermann Clapp Pistoia [1]| and Kim-
Pistoia [16], respectively, constructed a sign-changing solution with a positive and a negative layer
which concentrate with the same rate along the same k-dimensional submanifold of the boundary
of suitable torus-like domains D, as € goes to zero. In particular, Kim-Pistoia [16] proved that when
k = N — 2 the number of sign changing solutions to (1.1) increases as p goes to +oo, provided D
satisfies some symmetric assumptions. Their solutions have an arbitrary number of alternate positive
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and negative layers which concentrate with the same rate along the same (N — 2)-dimensional sub-
manifold of 9D as p goes to +o0.

In this paper, we build domains D such that the number of sign-changing solutions of prob-
lem (1.1) when 1<k <N —3 and p=2§  — € increases as € goes to zero. In particular, for each set
of positive integers 1, ..., kn with k :=k1 4+ -+ ky < N — 3 we exhibit torus-like domains D for
which the number of sign-changing solutions to problem (1.1) with p = 2’;,,,( — € increases as € goes
to zero. These solutions have an arbitrary large number of alternate positive and negative layer which
concentrate with different rates along a k-dimensional submanifold Iy of 9D which is diffeomorphic
to the product of spheres S¥1 x ... x S*m, This follows from our main results, which we next state.

FiX «1,...,km € N with k := k1 + -+ km < N — 3 and a bounded smooth domain £ in RN=¥
such that

2|, xm X)) eRT x RNKM: x50, i=1,...,m}. (13)

Set

D= {(y1,.'.,ym’z) GRK]-‘H N, ka-Fl XRN—K—TI‘I: (|y1

LY e ). (14)

D is a bounded smooth domain in RN which is invariant under the action of the group © :=
O(i1+1)x -+ x O(km+1) on RN given by

(glv---vgm)(yl!""ymvz) = (gly]ﬂ"'!gmymvz)v

for every g; € O(k; + 1), y' e R4+l z e RN=¥—™ Here, as usual, O(d) denotes the group of linear
isometries of RY. For p = 2) , — € we shall look for @-invariant solutions to problem (1.1), i.e. solu-
tions v of the form

v(y],...,y"”,z):u(‘y1

m

y

,2). (1.5)

y ey

A simple calculation shows that v solves problem (1.1) if and only if u solves
—Au— —:—‘=|u|p_1u inf2, u=0 onaf.

This problem can be rewritten as
—div(a(x)Vu) =a@[ulP'u in 2, u=0 ondg,

where a(xq,...,XN—x) := x'fl ... xm Note that 2§  is the critical exponent in dimension n:=N —
which is the dimension of £2. '
Thus, we are led to study the more general almost critical problem

—div(a(x)Vu):a(x)|u|$_€u in £2, u=0 onas, (1.6)

where £ is a smooth bounded domain in R", n >3, € > 0 is a small parameter and a € C2(2) is
strictly positive in £2.

This is a subcritical problem, so standard variational methods yield one positive and infinitely
many sign changing solutions to problem (1.6) for every € € (0, %). Our goal is to construct solu-
tions ue with an arbitrary large number of alternate positive and negative bubbles which accumulate
with different rates at the same point & of 92 as € — 0. They correspond, via (1.5), to ®-invariant
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solutions v¢ of problem (1.1) with positive and negative layers which accumulate with different rates
along the k-dimensional submanifold

To={(y', ..., y™ 2) e RO s s REmHL o RN=K=me (1) 1) 0y 2) = &0}
of the boundary of D as € — 0. Note that M is diffeomorphic to S¥1 x - -- x S¥m where S¢ is the unit
sphere in R4+1,

We will assume the following conditions.

(al) There are constants a; and ay such that
0<a; <akx)<ay<+4oo forallxe £2.
(a2) The restriction of a to d§2 has a critical point & € 952 and

8va(€o) := (Va(%), v(&)) > 0

where v :=v (&) is the inward unit normal vector to 952 at &.
(a3) The domain £2 and the function a are symmetric with respect to the direction given by v(&p),

ie.,
VIV + & T)T1I+ -+ K T)T+ -+ (X, Tn—1)Ta—1 € 2
& @+ E Tt - & W+ + (X Th—1)Th—1 € 2
and
a((x, V)V + X )T+ + X T T+ -+ (X Tna1) Ta1)
=a( V)V + X )T+ — K T+ + (X, Tno1)Ta—1)
fori=1,...,n— 1. Here (-,-) is the standard inner product in R" and {t1,...,T;,_1} is an or-

thonormal basis of the tangent space Tg,d52.

For each § > 0, £ € R", we consider the standard bubble

Us,z(x) := [n(n — 2)] £ 8—74
2 +x—¢&%7

We will prove the following result.
Theorem 1.1. Suppose that (a1)-(a3) hold true for a and 2. Also, assume that n > 4. For any integer k, there
exists €, > 0 such that for each 0 < € < €, problem (1.6) has a sign changing solution u. which satisfies

k

e = (=D WUse 500 +0(1) in HY(R)
i=1
where
14261

€ -2 §i(e) > d; >0, Ei(e) > & €02 ase —> 0,

fori=1,... k.
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The solutions we found resemble the towers of bubbles with alternating sign which concentrates
at a point on the boundary of £2. This kind of solutions is typical of almost critical problems (see
[8,11,14,24,19]).

The symmetry of the domain £2 as stated in (a2) allows to simplify considerably the computations.
We believe that the result is true if we only require that & be a non-degenerate critical point of the
restriction of a to the 9£2. Moreover, the restriction on the dimension n > 4 is due to technical reasons
as it is explained in Remark A.11. We also believe that it can be removed but it seems to be necessary
to overcome some technical difficulties.

Now, we come back to problem (1.1). In the following theorem we assume that we are given
Ki,...,km € N with ¥ := k7 + -+ + km <N — 3 and a bounded smooth domain £2 in RN=% which
satisfies (1.3). We set a(X1,...,XN—x) := x']q c..Xjm D asin (14), p =2§,—60:=0K+1)x--x
O(km + 1) and '

ﬁa,g(yﬂ...,ym,z) =Use(ly'],....[y"].2)

for § >0, £ e RN—*,

Theorem 1.2. Assume n = N — k > 4. Then for any integer k there exists €, > 0 such that for any € € (0, €p),
problem (1.1) has a ®-invariant solution v which satisfies

k

Ve =Y (=1 Us;e) 510) 0 +0(1) in Hy(D),
i=1

with

_n=142(i-1)

€ -2 §ij(€) >di >0 and &i(e)—> & €082,
foreachi=1,...,kase — 0.

The solutions we found resemble the towers of layers with alternating sign which concentrate at
a k-dimensional submanifold of the boundary of D. This result extends the one obtained by Pistoia—
Weth [24] and Musso-Pistoia [19] when x = 0 to higher «’s. Moreover, we stress the fact that the
profile of our solutions is different from the one found by Ackermann-Clapp-Pistoia [1] and Kim-
Pistoia [16]. Indeed, their solutions look like a cluster of layers (i.e. all the layers concentrate at the
same speed), while our solutions look like a tower of layers (i.e. one layer concentrates faster than
the previous one).

It is interesting to prove that this kind of solutions also exists in the setting of [10]. Indeed, we
conjecture that if I" is a non-degenerate geodesic of the boundary of D with inner normal curvature
it is possible to build towers of sign-changing solutions whose 1-dimensional layers concentrate at I”
as p approaches the first Sobolev critical exponent 2"‘,\,’l from below (up to a subsequence of values).

By the previous discussion Theorem 1.2 follows immediately from Theorem 1.1. The proof of Theo-
rem 1.6 relies on a very well known Lyapunov-Schmidt reduction. We omit many details on the finite
dimensional reduction because they can be found, up to some minor modifications, in the literature.
We only compute what cannot be deduced from known results. In Section 2 we write the approxi-
mate solution, we sketch the proof of the Lyapunov-Schmidt procedure and we prove Theorem 1.2.
In Section 3 we compute the rate of the error term, while in Section 4 and in Section 5 we give the
(O-estimate and the C'-estimate of the reduced energy, respectively. In Appendix A we give some
important estimates which are not available in the literature.
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Notations.
For the sake of convenience, we assume that §=0€R", tj=¢; fori=1,...,n—1and v=e,
where {eq, ..., ey} denotes the standard basis in R". Thus assumption (a3) reads as £2 is sym-
metric with respect to the x,-axis and a(xq,...,X;,...,Xp) =a(X1,..., —Xi,...,xp) fori=1,...,
n—1.

D'2(R™) is the space of measurable and weakly differentiable functions such that the L2-norms
of their gradients are finite.
D($2) is the space of smooth functions whose supports are compactly contained in §2 and Hg)(.Q)

is the completion of D(§2) with respect to the norm |u| = (u,u)% = (f9a|Vu|2)%. By virtue

of (al), this norm is equivalent to the usual one.
- H($2) is a subspace of H(l)(.Q) defined by

H(Q):{ueHg,(Q): UK, .. Xiy oo Xn) = UK, ..., —Xi, ..., Xy) foreachi=1,....,n—1}.

Also, H(R™) is a subspace of D!2(R") defined similarly.
- For any x € R" and r > 0, B(x, ) is the open ball in R" of radius r centered at x.

- |BY =n"?/r(n/2+ 1) and |S""!| = 2n™?)/I"(n/2) denotes the Lebesgue measure of the

n-dimensional unit ball and (n — 1)-dimensional unit sphere, respectively.

- We will use big O and small o notations to describe the limit behavior of a certain quantity as

€ — 0.
- C >0 is a generic constant that may vary from line to line.

2. Preliminaries and scheme of the proof of Theorem 1.1

2.1. An approximation for the solution

Set ap, = [n(n — 2)]¥ and let

n—2
S 2
Us.e () =7 for6 >0, £ =(&1,...,6-1,0) eR", (2.1)
(2 +1x—&?) 7
which are positive solutions to the problem
nt2 n n
—Au=um2 inR", ueH(R"). (2.2)
Define also
3Us, n—2\ na |x—§? -
ey ::—fzan( )5 2 . (2.3)
98 2 (8 +1x— £
and
: ou n— X — i
Yl (0= 25 =an(n—2)(STZL)ln, i=1,....n, (2.4)
’ d&; B2+ 1x—£%)2
where (x—£); is the i-th coordinate of x—& € R". Recall that the space spanned by wgs, %1,5, e, 1#}51,5
is the set of bounded solutions to the linearized problem of (2.2) at Us ¢ '
n+2 4 .
—Ay = <m> U2y inR", ¢ e DVA(R). (2.5)
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In particular, the set of bounded solutions to the linear equation (2.5) in the space H(R") is generated
by the only two functions ‘ﬁ(?,g and Wg,g-

Let PW be the projection of the function W € D1-2(R") onto H/(£2), that is,

APW =AW in 2, PW =0 onas2, (2.6)

and k a fixed integer. (See Appendix A.l1 for estimation of PUs¢ in terms of Us:.) We look for a
solution to problem (1.6) of the form

k

u=>y (=D)"'PUs ¢ +¢ € H(R)

i=1

where the concentration parameters satisfy

n—142(3i-1)
§ij=e€¢ n2 d; withd; >0, (2.7)
the concentration points satisfy
& = (& + €tv(&)) + 8isiv(&) witht>0ands; €R, 5, =0, (2.8)

and ||¢|| is sufficiently small.
For simplicity we write d := (d1, ..., dy) € (0, +00)k, t:=(t,s1,...,5k_1) € (0, +00) x R¥"1, U; =
Us;& and

k
Vie=Vae= D (—-DTPU; e H(R). (2.9)
i=1

Also, we define the admissible set A by
A={d,0): de (0, +00)¥, te (0, +00) x R}
2.2. Scheme of the proof of Theorem 1.1

First, we rewrite problem (1.6). Let i* : Ln%(.Q) — H(]J(Q) be the adjoint operator to the em-

bedding i:Hé(.Q) > an—_HZ(SZ), i.e, i*(v) = u if and only if (u,¢) = f_q ave for all ¢ € D(£2), or
—div(a(x)Vu) =av in £ and u =0 on 9£2. Therefore (1.6) is equivalent to

n—+2

u=i*(lulP~1"€u), ueH}(R)wherep:=
(|| ) 0(£2) p —

(2.10)

For the sake of simplicity, we write 1//,.j = 1//({,_51, with §; and &; defined in (2.7) and (2.8). We
introduce the spaces

Kd,t:span{Pl//ij: i=1,....k, j=0,n},
Ki,={¢ € H(®): (¢.Py})=0fori=1,....k j=0.n}, (2.11)

and the projection operators ITq ¢ : H(22) — Ka and g, =Idy o) — Map: H(2) — Kg.
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As usual, we will solve problem (2.10) by finding parameters (d,t) € A and a function ¢ € Kst
such that ’

Og(Vae+¢ —i*(IVar+ P (Vae+¢)) =0 (2.12)

and
Hat(Vae+o—i*(Vae+o1P " (Var+¢))) =0. (213)
The first step is to solve Eq. (2.12). More precisely, if € is small enough for any fixed (d, t) € A, we

will find a function ¢ € K3, such that (2.12) holds.
First of all we define the linear operator Lg ¢ : K, — Kz, by

Lagp=¢ — (p —€) - Mg di*(IVaelP ' ~“9). (2.14)
Arguing as in [19, Lemma 3.1] and using Lemma A.5 and Lemma A.7, we prove that it is invertible.

Proposition 2.1. For any compact subset Ag of A, there exist €g > 0 and ¢ > 0 such that for each € € (0, €g)
and (d, t) € A the operator Lq ¢ satisfies

ILacgll = cligll forall ¢ € Kg .

Secondly, in Section 3 we estimate the error term

R =g (i*(IVa el " Vage) — Vay)-
Lemma 2.2. It holds true that

n+6

1.nt6
[Ra,ell = O (€2 m2) =0(/e).
Finally, we use a standard contraction mapping argument (see [19, Section 5]) to solve Eq. (2.12).

Proposition 2.3. For any compact set Ag of A, there is €y > 0 such that for each € € (0, €p) and (d, t) € Ao,
a unique ¢§ ¢ € Kj—t exists such that

nit(vd,t + ¢t€i,t - l*(’ Vae+ ‘l’fi,t‘p_l_e (Vd,t + ¢(€i,t))) =0

and

|og.¢ =o/e). (2.15)

The second step is to solve Eq. (2.13). More precisely, for € small enough we will find (d, t) such
that Eq. (2.13) is satisfied.
Let us introduce the energy functional J¢ : H(§2) — R defined as

Je(u)=%/a(x)|Vu|2dx—

2

—_ / a(x)luP*17¢ dx,
p+1—e€
22
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whose critical points are solutions to problem (1.6) and let us define the reduced energy functional
Je: A—> R by

Jed 0 = Je(Var +85)- (216)
First of all, arguing as in [19, Proposition 2.2] and using Lemma A.5 and Lemma A.8, we get

Proposition 2.4. The function Vg ¢ + ¢§ ¢ is a critical point of the functional ] if the point (d, t) is a critical
point of the function 76.

Thus, the problem is reduced to search for critical points of 76, whose asymptotic expansion is
needed. The C® and C! estimates are carried out in Section 4 and Section 5, respectively, and they
read as follows.

Proposition 2.5. It holds true that

Te(d, t) = a(&o)[cy + c2€ — cz€loge] + €@ (d, t) + o(€), (217)

C'-uniformly on compact sets of A. Here, the function ® : A — R is defined by

n-2
2 1
) 2, =2
(1455)2

k
—a(éo)cr Y _ logd; (2.18)

i=1

dl n—2 k—1 di+1
®(d, t) := dya(éo)cat + a(€o) Cs(§> +¢s Z( .
i=1 !

where c;’s are all positive constants.

Finally, we can prove Theorem 1.1 by showing that 76 has a critical point in A.
Proof of Theorem 1.1. The fact that 9,a(&p) is positive (see assumption (a2)) ensures that the function
@ defined in (2.18) has a non-degenerate critical point of min-max type (a minimum in t and d;’s
and a maximum in s;’s) which is stable under C!-perturbations (see page 7 in [19]). Therefore, by

Proposition 2.5, we deduce that if € is small enough the function J. has a critical point. The claim
follows by Proposition 2.4. O

3. Estimate of the error term Rg ¢

This section is devoted to prove Lemma 2.2. For sake of brevity, we drop the subscript d, t.
Using the definition of V in (2.9), we decompose first

R:=MM+(i*(JVIPT17¢V) = V)

k k
=t (i*<|V|p_1_€V = =DHUP Y (1) !V oga- vpu,-))

i=1 i=1

k
= T (\VIPTT7eV — [VIPTIY)) + Tt (i*<|V|P—1v - Z(—l)f“PUip))

i=1
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k ) k )
+ ) (DT (PUP = UP)) + ) (= D)FHTH(i*(Vioga - VPUY))
i=1 i=1
k ) k ]
=:Ri+Ra+ ) Ry+) R 3.1)
i=1 i=1
Estimate of Ry. Set p := HZ%
rem and

By the boundedness of i* : Ln% (£2) — H(l)(.Q), the mean value theo-

lul9log |ul| = O ([u|"" + [u|?"?) foranyq > 1andsmallo >0,

(3.2)
it holds
IR <[ ((VIPe =P V) [P < (VP = VP = )V [ )
:c€f’/ylog|V||‘3- sup |V PP <Ceﬁ/(|V|Pf’*"’+ |V |PPFo")
0€[0,1]
Q Q
~ k 2_"_0/ 2_“+0/ ~ ”
<cehy / Uy Uiy = 0(eP 0"
i=1g
where ¢’ and ¢” > 0 are constants small enough. Hence
IR1ll=0(e'~?) foranysmallo > 0. (3.3)
Estimate of Ry. Let f(s) := |s|P~'s for s € R and choose p > 0 sufficiently small so that
B (&, p€) C £2. Following the approach introduced in [19], we divide the domain §2 into k + 1 mutu-
ally disjoint subsets, namely,

k
2= (UA:) U (2 \ B(&. pe))
=1

where A;’s are annuli defined as

. (ep)?
A1 = Bk, /81-18) \ Bk, v/81d14+1) with §o = 5 Sk+1=0. (34)
Then by the mean value theorem,

k p
VIPTTV =Y (—1ttpuf

ey |

I=1 5,

IR21IP < C

LP(£2)

k
VPV =Y (=Dt tpuf
i=1

b
+O(6%)
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p
_CZ/‘f<( DFPU+ Y (- 1)’“PU> f((—])l“PUl)‘ +0(ei2)

i#l

k—1
_ (quw ”PU,‘fH) +o<zfu,w—1>l’u,';l> +0(er).

=14 =2

By (4.19) and (4.13) we deduce

8n 8n 2n(n—2)
(p—1Dp ;P n2—4 ry (1+2)2 (n+2)2
[P < QUF U war (US] gan
A L@ 1027 (@)
8n2 (n—2)§
(n+2) (n+2)
- p p+1
Al Al
8n n(mn-2) n(n+6)

=0 (6 (n+2)2 ) .0 (6 (n+2)2 ) =0 (6 (n+2)2 )
forl=1,...,k—1, and similarly
n(n+6)

/Ul“"*”’f’u,_l = 0/(em2?)

Al

for [=2,...,l. Therefore we obtain

()

n+

IRzl = 0 (e2'73) 4 0 (e7'72).

Estimate of R3. By the mean value theorem again,

|RL|P < c|PuP - c/(u“’ VP |pu; — UilP +|PU; — U PH).

ko)

p
U ”Lp(_(z)
Arguing as in the proof of Lemma A.3, we get
/ |PU; — Ui [P+ = 0(e72),
Q

and

/ uPVPpu; - uylP
2

n—

(SN}

4
- ~ n+2 n+2
< / u,f”‘””|Pu,-—u,-|P+( / u”“) (fwu,-—unp“)

B(&i.p€) $2\B(&k, p€) 2

(3.5)

(3.6)
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8n (n—2)2
n+2)2 (n+2)2 4n n
<( / U?|Pui—u,-|) ’ -(fwu,-—unp“) " o(em ) 0(en)
B(&i, pe) 2
n(n+6) n(n+2)

= O(G (n+2)2 ) + O(E n2—4 )

(see [1, Lemma C.2(64)] for the estimate of the term fB(,Si,pe) U,.p|PU,~ — Ujl). Thus

R3] = 0(e27:2) + 0 (e273). 3.7)
Estimate of R4. Lemma A.10 yields
IR4ll < CIVPUill 5oy = O(€) (3.8)

In conclusion, from (3.1), (3.3), (3.5), (3.7) and (3.8), we obtain

n+6 n+2 n+6
-2

IR =0 (") + 0 (€2 72) + 0 (€273 + 0(e) = 0 (e2733).
This completes the proof of Proposition 2.3.
4. Energy expansion: The C%-estimates
The main task of this section is to prove that estimate (2.17) holds in the C%-sense. We recall that

the function Vg4 is defined in (2.9) and the function d)jt is given in Proposition 2.3. For the sake of
brevity, we denote V = Vg and ¢ = ¢ ,. We decompose the reduced functional into three parts

N ) 1
Je@ = (Je(Var+¢qe) = Je(Van) + <5/“(X)|Vvd,t|2d"_ p+1 /a(X)|Vd,t|p+] dx>
2

2

1 1
+—— [ ax)|Vv erldx——/ax 1% p“*dx)
(p—l—l/ )|Vl P )|Vl
2

2

and we estimate each of them. The CC-estimate will follow by the three lemmata: Lemma 4.1,
Lemma 4.2 and Lemma 4.3.

Lemma 4.1. It holds true that

Je(V+¢)— Je(V)=o(e). (41)
Proof. Using Taylor’s theorem and the fact that J.(V + ¢)[¢] =0, we get

1

Je(V+) = Je(V) = —/fJZ(V +tp)l¢. pldt.

0

On the other hand, since ||¢|| = 0(/€),
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[TV +th)g, 1| < (/a|V¢| +Z/aup 1-c 52 +/a|¢|P+1 e) —0(e)
2 =10 2
for some C > 0. Therefore (4.1) follows. O

It is useful to introduce the following constants:

1
p+1
= ———dy, 4.2
=% /<1+|y|2>" y (42)
Rn
1
az_aﬁH/idy, (4.3)

Joa+y»tE

1 o

p+1 n

=« / log —dy. (4.4)
Ll AP gy

Here, ay = [n(n — 2)]".

Lemma 4.2. It holds true that

1 1
5 / a(x)|VVael®dx — 271 / a(X)|Va,elP ™ dx
2

2

1 1
_ <, _ 7)1«11 (atéo) + dratéo)te)

2 p+1
-2 n-2 p+1
d d; 2 B"
+a(éo) (—1> + Z( ’“) o B e oce. (4.5)
2t di (145)'7
Proof. Using the definition of the annuli A; (i=1,...,k) in (3.4), we write
1
- / a|lvv?
2
Q

—Z/awpun +Y (- 1)’+’/aVPU, VPU;

=15 I<i o
Z‘Z[/ aUf* 4 /aU,"(PUz—Uz)Jr / aU,"“—/(Va-vpul)Pu,]
2 2\A 2
+Z(—1)l+i[/aufui+/aU}’(PU,»—U,-)+ / aUlpU,-_/(Va.VPU[)pUi:| (4.6)
I<i A o a\a P

and



S. Kim, A. Pistoia / ]. Differential Equations 255 (2013) 2302-2339 2315

alV P dx
p+1
2
+1 ; p+1
i+1 i+1
PU;| +—— a —1)*1py;
=3 +1 -1 l . ;( ) i
2\B&.pe) 1=
k 1 k
1+1 1 p+1 p+1
p+12/ (( DFPU+ Y (DT PU‘ — Ul )—i-mZ/aU, +0(€)
Al i#l =1 Al
I .
=Z[p+1 /auf’+1 +/aU, (PU; — U,)] +Z(—1)’+’[faufu,-+/au,”(1)u,~—U,»)]
I=1 A A i#l Al Al
p—1
+p/( ’+1U,+9[( DFNPU - U+ (- 1)'+1PU]
i#l
l
) 2
x ((—1)’*1(Pu, —-Up +Z(—1)'+1PU,-) dxdé + o(e). (4.7)
il

First of all, we claim that
Z(—l)”’/aufu,» :22(—1)l+i/anUi—|—o(e). (4.8)
il A 1<i A
Indeed, suppose [ > i. By the fact that —APU; = U,P in 2 and PU; =0 on 9%2, it follows that

/U,”U,:/VPU,.VPU,-—/U,"(PU,-—U,»)— / uluU;
2 2

Al 2\A

=/UfU,+/Uf(PU,—U,)+ / UfU,—/U,”(PU,'—Ui)— / ufui.  (49)

A 2 2\A; Q Q2\A
By Lemmas A.1 and A.2 (see also (4.18)) we deduce

/U{’(Puz—uo,/uf(wi—ui>=o<e),
2

2

-2
2 p+1
/ UipU1<<6[) |: / + / ] . 1 2dy
8i aQ+1y— Slv(éo)lz) |y @1/3i)s1v(&o) "~
B(0,,/ LE )¢ B(O,,/ LESE )
Vi Vi

(4.10)

and
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/ ulU;

2\A

|: P+182 8%
SR |

- — dx
(82 + X — & — szszv(so)ﬁﬁz (82 + |x — & — siBiv(E)ID) T
B(E,/S100¢ Bk /510101) !

n—2
O A=

A+1y —swEn)?) T
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B, /%L B, /B

Therefore, Eq. (4.9) can be rewritten as

/UlpUi:/UipUl—i-o(e). (411)

Al

Aj

Moreover, we have the estimates

/(a(x) —a(&))Uf Ujdx, /(a(x) —a(&))UP U dx=0(€).

(4.12)
Al Ai
By (4.11) and (4.12), we deduce that
/ aUjU; = [a(é;o) / Ul Ui + / (a() — a(€0))U; Uj dx]
Al Aj Al
=a<so)/U,”Ui+o(e>=a<éo)/U{'U1+o(e>=/aU,-"Uz+o<e),
Al Al Aj
which in particular implies (4.8).
Next, we claim that the term I := pfol a- O)fA n (4.7) is of order o(¢). Indeed, we first
remark that
/|PU,—U,|I’+1 —=0(em2) and /Uf’“ =0(er2) fori#l, (413)
Al

Al

where the first equality is obtained in the proof of Lemma A.3 and the second one is deduced in
(6.19) of [19]. Moreover, by (4.18) and (4.19), we deduce

/U{’|PU,—U,|,[U{’U,-:O(G) ifi 1.

Al Al

By these estimates, we get
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I\C[/Up "1puy —Uyf? +/|PU, U,|P“+Z/U” |PU, — U2

Al Al i#l 4

+Z/|PU1 e 1u2]+c[2/u1’ 1U2+ZZ/U" y }

i#l Al i#l A i#l j#l A
Wiz e
<C[(/U,”|PU1—UI|> (/u’ul un"“)"+ +/|PUI—UI|P+1
Al Al
_ n—2
+Z</U””> </|PU1 Uzl"“) g +Z(/|PU1 U:l"“) (fu"*l) ' ]
i# A
4 n—2 n-2
eel(for) ™ (Jer) 22 o) (o))
Al Al i# j# Al
<C[en? e ] +Clen? +en2]=0(en2) =o(e) (4.14)

for some constant C > 0.
Finally, by (4.12), (4.8) and (4.14), we get

k
1 1
o1 /a|V|P+1dx:§ [—p+1 /aul"*1 +/aU,p(PU1—U1)}
2

1=1 by b

—l—ZZ(—l)”’/an’Ui—l—o(e). (4.15)

i<l A

Moreover, by (4.6), (4.10), (4.12), (4.13), (4.15) and the estimate

/(Va -VPU)PU;=o0(e) fori,l=1,...,k,

which is easily deduced by Lemma A.9, we find that

1 1
—/a|VV|2——/a|V|P+1dx
2 p+1
2 2
1 1 k
1
:<§_—p+1)2/ au/™! — Z/aUp(PUI Uy

+Z(—l)’+i+1/anUi+o(6). (4.16)

I<i A

Now, we estimate each term in the right-hand side of the above equality. Firstly, we write the first
term as
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/an’H =¢1(’§0)/Uf+1 +/(a(x) —a(f,-‘g))UlpH dx
Al Al Al

and then we estimate

st
Up+] — _ 5+1|: / + / i| l d
a(SO)! I a(éo)ar —aéo) (512 +|x — & — &SV (&))" *
I

3 5
B(&k, ITI1)5 B(&k, ﬁ)

_ B p+1 dy
=a(§o)ar — a(§o)ay [ / + / ] (14 |y —sjv(&o) 2"

81— §
B0, /I3 B(O, [T

=a(éo)a; +o(€)

and

/(a(X) —a(50))UP ™" dx = 8,a(%0)arte + o(€)
Al

(cf. [1, Lemma C.1]). This shows that

/aulpJrl =a(&o)ar + dva(do)aite +o(e). (417)
Al

Secondly, by Lemma A.1 and Lemma A.2 (using the mean value theorem) we deduce

fauf(PU, - U
Q
= —anc?% /anH(-,Sz) +o(€)
2
_ _p+ln—2 1 1 s+ 1yD
=—ay & “ao) / a+ |y|2)# [(260”_2 + O( = )}dy+o(e)
B(0.pes )
d] n—2
=—-3n - ia(éo)az(i> } -€40(€) (418)

where §;; is the Kronecker delta (cf. [1, Lemma C.2(64)]).
Finally, for | < i, we get

/aufu,»
Al

= a(%o) / ufU; + / (a(x) — a(&)) U/ Ui dx
Al

Al
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_ (ﬁ ) " a(go)al™! dy
i A+ 1y —swEDD) T [(81/8)% + 1y — (8i/8)siviEn) 21T
BO. /1\B(O, [ L)
+o0(€)
n—2
41 2
—3,(l+1)a(§o)< l) F(s)€ +0(€). (419)
Here
F(s):= p“/ ! L d prijpn 1 420
)=« Ly e YT P = (4.20)

The last equality follows from the fact that U = Uy o solves the equation —AU = UP in R" and so it
can be rewritten using the Green’s representation formula

1 1
U = — ubP ——d
= w2 / Wiy 2z
Rn

which implies F(s) = o |B"|U (sv(&0)).
By combining (4.17), (4.18) and (4.19) with (4.16), estimate (4.5) follows. O

Lemma 4.3. It holds true that

1 1
- a|V|P+1 _ —/anp—H—e
p+1 p+1—¢€

2 2
_ kin+k—-2)
—ﬂ(Eo)m -a1€loge
kas kaq (n —2)2 k '
+a($o)|: 1T i @ -0 ;logd,:|e +o0(¢). (4.21)

Proof. By the Taylor expansion we deduce

1
—/G|V|p+1 _ 7/-a|v|17+1—6
1 p+1—¢€
£2 2

1 k p+1 k
= [?/a D =DFPU;| log] Y (-1 PU;
p o li=1 i=1
+1
~ o7 1)2 / 1py; :|e +o(e). (4.22)

Arguing as in the proof of the previous lemma we get
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k p+1
a| Y (=D"'PU;|  =ao)kas +o0(1). (4.23)
o i=1
Moreover, we have
k p+1 k
al Y (=D)™'PUi|  log| Y (-1)*TPU;
o = i=1
k k ' p+1 k '
=Zfa D_EDFU log] Y (DU +o(1)
=14, li=t i=1
k
k(n+k—2) kaz  (n—2)>2
=-—a ——~.aqloge +a — -a logd; | +0(1). 4.24
G0, @los (So)|:p+1 ™ 1;) gdi | +o(1).  (4.24)
By combining (4.22), (4.23) and (4.24), (4.21) follows.
Let us prove (4.24).
To get the first equality, it is sufficient to show that
k p+1 k
/a D (=DFPU| log] Y (—D)TTPU;
o li= i=1
k p+1 k
= [ a| Y _(=D"Ui|  log| > (=1FUi| +0(1) (4.25)
o li=1 i=1
and
k p+1 k
al Y (=D log| > (=DFUi| =0(D). (4.26)
2\B(E.pe) =1 i=1
If we write
V=Y (-D)"'PU;, E:=) (-1 (U;— PU;) and g(s):=|s|"*"log|s| fors 0,
i=1 i=1

then we see that

/a-|g(V+E)—g(V)|dx
2
1
gc//(|v+eE|P+”+|v+eE|P—”+|v +0E|P)-|E|dodx (by(al)and(3.2))
20
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< c[/(ww’*” +VIP=7 +|VIP)- |E|dx+/(|E|P+” +|E|P77 + |E|P)dx]

=o0(1) (bythe Holder inequality and Lemma A.3)

for some constant C > 0. This proves (4.25).

Furthermore, denoting V.= {;1 (=1)*1U;, we have
k
‘ / sl <c / (7P + 7Py <c ) (Pt +ul™)
2\B(&. pe) 2\B(&. pe) =12\B(&. pe)

k n -2 —n24
Si Si\ 2 Si 2
(&) +(F) e
which implies (4.26).

Finally, the second equality can be obtained as in (6.39) in [19]. O
From Lemmas 4.1, 4.2 and 4.3, we conclude that estimate (2.17) is true in the C%-sense.
5. Energy expansion: The C1-estimates

In this section, we will deduce that (2.17) holds C!-uniformly on compact subsets of the admissible
set A.
Let us denote again V = Vg and ¢ = ¢, for the sake of simplicity. We need to prove that for

d:=(dq,...,dy) € (0, +00)* and t:=(t,s1,...,Sc_1) € (0, +00) x Rk 1,

O Je(d, t) = 3P (d, )e +0(€) (5.1)

CO-uniformly on compact sets of A where 76 and @ are defined in (2.16) and (2.18), respectively, and
ris one of dy,...,dg,t,S1,...,Sk— and Si_1.

51 Thecaser=d;(I=1,...,k)orr=s(l=1,...,k—1)
We decompose aJe (d, t) into
ed, )= J.(V)(@3V)+ [Jo(V+¢)— J.(D]oV + J.(V + ) (3r)
and estimate each term.

Lemma 5.1. It is satisfied that
Jo(V)(@:V)=0,@(d, t)e +o(€) forr=dy,....dx,S1,...,Sk—1- (5.2)

Proof. Set p = (n+2)/(n —2). We split J_(V)(3,V) as

JeW@V) = /GVV~V(8rV)—fa|V|p717€V(3rV)

2 2
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k
::[}:«qy*lfaVPw-vwmo—:/mvwanv{
i=1 o

2

+ [/awv"lwam—fa|V|P‘1‘EV<arV>]

2

/ (Z( HFUf - v 1V> (arV)+Z< 1’ /(w VPU)@V)

Q i=1 i=1
+ [/a(ww—lv —[VIP~I=ev). (arV>]
2
=T +T}+T;

and estimate each T! (i=1,2,3).
Suppose that r =d; for some [ =1, ..., k. Note that in this case

n— 1+2(l 1

OV =84V = (=)o, PU; = (-1)!T e PV + syl

where P : D12(R") — H}(£2) is the projection operator given by (2.6) and 1//,j = 1//5‘145‘ (j=0,n) are
functions defined as (2.3) and (2.4). By simple manipulation, we get

i=1

k
T;’ :/a(Z(_1)1+1U113 _ |V|P—1 V) . (_1)I+1ad1PUl +O(€)
A

:i/a(u—1ﬂ+HhV’%—qﬂ+%h—wvvk4v)«—Jﬂ“ampur+o@y
Al

On the other hand, by adapting the way to estimate I in the C%-estimation and using (A.4), we can
deduce that

n—142(-1) nt

e—FT—/am—n”nm“%—w“urquJW-en”%mﬁ_wﬁ==o@w)

Al

EN

Thus by the mean value theorem
-1 —
T;,zfa(}(—w’“uzv’ DU = VPV - (=1 U+ o(e)
Al

:p/awkkw—PMWMh+Z}—DMHp/Mﬁ4Pw~%Uﬁm&y
Al i#l Al

From Lemmas A.1 and A.2, it follows that
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2323

p/auf“(u, - PUI)Bd,U1=p/aU1p_1(U1 - PUl)d,_](Slw,O—i—p[an_](U, — PUDd; ' si8py!

Al Al Al

dq

n—2
2_t> € +o(e)} +o(e).

- [5110(50)%@11 (

Furthermore, for [ < i, we obtain by applying Lemma A.12 in particular that

p/aU{HPU,- - 83, Uj
Al

:p/aU}’*lu,-ad,U,+o(e):/a(ad,uf)u,- +o(€)

A A
= ad[<[aufu,»> - adm(/aufu,-) +0(€)
by ye I=m
din\'7 1
= Sigrnatoen e - 3y [(%) / &3
! (I+1y —svo)l?) 2
BO. [ S50\BO, /%L
1
X - - — dyi| +o(€)
[(di1/d)? - €72 + |y — (di1/dDenZs1v(E0) 2] 2

n—-2
d 2
= 8ij1+1)a(50) g, <i1;,1> F(s))e +o(¢€)

where we set dy;1 =0 and the function F is defined in (4.20). If | > i, through the procedure changing
the order of i and I that was conducted in computing (4.7) (see (4.9) and the following computations),

we can see

n—2
_ d \'7
P/aUlp 1PU¢'-3d1U1=a(§o)5i<1—1)3d1<m) F(si—1)e +o(e),
A

letting F(sgp) = 0. As a result, it holds that

N

n—2 n—.
ap di\"? diyr 2 d
Tl — 811 =3, = (L) " F g [ ——
4 a(éo)[ s d1(2t) + d,( a (s1) + 9, .

Employing Lemma A.9, we can easily show that

N|

2
Td, =o0(€),
so it suffices to compute T;’. Clearly
1
n—142(-1)

T, :efa|V|p’1V10g|V|-(—l)l“e =2 (Y + siylt) + o(e).
2

F(51—1)]e +o(e).

(5.3)

(5.4)
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Also, utilizing

lyl? -1 / y
_dy=| —————dy=0, 5.5
A+t VT Ay (5:3)
Rn Rn

Lemma A.12 and performing a similar computation to the derivation of (4.24), we find

fa|V|P Wlog V|- (—1)H1e"mr P
2
- k k
_GZ/ Z( 1)1+1 (Z(_l)iﬂul,) log Z(_l)iﬂu
j= 1A i=1 i=1 i=1
(DT P 4 oge)

_eZ/aUplogU (—)Hie= Y0 4 o(e)

1
JAJ

- a(go)ed; 15 / (85,UP ") log Uy + o(e)

Al
la(so)ed,_181- [ag,</uf’“ 1ogu,> —/Uf’w{’—a&n</uf“ 1ogu,> }4—0(6)
AI 1 m m=l
1 n-2 -1 p+1
:—m~ 5 -a(éo)d; € / U " logU;+o(e)
B,/ %1N\BO, /L)
(n —2)> _
== a0, laje +o(e)
n
and
_ +2(l 1)
e/a|V|p Wiog|V]- (=1)*le” Yl _a(go)e/U," logU; - 81y +0(€) = o(e).
Q A
Thus
3 (Tl - 2)2 1
T; =— a§o)d; "ar€ +o(e). (5.6)
! 4n

Combining (5.3), (5.4) and (5.6), we see that

Je(W)(@:V)
n—2 n—2

as di\" 2 diat\ 2 ol B A\ 7T of B
=a(so)[6u?adl(2—1t) +{ad,<di gt ) a6
v atsh ) A+t
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(n—2)>
™ a(&o)aq (9q, logd)€ +o(€)
and hence (5.2) is valid if r =dj.
The case r =s; for some [ =1,...,k — 1 can be dealt with in a similar way to the case r =d;.

Hence the proof follows. O
Lemma 5.2. Forany r =d1,...,dy, S1, ..., Sk—1, the following holds:
[JL(V +¢) = J.(V)]3:V = o(e).
Proof. We consider only when r =d; here. The case r = s; is similar. Expand
[Je(V +¢) = Jc(V)]d V

= [/aV¢> - VgV —ap|V|P*1¢ad,v]
2
- Ua{w +QIPTIE WV +) — VPV — (p — e)|V|P+E¢}ad,V]
2

+ Ua{mvv’*1 —(p —e>|V|P*H}¢>ad,V}
2

=h+hh+13

and study each summand.
Let us estimate I;. We have

k
I =Z</av¢-v5,~(w{)+s,~w?) —p/a|V|p_1qb8i(Pwi°+s,~P¢;1)>.

i=1 "o Q2
By (2.5) and (2.6),

/aV¢-V(5iPI//ij) —p/a|V|p_1¢(8,-P1/fij)

2 2

= p/a¢>(ui”*1 — VP — p/a¢|V|P”ai(Pw,-f —v)) - / va-v(5;Py)e

2 2 2

for j =0,n, so it suffices to estimate three terms in the right-hand side of the above equality. Notice

that by (2.15) and (4.13), we have

k
/ | 2 A T (ZHU,‘H ||Lg(g\A,.)) N6 o my

2\A; =1
=0(+/€)-0(1)- 0(Ve) =0(e)

and
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/|¢||uf’“ — v ||

Ai

<X -C/ |¢|ui(|Pu,- — Uy +ZU,"“> +Cf lplu™! <|Pul~ — Uil +Zul)
Aj Aj

[ 14

<x-Cligl - 1U; ||Lp+1(A,.)<H PUi = UilP™ ] g+ D] up! ”L%(Ai)
I£i

-1
+Cllol - 1U7 3 (nPui — Uillppsrcap + Y ||Uz||Lp+1<A,.)>
I#£i

= X -0(x/€)- 0(1)- 0(e72) +0(x/€) - 0(1) - (/&) = 0(€)

for some C > 0 (see [19, Lemma A.1]), where x is a function such that x =0ifn>6 and x =1 if
n < 5. Furthermore, Lemma A.5 implies

[ sl =l | <101 VP g g 155 = ) s
(9}

=o0(v/€)- 0(1)- 0(ve) =o(e).

Finally, by applying Young’s inequality (see Appendix A.3) and (2.15), we observe that

Lnt+d—o ( Ln=2 () -

. 1 . 1-2
‘/Va : v(aipwif)gs‘ <C&|UPT Y| o 1PN = 0(8 2)-o(We)=o(e) (57)
Q
where o > 0 is a sufficiently small parameter. Therefore I; = o(¢€).
Likewise, we can check that I,, I3 = o(€) holds. (Refer to pages 29-31 in [19].) O

Lemma 5.3. We have

JL(V +¢)(0rgp) =0(€) forr=dy,...,dk,S1,.--,Sk—1-

Proof. We can argue as in the derivation of (7.6) in [19]. Since we need a by-product that is derived
during the proof of the lemma in the next subsection, we briefly sketch the proof.
Eq. (2.12) reads as

S(V +¢):=—div(aV(V +¢)) —alV + [P "¢ (V + ¢)
k
== [cio- div(aVPy?) + cin - div(aVPy)]. (5.8)

i=1
Testing (5.8) with the function d,¢ and using the fact ¢ € K+ where K. is defined in (2.11), we get

S + @) =Y cy [Pyl Vs == Yoy [av(@pup)-ve. (59
i,j i,j

2 2
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On the other hand, testing (5.8) with the function Pt//{" for any fixed m=1,...,k and [ =0,n and
applying Lemmas A.7 and A.9, we can check that

Cij = 0(8i/€). (5.10)

Since Lemma A.8 and (2.15) imply that
\ [ vt v¢' < Clapyd] - 18l = o(57 V)
Q

for some C > 0, we get the result. O

To sum up, we deduce (5.1) from Lemmas 5.1, 5.2 and 53 if r=d; (I=1,...,k) or r=5, (I=
Lk—1).

5.2. Thecaser =t
When r =t, we have
k
V=0V = Z( Do PU; =) (=) le Py
i=1 i=1
Thus, unlike the previous case r =d; or s; where 9,U; = O(Si(lpio +¥M") = 0(U;) holds, 9:U; = 0(U;)
is not true anymore. In fact, it turns out that this difference makes it hard to obtain (5.1) in a
direct way in this case. Fortunately, we can borrow the idea from [12] to overcome this prob-

lem, where the authors replaced the term, in our setting, 9,V (x) = EZI 1(= ])"”8(51),,V(x) with

€ Z 1 (= 1)'+18X,,V(x) (x € £2) in the expansion of the reduced energy functional 8t]E and used a
Pohozaev type identity to estimate it. Such an approach was also applied in [19] successfully.

Lemma 5.4. We have

Je(V + )@V + 3d) = 3@ (d, t)e +0(e).

Proof. As the first step, let us compute J.(V + ¢)(3;V). By utilizing (A.3) and (A.5), we get
-1 j -1 j 3
eley! [ a0 [w7 | Pup = wi . etegl [ au?™" ][, UL - UD] =o(e?).
2 Q

Also, the application of (5.10), the proof of Lemma A.6 and Young's inequality (see Appendix A.3)
gives

3 8
elc,]|/|VPw | 19(&), PUI + 9%, PUj| < 0(8;€2) - O o

i)/!vwﬂ

n-2
3 512 -1,
<o(5iez)-o<en7]>//|x = T (UPT ) () dy dx
2
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n—2
3 57
<o(e?)- 0(61,17]>HU,'p ”Ll(Q)
n2 n-2

[N

=o0(/€) - O( ik ):o(e )-

Hence

Je(V +¢)(03:V)
= pe ZCU/aU,P_]I/f,-J(Z(—l)l+13(§1)nPUl> —eZcij/Va.VP1/;{<Z(_1)I+13(E,)HPU,)
iji o I=1 ij o =1
:peZ(—l)’“c,-j/ aUP 'y [(PY] — w') + By, (PU; — U)) — By, PU{]
ij.l o
) k
—GZCij/VG'VPl/fi]|:Z(—1)l+l{(3<$1>npul+3anUl)—3anUl}j|
ij o 1=1

—/S(V + @) (0x, V)€ +0(€).

2

To estimate J_(V + ¢)(3:¢), we observe that (5.9) implies

SV + 000 = Y [ a(aary))o+ Y ey [ Va-v(api)o.

1] 0 ] 0

Since it holds that

[ an(aryiyo == [ pan(ulvi)o = —pe [avon (07 wip=pe [ane (0] vhe

2 2 2 2
— pe f - UP "'yl — pe / U~y (3, )
2 2

_ i 1 3
=—pe/auf Y (0, 0) +0(57€2),

2

and Egs. (5.10), (2.15) and Lemma A.10 assert that

cu/w V(o Py} ¢|<|Cij|’||va||L°0(-(2)’“VatPWi]”Ln%(m'||¢||=0(€) (511)
2

(in fact, this is the only part we use the assumption n > 4 substantially; see Remark A.11), we deduce

JL(V +¢)(0) = —pe Y _cjj f aU? "'y (8, 0) + 0(e).

Lji @
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On the other hand, by multiplying (5.8) by dx,¢ and integrating the result over 2, we get

/ﬂv+¢mmm=p§}m/Mﬁ”w%mm+0(§:mnMPMMww)
i 5 ij

2

Thus using (5.10), (2.15) and Lemma A.7, we conclude that

Je(V +¢)(3¢) = — f S(V + ¢)(0x,$)€ +0(e€).

Q
Accordingly, if we set u=V + ¢,
Jamwm>=—ﬂmwﬁme+o@)=(/mevmmﬁv+/muw4*umw)e+mo
Q Q

=: (K1 4+ K2)€ +o0(¢).

Let us estimate the term Kj: From (2.15), the proof of Lemma 4.2 and (a3) (which implies
dx,a(60) = dva(éop)), we find

1 1
Ky=——— [ a(y |u|Pt1-¢ =—7f3 a)|V p+1-¢
1= e [ e = [0l +o
2 2

:‘__l_‘/w mwwﬂ%+ma>=——L—/w o)|VIP +o(1)

p+1—¢ X p+1 Xn

2 2

= ! kaqdx,a(&o) +0(1) = ! kaqdya(&o) +o(1)
= P 1 10x, 0 = P 1 10p 0

where a; is the quantity defined in (4.2).
Next, we consider K: Write

1 1
K1 =f(Va-Vu)(axnu)—i—/aAu(axnu):5/(8xna)|Vu|2— E/aWulzvndS =: K11 + K12
2 2 2 982

where v, is the n-th component of the inward unit normal vector to d$2 and dS is the surface
measure on 952 (see the proof of Step 1 on page 5 in [20]). We compute each term. Firstly, as for K>,
we have

1 1
Kn=5/kmmwvf+mn=5mmw@w+mn.
2

On the other hand, (2.10) of [20] gives

2 5
/ |[VPU;|?dS =0
En—]

a2

and by mimicking the proof of [19, Lemma 7.2] or (2.12) in [20], one can prove that
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/ [Vp|>dS =o0(1).
052

Thus

1
Kiy=—

1
i/a|VV|2vndS +0(1):—5/aIVPU1|2vndS+O(1)

a2 82

1
=_/auf(axn1>u1)+ [/(Va-VPUﬂaanU] - E/(ax,,a)wpunz} +0(1)
2 2 2

=- /an_]w?Pul

2

1
+ {/(Va.VPU1)8XnPU1 +/(axna)ufpul —5/(8xna)|VPU1|2}+o(1)
2 2 2

(see the proof of Step 2 on page 5 in [20]). However, we have

- n+2
au} yrPU; =
p/ 1 ] 1 ( o
2

1 d n—2
>013ua(§0)—§a(50)023t(2—1t> +o(1) (5.12)

and

/(ax”a)|VPU1|2,/(ax"a)UfPULn/(Va-VPUl)ax"PU1 =a10ya(&p) +o0(1) (5.13)
Q Q Q
whose detailed proofs are given below. As a result, we obtain

K —1(1(5 )azo d—] n72+o(1)
12 = 50(60)a20¢| o

where a, is given in (4.3).
Proof of (5.12). We write
p/auf‘lw?lvu1 =p/auf¢?+p/auf‘1w?(1)ul —Uy) (5.14)
Q Q Q

and we estimate the first term in the right-hand side of (5.14). By applying (5.5), (a3) (in particular,
(Va(&), y) = dva(&) - yn) and Taylor’s theorem,

p/anvf? —p f aUP Y +o(1)
2 B(&1,p€)

[+l Yn
_[ 51 H_a@") / axypr Y

B(0,6~1pe)¢
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Yn

+ / {a(81y +8151v(60) + &) — a(Sk)}W

B(0,57 " pe)

dy] +o0(1)

y?

Ay oM

= dpa(&) - (n+2)af ™! /

B(0,87 ' pe)

_ <”2+2)ava<so>a1 +o(D).
n

To estimate the second term in the right-hand side of (5.14), we need

Giy+& —&Dn

(Y + & & -)———
(OxnH) @iy +&i.&j) + (n )Iéiy+5i—5;-“|"

1 _
- O(e"——2> for|y| <8 'pe  (515)

where VH(X,&) = (VxH(X, &), VeH(x,§)) = (0, 1HRX, &), ..., OnH(x,8),0: 1H(x,&),..., e nH(x,§))
and i, j=1,...,k. Now, by Lemmas A.2, A.1 and A.13, (5.15) and the mean value theorem,

/a(3<a)nUf)(PU1 —Un
2

n=2
= / a(a(&)nuf)'anfs]z H(, &) +0(1)
B(&1,p€)
n-2 n-2
= / auy - and;’ 3<sl>n(H(~,S1))+8xn< / au? - aps,? H(~,§1))
B(&1.p€) B(x, pe)
n—2

_p+l 81
Qn O, a4y +&)————z H@1y +&1.61)dy ) +0o(1)
A+ly>H =

x=£§1

B(0,87 ' pe)

n—2

p+1 81
=—0p / 0(51}’+§1)W(3x,nH)(51y+51,§1)dy +o(1)
2

- +1y1?
B(0,87 pe)

n-2
—aP(n—2 / 51+ 51 (2€tv(§0) + 81(y +251v(50))n
o =2 acry 51)(1 T ly2)"5 12€tv(Eo) +81(y + 2s1v(E0) [

dy +o(1)

B(0,57 pe)
- 1a($ )29 di H+o(1)
= 2 0)U20t o .

Hence (5.12) is proved. O

Derivation of (5.13). By the argument in Section 4, we immediately get

f(axnanwu]R, /(ax,,awfpw = a19va(&o) +0(1).
2 2

On the other hand, by Lemma A.4,
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n/(Va-VPUQanPU] =n/(Va-VU1)8xnU1 +o0(1).
Q Q

Since (a3) implies 9x,a(£op) = dya(&o) and

lyI?

n/(ax,.a> - (B%,U1) - (9, U1) = 8in - y,a(k0) - o (n _Z)Z/W +o(1)

2 R
= in - dpa(§o)ar +o(1)
fori=1,...,n,(5.13) follows. O
In conclusion,

JL(u)(8eu) = ! ! kai0,a(&y) - € + 1a(é )az - 0, di n—26+0(€)

et—2p+1 10va(so 5 (50)az - o\ o

as desired. O
Consequently, (5.1) for s =t is valid and the proof of Proposition 2.5 is finished.
Appendix A

In this appendix, we study functions PUs ¢ and Px//ig (j =0,n) defined through (2.1), (2.3), (2.4)
and (2.6).

A.l. Comparison between Us ¢ and PUs ¢

Denote by G(x,y) the Green function associated to —A with Dirichlet boundary condition and
H(x, y) its regular part: Namely,

{ —AxG(x,y) =8y(x) forxe £,
Gx,y)=0 forxeds2,

and

1

1
Gx,y)= —— — H(x, where yy = ——.
*x,y) yn<|x—y|”—2 ( y)> Vn =25
Since £2 is smooth, we can choose small dy > 0 such that, for every x € £2 with d(x, 3§2) < do,
there is a unique point x,, € 9§2 satisfying d(x, 9§2) = |x — x,,|. For such x € £2, we define x* = 2x,, — x
the reflection point of x with respect to 952.
The following two lemmas are proved in [1, Appendix A] under the assumption that §2 is of
class C2.

Lemma A.1. There exists a constant C > 0 such that

H(x.£) — 1 < Cd(&,082) ’V (H(X £)— 1 )‘ < C
’ |X—$*|”_2 = |X—$*|”_2’ § ’ |X—§*|”_2 = |X—E*|”_2

and
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C

O0<HX &) < ——,
( E) |x_£_-*|n—2

VeH(x, < —,
! gH(x $)| |x — gx[n—1

foranyx e 2 and & € {y € 2: d(y, 082) < dp}. In particular, we obtain

H(x, &) < and IVgH(x,éf)K| forany x,£ € 2,

Ix —&|"—2 x— g1

by taking C > 0 larger if necessary.

LemmaA.2.If& € {y € £2: d(y, 0§2) < dp}, then there exists a constant C > 0 such that

n—2

n—| C8 2
0< Use () — PUs e (x) <and'2 H(X, §) < g Joralxe . (A1)

Moreover, it holds true that

n+2

n-2 82
PUse(x) =Usg(X) —opd 2 H(x,é)—i—O(W), xXe .

From the previous lemmas, we can show that

Lemma A.3. Denote PU; = PUs, ;. Then

2n

. n . n .
Ui = PUilla) =0(1) ifge (——=.—— )ifn>4o0rqe (——.+o0)ifn=3.
n—-2n-—3 n—2

Proof. By (A.1) and (2.7), we have

(n—2)q

|U; — PU; |9 </ 5 8"7@/ dy
l l Lm)\g |x —&F|n=29 |y +2((€/8)t + )V (&o) |24

—5i

1

5! )
_(n=2)q sh= (n-2)q (n—1)
n—"— 7 _n—(n-2)q 82204 pn—(n-2)q
§C8, / mdS§C8, € gCe 2 - €
e8!
_(n=3)q
=0(e"""7 )=0(1)

for some C >0. O
In addition, we can estimate the H!(£2)-norm of U; — PU; as follows.

Lemma A.4. It holds true that

IUi = PUilly1 ) = O (Ve).
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Proof. From the definition (2.1) of U; and the fact oc,f_l =n(n—2), we get

Ui = PUill3 o, = </|VPU,-|2 —2/vpu,-.vu,»> +/|vui|2
2 ko

n+2 n+2

:</u;*2PU,~—2/ -
2 2

u; 2PU) +a2(n—2)25?*2/ x— &l
: oo : (82 + Ix — &[2)n
2
=< p+1/ +O(e)) (oe (n—2)/ yP +O(€)>
(1+|y|2>" (1+ [y
=0(). O

A.2. Estimates of 1//ij s

First, we want to establish a result similar to the ones proved in Lemma A.2 and Lemma A.3
Lemma A.5. Foranyi=1

., k, we have

n—2
ow’:wP—an(T

n-4 8.%
>5i > H(, &)+ O<é"> in 2

(A.2)
and
n+2
5 2
Py 1//1 — Qné; 7 BenH)(, S,)—}—O( n+1) in 2 (A3)
where (3¢ nH)(x, &) is the n-th component of Ve H(x, §). Moreover,
j j _ Ty
Isi(P! =), s, ,, = O() (A4)
for j=0,n.

Proof. From the comparison principle, we easily deduce (A.2) and (A.3). Arguing exactly as in
Lemma A.3 and taking into account Lemma A.1, we can prove (A.4). O

The above lemma enables to estimate the difference between 9y PU; and 9y, U; for i =1

let p=mn+2)/(n—2).

i i=1,...,k
LemmaA.6.Fori=1,...,k,

%
o PUi (%) = 0%, Ui (X) + and; 7 (O, nH) (, 51)4—0(8 )

n—1

(A.5)
Proof. Let w = 9y, PU; + Pwi”. Then it solves Aw =0 in 2 and w = 9, PU; on 9852. Thus

by the maximum principle, ||W||r(2) < [|9x, PUillL=@352). Recalling H(x, y)
Lemma A.1, we observe that there is a constant C > 0 such that

H(y,x) and applying
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|aanUi(x>y</|axnc(x V| UP(y)dy = yn<n—2)/’( — @enH)(y. 0| - UP(y)dy

f Uy,
Now we choose p > 0 sufficiently small so that B(x, pe) N B(&;, pe) =@ for any x € 9§2. Then for
xeds2,
1 S; 1 8.
p i _ i
/ |x—y|“—1 Ui (y)dy<C<6n+2> / |x—y|”—1 dy_o<6n+1)
$2NB(x, p€) B(x,p€)
and
1 1 S; 8.
———UP(y)dy <C f ! dz=0( +— ).
/ x—yp (6"’1) 1+ 22" en-1
2\B(x,p€) Rn

Therefore we deduce
n—2

8

8%, PUillLoo(2) = O L

Consequently, by (A.3), we obtain
n-2
2

()

3;

n—

N‘

3, PUi(x) = —PY'(X) + O (j

)

)—axnu (X)"l‘anfs 2 (8§nH)(X 51)"‘0(

Hence (A.5) holds. O
The next lemma is crucial for the proof of Proposition 2.1.

LemmaA.7. Fori,l=1,...,k i <land j,m =0,n, it holds that

. ago)cj +0(%) ifi=land j=m
putoup={ T
O(sl?) otherwise,

where cg and c,, are positive constants.

Proof. By (2.5) we get
(pul pur) = p [ wdur +p [ a0l vl our —ur) = [(va-vrud)pup
2

2 2

: M1+ M3 + Ms.

We will estimate M1, M, and M3 respectively.
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To estimate My, note that §;, < |&, — &o| for any iq,ip =1,...,k. Then arguing as in the proof
of [19, Lemma A.5], we get
a(k0)S% +o(%) ifi=land j=m,
M‘l 1 1

o(=) otherwise,

with positive constants cg and c;.
Let us estimate M, when j=m =n. By (A.3), assumption (al) and Lemma A.1, we deduce that

” s = 1
My =—an 2 p aU; ™ i Gent) (.60 + 0 —= ) =0 :

2
i 81'
B(i.p€)

where p > 0 is chosen sufficiently small, since by (2.7), assumption (a1), Lemma A.1 and (A.3) we get

n+2

n-2 1 n=2 8.2 |x—§&| 1
(Sl ’ / anp wln(agnH)(’ | < Cal ’ l 1 nd *n—1 dx
@ +lx—&»7 X
B(&,p€) B(&i,pe) !
n-=2 n-4 1
< C(Sl ’ 81’ ’ / |y| n+d .n—1
LAty E
B(0,pes 1)

=
€n=
=0 <_>
2
8;

where & is the reflection of & with respect to 952 defined in the previous subsection and C > 0 is
some constant. The cases when either j or m is 0 can be carried out in a similar way using (A.2).
Finally, M3 is estimated using Lemma A.9, which yields to M3 = 0(1/812).
This concludes the proof. O

Finally, we need

LemmaA.8.Fori=1,...,k and j=0,n, there hold

Jor Py = {(())(51_]) Z::Zi grji},...,k), sd=1,....k=1), [#i,
and
[acPw! | = 0(e5;).
Proof. For r=dq,...,dg,t,S1,...,Sk_1,
A Py)) =p(aUP )y +pUuP N (3y)) in@,  8Py/=0 onogn.
Therefore

Pl <cll @il +107 ()]

}

2n_
L n+2 (Q)

for some C > 0. Now estimate the right-hand side. O
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A.3. Application of Young’s inequality

In this subsection, we gather estimations which can be obtained by Young’s inequality. We again
denote p=(Mn+2)/(n—2).

Lemma A.9. Assume thati,|=1, ...,k and j,m =0, n. Then we have

/|VPU,-|PU1:o(6) (A.6)
2

and

/|VPU-|P¢'"=0<5> and /\vai}wf’":o(l>
i ] 5 i l 51'2 :
2 2

Proof. The proof is essentially given in the proof of [1, Lemma A.2]. For the sake of reader’s conve-
nience, we reprove (A.6). Observe that Lemma A.1 tells us that

1
|VPUAm|=‘/<aGmJ0Uhynw‘<c/7&:3m;TUﬁynw
2 2

for some constant C > 0. Hence, by Young’s inequality [17, Theorem 4.2],

f]VPU,-(x)|PU1(x)dx<C//U,(x)#uf(y)dydx
2 2 2

< ClUilla) 1 f ey [UF || s

for any q,r,s > 1 which satisfies 1/q + 1/r + 1/s =2, where f(x) = |x|'™" and M is the diameter
of £2.
Fixing o > 0 small enough, we choose

n n n

q= > s r=—-——"—"—, =1.
1-nm—-1o n-2 m-1)1+o0)

Since

i1 n p 1-ng2

IUlla@y=0(5" * ) forg> — |UP ]l ooy =08 ?) fors>1

and | fllirgo,my) = O(1) for r € [1,n/(n — 1)), it then follows that

p n(g+g=1 1-(n—1)o 11 (1—(n-1)0)
1UllLac ILf e Bo.my || U} ”LS(Q) =0(é, )=0(3, )=0(em ) =o(e),

which gives (A.6). O

LemmaA.l10.Fori=1,...,kand j=0,n,

) — J — 1-0 g—1\
||VPU,||“%(Q)_0(5) and ||V Py ||Ln%(m_o(e 871) ifn>4.
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Proof. We take into account only ||VPU;|| oo The other thing can be checked similarly.
Ln+2 (£2)

Denote p = % and as the proof of the previous lemma, we compute

P N P11 p
IVPUIll}5 o, <C/|vpu,(x)| dxgcff|vpu,(x)| Wui (y)dydx

2 2 2

<CIveuilPY 5 Iflrsoemy U] s
LP=1(82)

where f(x) = |x|'™" and M is the diameter of §2 again. Hence, if n > 4 the choice

n 2n
r=———— and s=————— > 1
m—-11+4o0) n+4—-2n-1o

for any sufficiently small o > 0 gives

0 " ) =0(e). O

1

IVPUill o) < C||UY ”LS(Q) =

Remark A.11. We point out that the assumption n > 4 is used in a crucial way in the proof of
estimate (5.11). All the results necessary to the proof of the main theorem remain true for n =3

except Lemma 5.4. In particular, the proofs of Proposition 2.3 and Lemma 5.2 can be slightly mod-
ified when for n = 3. Indeed, in the proof of Lemma A.10, we choose r =6/5 and s =1 to get

1
IVPUill 650y = 0(81.2) = O(e). This implies [|R4|| = O(€) in the proof of Proposition 2.3, which is
sufficient to conclude the validity of the proposition. Moreover,

[V 962u)0| < hlUr W gy 10lisia, = 0(67) -0/ =ote)
2

0 (5.7) holds to be true and the conclusion of Lemma 5.2 is true.

; _3
However, when n = 3 the argument of Lemma A.10 only guarantees ||V8tP1/f,.] ”Lg(.@) =0( 2)

which does not allow to get the estimate (5.11), since
j -3 2 .
|cij| - || Ve Pys; HL%@ gl =0(8; 2€?) #o(e) fori>2.

A.4. Differentiation under the integral sign
Here we recall some useful operations from elementary calculus. (See [13, Appendix C].)
Lemma A12. Let f : R" — R be continuous and integrable. Then
d
— fx)dx = fds
dr
B(xo.r) dB(xq,1)

forany xo e R" and r > 0.
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Lemma A.13. Suppose {U (t)}cr is a family of smooth bounded domains in R" which depends on t smoothly.
Denote v as the velocity of the moving boundary dU(t) and v as the inner unit normal vector to U (t). If
f :R"™ — R is smooth, then

d
Eff(x)dx:— [ fv-vds.
U@ au(t)
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