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Bayesian semiparametric model with
spatially–temporally varying
coefficients selection
Bo Cai,a*† Andrew B. Lawson,b Md. Monir Hossain,c
Jungsoon Choi,b Russell S. Kirbyd and Jihong Liua

In spatiotemporal analysis, the effect of a covariate on the outcome usually varies across areas and time. The
spatial configuration of the areas may potentially depend on not only the structured random intercept but also
spatially varying coefficients of covariates. In addition, the normality assumption of the distribution of spatially
varying coefficients could lead to potential biases of estimations. In this article, we proposed a Bayesian semi-
parametric space–time model where the spatially–temporally varying coefficient is decomposed as fixed, spatially
varying, and temporally varying coefficients. We nonparametrically modeled the spatially varying coefficients of
space–time covariates by using the area-specific Dirichlet process prior with weights transformed via a general-
ized transformation. We modeled the temporally varying coefficients of covariates through the dynamic model.
We also took into account the uncertainty of inclusion of the spatially–temporally varying coefficients by variable
selection procedure through determining the probabilities of different effects for each covariate. The proposed
semiparametric approach shows its improvement compared with the Bayesian spatial–temporal models with
normality assumption on spatial random effects and the Bayesian model with the Dirichlet process prior on the
random intercept. We presented a simulation example to evaluate the performance of the proposed approach
with the competing models. We used an application to low birth weight data in South Carolina as an illustration.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

We often encounter spatial–temporal data in various disciplines such as epidemiology, ecology, political
sciences, and economics. For example, the average of household income varies across different areas and
time. In many applications, spatial–temporal regression models are used to explain the response variable
observed over areas and time.

Suppose that the dependent variable yit is observed in the i th spatial unit and the t th time point, for
i D 1; : : : ; n and t D 1; : : : ; T . We can express a general space–time model as

yit � f .yit j�/; (1)

where f .yit j�/ denotes a conditional distribution of yit given observed covariates, latent variables, and
measurement errors, with mean �it , �it D E.yit /, which is typically related to a linear predictor �it
through a suitable link function g.�/, where �it D g.�it /. The response variable could be observed as
a continuous (e.g., disease rate), categorical (e.g., indication of disease or health status), or count (e.g.,
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disease or death number) outcome. When the response is an area-referenced count,

yit � Poisson.Eit exp.�it //; (2)

where Eit is an expected number of events, which is thought of as fixed and sometimes obtained by
applying a standard table of sex-specific and age group-specific rates to the population count in district i
at time t , nit , subdivided by age and sex [1]. In our case, we setEit DRnit withRD

P
it yit=

P
it nit .

The standardization here is often referred to as internal standardization because we have used the same
data to compute reference rates R. We can usually express the logarithm of the relative risk, �it , as

�it D x0itˇC ui C vi C �t ; (3)

where xit D .1; xit2; : : : ; xitp/
0 denotes a p � 1 vector of covariates associated with unit i and time t ,

ˇ D .ˇ1; : : : ; ˇp/
0 denotes a p � 1 vector of population parameters, ui and vi denote random effects

measuring spatial similarity and excess heterogeneity, respectively, and �t denotes a structured tempo-
ral random component. Conventionally, a multivariate normal prior can model the fixed effects ˇ. We
assume the parameters ui and vi to be independent. The parameter vi captures the heterogeneity among
the units, which is chosen to follow an exchangeable normally distributed prior, whereas ui captures the
spatial heterogeneity of data, which is assumed to follow an intrinsic conditional autoregressive (CAR)
distribution (a special case of the general class of the Markov random field) [2], ui ju�i � CAR.�/, that
is, ui ju�i � N.ui ; .�mi /�1/, where u�i D .u1; : : : ; ui�1; uiC1; : : : ; un/

0, ui D m�1i
P
j2@i

uj with
@i denoting the neighbor set of unit i , mi denoting the number of neighbors of unit i , and � denoting
the precision parameter. We define the constraint

Pn
iD1 ui D 0 for the purpose of identifiability of the

overall intercept. We assume temporal parameter �t to follow an autoregressive prior.
Model (2) is a typical spatiotemporal model for areal data, based on which some hierarchical struc-

tures are developed [3–5]. More complex issues occur when the space–time interaction effect (e.g., wit )
is included in the predictor (3) [6–8]. Ugarte et al. [9] presented the evaluation of the performance of
various simple spatiotemporal Bayesian models. Much work, however, assumed that effects of covari-
ates on the response were constant across areas and time. In some applications, this assumption would
be inappropriate. For example, the effect of the poverty rate on the low birth weight may vary across
different regions and time points. To allow coefficients to vary spatially, among others, Assunção [10]
and Gamerman et al. [11] proposed spatially varying coefficients models for small-area data. Dreassi
et al. [12] developed a space model with time-dependent covariates for small-area data. Cai et al. [13]
proposed a Bayesian regression model with multivariate linear splines for the analysis of space–time
data. For point-referenced data, authors have developed some approaches. Gelfand et al. [14] proposed a
spatial process modeling for univariate and multivariate dynamic spatial data. Paez et al. [15] developed
spatially varying dynamic coefficient models.

In the aforementioned spatial–temporal models, the spatially varying coefficients are often assumed to
follow Gaussian distributions. In practice, the normality assumption is difficult to verify empirically and
may be overly restrictive as spatially varying coefficients may follow other distributions and may have
clustering issues. Recently, authors have developed some approaches to relax the normality assumption
for modeling point-referenced data. Gelfand et al. [16] proposed a Bayesian nonparametric spatial mod-
eling with spatial Dirichlet process (DP) mixture models. Duan et al. [17] developed a generalized spatial
DP. Reich and Fuentes [18] described a multivariate semiparametric Bayesian spatial model for spatial
data. In contrast, for areal data, the semiparametric model with spatially–temporally varying coefficients
of covariates lacks development. Li et al. [19] proposed nonparametric hierarchical models for areal
data. They modeled the spatial random intercept by using area-referenced spatial stick-breaking prior
with the logit link between the weight and the random variate from the CAR.

In this paper, we focus on developing a Bayesian semiparametric space–time model with spatially–
temporally varying coefficients of covariates. We model the spatially varying coefficients by using the
area-specific stick-breaking representation for the DP prior with the generalized transformation between
the weight in the stick-breaking prior and the spatially specific random variate from the CAR. The gener-
alized transformation includes the linear link, logit link, and probit link, providing more realistic weights
associated with the spatial information in the areal data. We modeled temporally varying coefficients by
using a dynamic model. Each covariate could have different effects on the response variable, including no
effect, the overall-only effect, the spatial-only effect, the temporal-only effect, and the spatial–temporal
effect. The proposed model allows for the uncertainty of inclusion of different effects for each covariate.
We use the variable selection procedure through determining the probabilities of different effects for
each covariate.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3670–3685
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The remainder of the article proceeds as follows. Section 2 describes the semiparametric model with
spatially–temporally varying coefficients while allowing for uncertainty of inclusion of the coefficients.
We describe prior specification and posterior implementation. Section 3 discusses the model evaluation
and comparison. Section 4 evaluates the performance of the approach on the basis of a simulated exam-
ple. Section 5 illustrates the approach via real spatial–temporal data. Finally, Section 6 summarizes and
discusses the results.

2. Semiparametric model with uncertainty of
spatially–temporally varying coefficients

2.1. The model with selection of spatially–temporally varying coefficients

We consider modeling the logarithm of the relative risk as

�it D x0it� it ; (4)

where � it D .�it1; : : : ; �itp/
0 denotes a p � 1 vector of spatially–temporally varying coefficients of

covariates. One can decompose each element of coefficients � it as �itk D ˛k C ˇik C �tk , for
k D 1; : : : ; p, where ˛k denotes the global effect of the kth covariate, ˇik denotes the spatially structured
random effect of the kth covariate, and �tk denotes the temporally specific effect of the kth covariate.
We took the regression coefficients to be independent across covariates. However, this decomposition
assumes that each covariate simultaneously has an overall effect and spatially and temporally varying
effects on the response. This assumption is too restrictive in general, which might make the fitted model
overparameterized because a covariate may have the following: (i) no effect; (ii) only a fixed effect; (iii)
only a spatially specific effect given the fixed effect; (iv) only a temporally specific effect given the fixed
effect; and (v) all three effects on the response. To account for this uncertainty, we consider defining
�itk as

�itk D ı1k˛k C ı1k.ı2kˇik C ı3k�tk/; (5)

where ı1k , ı2k , and ı3k denote the indicator variables for ˛k , ˇik , and �tk , respectively. We fix ı11,
ı21, and ı31 to be 1 for all i and t to reflect some overall spatial–temporal effect. For k > 2, under this
construction, a covariate has the following:

1. No effect (i.e., �itk D 0) for all i and t if ı1k D 0
2. Only a fixed effect (i.e., �itk D ˛k) for all i and t if ı1k D 1 and ı2k D ı3k D 0
3. Only a spatially specific effect given the fixed effect (i.e., �itk D ˛kCˇik) for all t if ı1k D ı2k D 1

and ı3k D 0
4. Only a temporally specific effect given the fixed effect (i.e., �itk D ˛k C �tk) for all i if
ı1k D ı3k D 1 and ı2k D 0

5. Spatially–temporally varying effects (i.e., �itk D ˛k C ˇik C �tk) across areas and time if
ı1k D ı2k D ı3k D 1

We assume that a covariate has no spatially and temporally specific effects if it does not have a global
effect. In addition, given a global effect, we assume that a covariate having the spatially specific effect
is independent of having the temporally specific effect. Thus, for the priors of the indicators, we have
�.ı1k; ı2k; ı3k/ D �.ı2kjı1k/�.ı3kjı1k/�.ı1k/, where �.ı1k D 1/ D p1k , �.ı2k D 0jı1k D 0/ D
�.ı3k D 0jı1k D 0/ D 1, �.ı2k D 1jı1k D 1/ D p2k , and �.ı3k D 1jı1k D 1/ D p3k . Then, the prior
for ı1k; ı2k , and ı3k is expressed as

�.ı1k; ı2k; ı3k/D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

1� p1k if ı1k D ı2k D ı3k D 0

p1k.1� p2k/.1� p3k/ if ı1k D 1 and ı2k D ı3k D 0

p1kp2k.1� p3k/ if ı1k D ı2k D 1 and ı3k D 0

p1kp3k.1� p2k/ if ı1k D ı3k D 1 and ı2k D 0

p1kp2kp3k if ı1k D ı2k D ı3k D 1

: (6)

It is obvious that the sum of the probabilities in (6) equals 1. These priors provide prior probabilities
of the five different scenarios. It is shown that the indicator ı1k allows the kth covariate to be included
or excluded from the model whereas ı2k and ı3k indicate if the kth covariate has spatially–temporally
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varying effects given that it is included in the model. The proposed variable selection structure (5) can
be thought of as a general case of the variable selection method for spatially–temporally varying effects
of covariates. When there are only global effects for the covariates, the proposed model reduces to the
model in (3). When the observations are only spatially dependent, the proposed structure reduces to
the one by Reich et al. [20], where they focused on variable selection in the parametric model with
spatially varying coefficients. If the indicators are 1s (i.e., there is no variable selection), the model
becomes a spatially–temporally varying coefficient model. Specially, when the observations are only
spatially dependent, the proposed model reduces to the spatially varying regression model [10, 11], that
is, �i D x0i� i with � i D ˛Cˇi . One might be concerned with the identifiability of the indicators and the
coefficients in (5). This concern can be relieved as we are actually interested in ı1k˛k , ı1kı2kˇik , and
ı1kı3k�tk , and they are identifiable. On the other hand, Bayesian identifiability concerns the question of
whether the data and prior provide information for updating the indicators and the coefficients [21]. For
example, when the indicator ı1k D 0, all the coefficients (i.e., ˛k , ˇik , and �tk) only rely on the priors.
The data will be involved in updating the coefficient(s) when ı1k D 1.

To allow for flexibility of the prior probability, plk , for l D 1; 2; 3, we consider choosing a hyperprior
beta distribution for the prior exclusion probability, plk � Beta.cl ; dl/. Given these prior probabilities,
we can easily calculate the full conditional probabilities for different scenarios shown in (6) through the
categorical distribution (see details in Appendix 6). For the choice of cl and dl .l D 1; 2; 3/, following
the suggestion by Geisser [22], we choose cl D dl D 1, which yields the uniform hyperprior. Scott
and Berger [23] discussed the choice of priors for the prior probability. They concluded that the objec-
tive prior (i.e., the uniform prior) for the prior probability can easily be implemented computationally
whereas incorporation of subjective prior information can be beneficial when available. In our case, we
have no subjective information about the prior probability of inclusion of the covariates, resulting in
choosing a uniform prior. For more details, please refer to Geisser [22], Scott and Berger [23], and Cui
and George [24], among others.

2.2. Nonparametric modeling for spatially varying coefficients

Typically, we took the prior of the global effect of the kth covariate, ˛k , to be N.0; ��1
˛;k
/, where

�˛;k is the precision following a gamma prior Gamma.a˛;k; b˛;k/ with mean a˛;k=b˛;k and variance
a˛;k=b

2
˛;k

. We could take the conditional specification of the prior for the temporally varying effect

of the kth covariate as N.�t�1;k; ��1�;k/, for t D 1; : : : ; T , with ��;k being the precision following
Gamma.a�;k; b�;k/. We chose the initial element �0k to be 0. For the spatially varying effect of the
kth covariate, a conventional choice is the conditional distribution ˇikjˇ�ik � N.ˇik; .mi�ˇ;k/

�1/,
where ˇ�ik D .ˇ1k; : : : ; ˇi�1;k; ˇiC1;k; : : : ; ˇnk/

0, ˇik D m�1i
P
j2@i

ˇjk , mi denotes the number of
neighbors of area i , and �ˇ;k denotes the precision following a gamma prior Gamma.aˇ;k; bˇ;k/. For
identifiability, the constraint for ˇik’s is

P
i ˇik D 0 for k D 1; : : : ; p. However, the normal prior

assumption constrains the distributions that the spatially varying random effects may follow. In contrast,
the nonparametric prior over distributions provides wider support, typically the support being the space
of all distributions (i.e., an infinite dimensional space). As a result, a nonparametric assumption allows
for various shapes of the distribution, which may more accurately reflect our prior belief about the true
distribution of spatially varying random effects. To allow for uncertainty of distributions that ˇik may
follow, we consider ˇik � Gik , where Gik is an unknown random distribution varying across differ-
ent areas. We can then choose a prior distribution for Gik with support on the space of all probability
measures.

Among the nonparametric processes (e.g., Gaussian process and Pólya tree process), the DP is one
of the most prominent random probability measures because of its richness, computational ease, and
interpretability. We considered using the DP in our approach for several reasons. First, any distribution
over its space can be approximated arbitrarily and accurately in the weak limit by a sequence of draws
from the DP [25]. Second, because the distributions drawn from the DP are discrete, the DP has the
clustering property that allows for repeated values, implying that multiple ˇik’s can take on the same
value simultaneously. This feature of the DP is desirable and reflects the attribute of the spatially varying
coefficients, which are typically clustered. Third, the stick-breaking representation [26] (which will be
described later on) of the DP provides a convenient way of incorporating the area-specific information
into the random distribution of ˇik’s. Finally, with the nice representation such as stick breaking, we can
efficiently implement the DP. For more details on nonparametric Bayesian processes, one may refer to
Ghosal and van der Vaart [25].

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3670–3685
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We can specify the DP prior as DP.MG0/, where M is a concentration parameter and G0 is the base
measure of the DP. Under this specification, for any partition BD .B1; : : : ; Bq/0 of R, we have

fG.B1/; : : : ; G.Bq/g � D.MG0.B1/; : : : ;MG0.Bq//;

where D.�/ denotes the Dirichlet distribution on the simplex of Rn. This structure centers the distri-
bution at the parametric base distribution, G0, while allowing the true distribution to deviate from the
parametric form. M controls the amount of uncertainty in the parametric assumption. As M tends to 0,
most of the samples share the same value sampled from the base measure G0, whereas when M tends
to infinity, the samples are almost independent and identically distributed samples from G0. One of the
popular representations of the DP prior is the Pólya urn representation [27, 28]. Briefly, we can express
a Pólya urn prior of ˇi as

.M C n� 1/�1MG0C .M C n� 1/
�1

k.i/X
sD1

r .i/s ı
ˇ
�.i/
s
.�/;

where k.i/ denotes the number of distinct values across all ˇj ’s excluding ˇi , r
.i/
s denotes the frequency

of all ˇj ’s (excluding ˇi ) being equal to the unique value ˇ�.i/s , and ıˇ�.�/ denotes the degenerate dis-
tribution at ˇ�. Although the Pólya urn Gibbs sampling can be implemented straightforwardly, some
limitations remain. When model (1) is not a normal distribution, it is problematic to calculate the proba-
bility of generating new samples from the posterior on the basis of the prior and the likelihood because
of its nonconjugacy. In addition, from the posterior distribution, we updated the parameter one at a time
by using Gibbs sampling. This procedure could lead to a slow-mixing problem. Although an accelerated
step [28] can enhance the mixing behavior, slow mixing may still occur because of the inherent property
of one-at-a-time updates.

To avoid the limitations with the Pólya urn Gibbs sampling, we considered the blocked Gibbs sam-
pling based on the finite-dimensional Dirichlet priors [29]. With stick-breaking representation [26], we

can express the finite-dimensional prior G as G
d
D
Pr
sD1 !sı�s .�/, where r denotes the number of mix-

ture components, !s denotes the weight, and ı.�/ denotes a discrete measure concentrated at �s , which is
randomly generated from the base measureG0. For the choice of the truncation of the mixture, Ishwaran
and Zarepour [30] suggested using a reasonably large value such as 50 for the sample size.

To allow the unknown distribution of ˇik to vary across different areas, we propose to model the
spatially varying coefficients by using the area-specific stick-breaking prior. Let Sk D .S1k; : : : ; Snk/

0

be a configuration determining a classification of ˇk D .ˇ1k; : : : ; ˇnk/
0 into rk distinct values ˇ�k D

.ˇ�
1k
; : : : ; ˇ�

rkk
/0, with Sik D s if ˇik in area i belongs to group s for covariate k in terms of the spatially

varying effect, that is, ˇik D ˇ�sk , for s D 1; : : : ; rk . Then, we can model ˇik as follows

Sik �

rkX
sD1

!iskıs.�/;

!isk D V
�
isk

s�1Y
lD1

�
1� V �ilk

�
;

ˇ�skj� � N
�
0; ��1ˇ;k

�
; for s D 1; : : : ; rk;

where V �
isk
D uiskVsk , Vsk

iid
� Beta.1;Mk/ and

Q
l<s

�
1� V �

ilk

�
D 1 for s D 1. We define the param-

eter uisk as a covariate-specific spatial weight that depends on the location-associated random variate.
Because uisk 2 .0; 1/, following Ishwaran and James [29], we can show that

Prk
sD1 !isk D 1 is almost

surely in the aforementioned area-specific stick breaking. We used a transformation g.uisk/ D �isk ,
where �isk is assumed to follow a CAR(�k) prior. The transformation links the spatial weight to the
CAR-distributed variate. Unlike the logit transformation used by Li et al. [19], we considered a more
general transformation family introduced by Aranda-Ordaz [31],

g.u/D
2

	

u� � .1� u/�

u�C .1� u/�
; (7)
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where 	 denotes the transformation parameter. The choice of different values of 	 results in various
link functions. This includes that 	 D 0; 0:4; 1 corresponds to the logit transformation in the limit,
the probit link in approximation, and the linear transformation, respectively. We then define the inverse
transformation function as

uD h.�/D
.1C �	=2/1=�

.1C �	=2/1=�C .1� �	=2/1=�
for j�	j< 2; (8)

h.�/ D 0 for �	 6 �2, and h.�/ D 1 for �	 > 2. Because the transformation is symmetric, we can
focus on 	 > 0. We choose a uniform prior for 	 in the range of .0; 0:5/ where the logit and probit
links are covered. This setting also allows � to vary in a reasonable range. We chose the prior of the
concentration parameter Mk to be Uniform.0; 10/ [32].

2.3. Posterior computation

We chose priors for the parameters as described in Section 2.1. The posterior computation relies on a
blocked Gibbs sampling algorithm in which we iteratively sampled from the full conditional distributions
of a block of the parameters. For an update of a single parameter from the nonconjugate distribution, we
used adaptive rejection Metropolis sampling [33]. For a block of parameters, the posterior computation
relies on the Gibbs sampler and Metropolis–Hastings algorithms. After the values for the parameters
are initialized, the proposed MCMC algorithm proceeds in a series of steps outlined in Appendix 6. We
generate samples from the joint posterior distribution of the parameters by repeating those steps for a
large number of iterations after apparent convergence.

3. Model comparison

The deviance information criterion (DIC) [34] is widely used as a model comparison tool. DIC is shown
to be an approximation to a penalized loss function based on the deviance with a penalty derived from a
cross-validation argument. However, the implicit approximation is valid only when the effective number
of parameters is much smaller than the number of independent observations [35]. Plummer [35] pointed
out that in disease mapping, this assumption does not hold, resulting in DIC underpenalizing the complex
models. Plummer [35] proposed using penalized loss functions instead of pD , the effective number of
parameter, to assess model adequacy. However, as Plummer [35] noticed, this method requires MCMC
runs with each observation left out in turn. Such a calculation is not feasible in general, especially for
large data sets. In this article, we considered a comparison method based on the conditional predictive
ordinate (CPO) [36–39]. We defined the CPO for the i th observation at time t as the cross-validated
marginal posterior predictive density

CPOit D f .yit jy.it//

D

Z
f .yit j�/f .�jy.it/; x.it//d�

D

�Z
1

f .yit j�; xi /
f .�jy; x/d�

��1
;

where y.it/ denotes the vector of observations with the i th observation at time t deleted and � is the
vector of model parameters. We can estimate the cross-validation likelihood by

LCV D

nY
iD1

TY
tD1

CPOit :

Because the quantity of the cross-validation likelihood is typically close to 0, we can use the negative
cross-validatory predictive log-likelihood [40],

NLLKCV D�

nX
iD1

TX
tD1

log CPOit :

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3670–3685
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Because a closed form of CPOit is usually unavailable, we could straightforwardly obtain a Monte Carlo
estimate of CPOit through MCMC samples f�.s/gNsD1 from the posterior distribution f .�jy; x/,

bCPOit D

 
1

N

NX
sD1

1

f .yit j�
.s/; xi /

!�1
;

where N is the number of iterations after a burn-in period. Accordingly, we can calculate the estimate
of the negative cross-validatory predictive log-likelihood. Because a large CPO indicates agreement
between the observation and the model, a model with a smaller NLLKCV for all observations implies a
better fit.

4. A simulation study

We evaluated the performance of the proposed approach, including the accuracy of the estimates, the
sensitivity to different choices of hyperparameters, and a comparison of the proposed model with other
space–time models. Without loss of generality and for illustration purposes, we created the spatial data
using the South Carolina geographical structure containing 46 counties. We generated the data for nD 46
counties over T D 10 time points on the basis of the model yit � Poisson.Eit exp.�it //, where the
log-relative risk is �it D x0it� it with xit D .1; xit2; xit3; xit4; xit5/

0 and � it D ˛ C ˇi C � t . We
chose ˛ D .1; 1; 1; 1; 0/0, ˇi D .0; ˇi2; ˇi3; 0; 0/

0 with ˇi2 being clustered to follow four different
distributions and ˇi3 to follow five different distributions (Figure 1), and � t D .0; �t2; 0; �t4; 0/

0 with
�t2 � N.�t�1;2; 0:5/ and �t4 � N.�t�1;4; 1/, for t D 1; : : : ; T . This setting implies that the first covari-
ate (i.e., the intercept) only has an overall effect, the second covariate has the fixed and spatial–temporal
effects, the third covariate has the fixed and spatial effects, the fourth covariate has the fixed and temporal
effects, and the fifth covariate has no effect. We generated xitl � Uniform.0; 1/ for l D 2; : : : ; 5.

We specified the priors for the parameters of the proposed model as follows. We used
Gamma.0:05; 0:05/ as the prior for �˛;k and ��;k . Following Ishwaran and James [29], we chose
Gamma.2; 2/ as the prior for Mk to encourage both small and large values of Mk . Following Ishwaran
and Zarepour [30], we chose rk D nD 46. We chose the prior for the spatially structured random effects
ˇik as the nonparametric prior described in Section 2.2. We chose prior probabilities in Equation (6) to
be 0.5 to express an equal chance for inclusion and exclusion.

We implemented the analysis using the Gibbs sampler described in Section 2.3. We generated 50,000
iterations after a burn-in of 10,000 iterations. We assessed convergence by using a variety of diagnostics
described by Cowles and Carlin [41] and implemented it using CODA [42] in R [43]. The diagnostic tests
showed rapid convergence and efficient mixing. We estimated the parameters by thinning the chain by a
factor of 5 to obtain a sample size of 10,000.

We compared the proposed model (model 5) with the four competing spatiotemporal models. The
following lists the log-relative risks of these models:

Model 1: �it D x0it˛C ui C vi C �t
Model 2: �it D x0it˛C x0itui C vi C �t
Model 3: �it D x0it� t C uit C vit
Model 4: �it D x0it˛C ui C �t

βi2 βi3

Figure 1. The design of two spatial random effects, ˇi2 and ˇi3, in the simulation study, where the clusters with
different colors in the map show different distributions.

3676

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3670–3685



B. CAI ET AL.

In the four models, we followed conventional settings by specifying the prior of ˛ as Np.0;†˛/
with †˛ � IWishart.p;†�10 /, where †�10 is a 5 � 5 precision matrix with a diagonal element of
0.1 and an off-diagonal element of 0.05. We chose the prior of ui in model 1 as CAR.��1 / with
��1 � Gamma.0:005; 0:005/. We took the prior of vi as N.0; ���12 / with ��2 � Gamma.0:005; 0:005/.
We chose the conditional specification of the prior of �t as N.�t�1; ���13 / with �0 � N.0; ���13 / and
��3 � Gamma.0:005; 0:005/. In model 2, we chose the prior of ui as a multivariate CAR model,
MCAR.†�1u /. In model 3, we chose the prior of � t as N.� t�1; �

��1
4 /. We took the priors of ut and vt in

model 3 as CAR.��5 / and N.0; ���16 I/, respectively, for t D 1; : : : ; T . In model 4, we assume the prior
of ui to be a typical DP prior. By relying on the BlackBox component builder, WinBUGS [44] allows
one to carry out a relatively simple Bayesian statistical modeling by simply specifying a model and the
priors for its parameters. For this reason, we implemented models 1–4 using WinBUGS. Although it can
be conceptually implemented using WinBUGS, we write the proposed model in R because of slowness
and lack of flexibility of WinBUGS. From our experience, both WinBUGS and R programs provide really
similar results.

The second column in Table I presents the comparison of the estimated negative cross-validatory pre-
dictive log-likelihoods for the four models. It shows that model 5 with the smallest value of NLLKCV,sim

outperforms the other four models. Table II shows the posterior probabilities of inclusion of covariates
in the five different cases listed in (6). It is evident that the model selects the designed covariate structure
for each covariate with the highest posterior probability.

In the simulation study (and the real data example), we checked sensitivity of the results to the
prior specification by repeating the analyses with different hyperparameters. Particularly, we applied
the gamma prior, Gamma.0:01; 0:005/, for the precision and the uniform prior, Uniform.0; 50/, for the
standard deviation. Although we did not show the details, there is basically no difference in parameter
estimates, inferences, or model ranking for the prior specification. One may also choose other potential
priors such as a half-Cauchy prior. According to Gelman [45], the choice of noninformative priors for
some scale parameter of the parameter with a common distribution may have a big impact on inferences,
especially when the number of clusters is small (say, below five) or the cluster-level variance is close to
0. However, using the traditional gamma prior does not seem to sensitively affect the inference in our
cases. The reasons might be that, first, the number of subjects (i.e., clusters) is relatively large (nD 46)
and, second, because the random effects in our hierarchical model follow a random distribution rather
than common distributions, it is not clear which prior for the variance of random effects should be more
appropriate. In addition, our sensitivity analysis shows the appropriateness of the prior specification in
the proposed model.

Table I. Model comparison based on the negative cross-validatory log-likelihood for
the simulated example and application to the low birth weight data in South Carolina.

Model NLLKCV, sim NLLKCV,app

Model 1 1189.78 1897.18
Model 2 1166.20 1854.43
Model 3 1175.92 1869.29
Model 4 1191.93 1810.67
Model 5 879.51 1689.83

Table II. Posterior probabilities of inclusion of the four covariates in the
simulation example.

Case

Predictor (0,0,0) (1,0,0) (1,1,0) (1,0,1) (1,1,1)

x2 0.03 0.06 0.14 0.15 0.62
x3 0.02 0.04 0.65 0.13 0.16
x4 0.03 0.09 0.08 0.66 0.14
x5 0.70 0.16 0.05 0.07 0.02

Case .ı1; ı2; ı3/ indicates the five scenarios described in (6).

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3670–3685

3677



B. CAI ET AL.

5. Application to low birth weight data in South Carolina

As an illustration, we applied the approach to the data of county-specific low birth weights (i.e., birth
weight is less than 2500 g) across 46 counties in the state of South Carolina during the period 1997–2006.
As the observations were made yearly, we included a total of 460 observations in the data. We obtained
the number of county-level low birth weights from the South Carolina Department of Health and Envi-
ronmental Control. We considered the county-level population density (defined as population divided by
the total land area in square miles), proportion of African Americans, median household income, and
unemployment rate as socioeconomic predictors of low birth weights. The population density, the pro-
portion of African American population, and the household income were acquired from the US census.
The unemployment rates were attained from the US Bureau of Labor Statistics. In addition, we also con-
sidered aggregate data based on birth certificates for the other known sociodemographic and behavioral
risk factors for low birth weights, including the proportion of mothers with less than 12th grade education
(i.e., high school), the proportion of mothers smoking during pregnancy, and the proportion of mothers
receiving inadequate prenatal care based on the Kotelchuck index. See Kirby et al. [46] for details of the
choice of the covariates. We calculated the correlation for each pair of the covariates. The range of the
correlations is between 0.01 and 0.46, indicating that the covariates have reasonably low correlation. We
diagnosed the multicollinearity by calculating the variance inflation factor for each covariate. The range
of the variance inflation factor is between 1.15 and 3.68, implying low multicollinearity.

In the data, yit denotes the number of low birth weights in county i during year t , and xit D
.1; xit2; xit3; xit4; xit5; xit6; xit7; xit8/

0 with xit2 indicating the county-level population density, xit3
the proportion of Black people, xit4 the median household income, xit5 the unemployment rate, xit6
the proportion of mothers with less than 12th grade education, xit7 the proportion of mothers smoking
during pregnancy, and xit8 the proportion of mothers with a Kotelchuck index in county i for year t , for
i D 1; : : : ; 46 and t D 1; : : : ; 10.

We completed the specification of the proposed model by choosing prior Gamma.0:005; 0:005/ for
�˛;k , �ˇ;k , ��;k and �k . The prior probability for selection of regression coefficients is chosen to follow
Beta(1,1). Because the number of regions is 46, we chose the truncation of the stick-breaking represen-
tation as 15 [29]. We also chose larger values that gave similar results. We collected 10,000 samples by
thinning 50,000 samples by a factor of 5 after a burn-in of 10,000 iterations.

The third column in Table I shows the estimated negative cross-validatory predictive log-likelihoods
for the proposed model along with the four competing models (as outlined in Section 4). We can see
that the estimated NLLKCV,app values for models 1–4 are much higher than that for model 5, evincing
that model 5 is the best among all the models. The priors of the parameters and the settings for the
hyperparameters used were similar to those in the models of the simulated example.

Table III elucidates the marginal posterior probabilities of inclusion of the seven predictors in terms of
fixed effects, spatial random effects, and temporal effects. To detect if the fixed effects and space–time
variations are significant, we calculated the Bayes factor on the basis of the marginal posterior proba-
bilities of indicators (i.e., ı1k , ı2k , and ı3k , k D 2; : : : ; 8). More precisely, we can calculate the Bayes
factor as

BFD
Pr.ıjk D 1jx; y/=Pr.ıjk D 1/

Pr.ıjk D 0jx; y/=Pr.ıjk D 0/
; j D 1; 2; 3;

where Pr.ıjk D 1/ denotes the prior probability of inclusion and Pr.ıjk D 1jx; y/ denotes the marginal
posterior probability of inclusion. Because we assume the prior probabilities of inclusion and exclusion
to be equivalent (i.e., 0.5), the Bayes factor reduces to Pr.ıjk D 1jx; y/= Pr.ıjk D 0jx; y/. We noticed

Table III. Marginal posterior probabilities of inclusion of the seven predictors
in the application.

Predictor Fixed effect Spatial effect Temporal effect

Population density 0.91 0.82 0.63
Proportion of Black people 0.97 0.93 0.89
Median household income 0.96 0.91 0.90
Unemployment rate 0.88 0.82 0.66
Proportion of less education 0.85 0.74 0.70
Proportion of smoking 0.92 0.90 0.78
Proportion of Kotelchuck index 0.89 0.84 0.69
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Table IV. Estimates and 95% CIs of fixed effects from the posterior samples.

Predictor Fixed effect 95% CI

Population density �0:82 .�1:76; 0:16/

Proportion of Black people 1:71 .0:30; 3:06/

Median household income �1:00 .�1:92; 0:02/

Unemployment rate 0:86 .�0:43; 2:23/

Proportion of less education 0:86 .�0:47; 2:11/

Proportion of smoking 1:13 .�0:21; 2:56/

Proportion of Kotelchuck index 0:38 .�0:87; 1:54/

that when Pr.ıjk D 1jx; y/ > 0:94, the Bayes factor is over 15. From Jeffrey’s Bayes factor criteria
[46, p. 432], there is a very strong evidence of the effects, with the posterior probability of inclusion
being over 0.94. For the fixed effects, the proportion of Black people and the median household income
are significantly included in the model with the posterior probability of inclusion over 94%. For the
spatial random effects, we concluded that the spatial variation of the effect for the proportion of Black
people is marginally very strong (93%), indicating that the effect of the covariate on low birth weights
significantly varies across the counties. On the other hand, there is no strong temporal variation of the
effect for any covariates, implying little variation of the covariate effects over time.

Table IV provides the estimates and 95% CIs of the fixed effects for the seven predictors based on
the posterior samples. It is clear that the African American women significantly have lower-birth-weight
babies than the other race group. Besides the proportion of Black people, we noticed that the median
household income is marginally negatively associated with the probability of low birth weight (95% CI
is .�1:92; 0:02/). This is basically consistent with its posterior probability of inclusion, which is 0.96.
For the population density and the proportion of smoking, as their posterior probabilities of inclusion are
0.91 and 0.92, respectively, we anticipated that their 95% CIs cover 0, implying that these two covariates
have less impact on explaining the low birth weights. The remaining predictors are not significant in
predicting the low birth weight. These results are consistent with previous studies [47, 48].
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Figure 2. Posterior densities for spatially varying coefficients (ˇi ) across areas in the application. IKI,
Kotelchuck index.
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Figure 3. The box plots of the posterior samples of the spatially varying coefficient of the proportion of Black
people over county.
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Figure 4. The box plots of the posterior samples of the temporally varying coefficients of the seven covariates
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Figure 2 depicts the posterior densities for the spatially specific effects of the predictors. It shows
that the spatial random effects of different predictors follow different distributions. Figure 3 exempli-
fies box plots of the posterior samples of the spatially varying coefficient of the proportion of Black
people over county, where the points at zero are shown because of variable selection. Figure 4 presents
box plots of the posterior samples of the temporally varying coefficients of all covariates over time. We
note that although there are some trend variations, the temporally varying coefficients vary in a small
scale and almost all of the ranges cover zero, implying an insignificant temporal effect for the covari-
ates. Interestingly, even in the cases where the model coefficients do not present significant variation in
time and space, the proposed approach still provides better fitting to the data in this application based
on the NLLKCV, app in Table I. This advantage benefits from the area-specific nonparametric distribution
assumption for the spatially varying coefficients along with variable selection, which allows for positive
probabilities of excluding coefficients (i.e., zero values).

Figure 5 displays the choropleth maps of comparison of the raw standard mortality ratio of the low
birth weight and the estimated standard mortality ratio based on the proposed model in years 1997,
2002, and 2006. We showed that the estimated relative risks of the low birth weight based on the pro-
posed model capture the main geographical pattern and the temporal trend. In general, the relative risk
of the low birth weights in many counties of South Carolina was increasing during 1997–2006. More
precisely, initially high relative risks were mostly in the center and the east of the region. Then, relative
risks were getting worse in the east, whereas those in the center remained in the same interval, and those
in the north and the southwest increased remarkably.
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Figure 5. The choropleth maps of comparison of the raw standard mortality ratio (SMR) of low birth weights in
South Carolina and the estimated SMR based on the proposed method in years 1997, 2002, and 2006.
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6. Discussion

We proposed a Bayesian semiparametric model with variable selection for the analysis of space–time
data. The proposed approach relaxes the normality assumption for the spatial random effects of covari-
ates while allowing for uncertainty of the inclusion of the fixed effects, spatial random effects, and
temporal effects. The spatial information is incorporated into the nonparametric distributions for the
spatial random effects via the generalized transformation, which includes various popular links.

One of the major advantages of the proposed semiparametric model is the ability to flexibly model
variation within localized areas of a study region. In the proposed model, we allow a geographically
localized definition of the dependence of covariates and provide a flexible method of incorporation of
covariates with predefined inclusion probabilities. Although in the examples, the covariate profiles show
some impact on the overall county rates, it is evident that the estimated negative cross-validatory pre-
dictive log-likelihoods support the proposed model over conventional space–time random-effect models.
This suggests that even with the degree of parameterization, there is an overall benefit in the use of such
semiparametric models, especially when covariates are to be flexibly accommodated. We noticed com-
putational intensity in the proposed approach, although it is reasonably efficient when it is coded in R. It
took about 84 h to run 50,000 iterations for the real data example on a Linux server with Xeon(R) CPU
X5355 at 2.66 GHz. Future work will focus on developing more efficient semiparametric space–time
models for areal data.

Appendix A. Full conditional distributions in Section 2.3

Step 1: Update .ı1k; ı2k; ı3k/, for k D 1; : : : ; p, from its full conditional posterior distribution,

exp

"
nX
iD1

TX
tD1

 
xitkyit�itk �Eit exp

 
pX
kD1

xitk�itk

!!#
�.ı1k; ı2k; ı3k/:

With this posterior distribution, we can calculate the posterior probability for each scenario
in (6). After standardization, we can generate a sample of .ı1k; ı2k; ı3k/ from a discrete
probability measure as

.ı1k; ı2k; ı3k/�

5X
lD1

p�lkı�lk .�/;

where p�
lk

denotes the standardized probability and 
lk denotes different scenarios for
.ı1k; ı2k; ı3k/ shown in (6).

Step 2: Update ˛k , for k D 1; : : : ; p, from its full conditional posterior distribution,
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Step 3: Update �˛;k , for k D 1; : : : ; p, from its full conditional posterior distribution,
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Step 4: Update �tk , for t D 1; : : : ; T and k D 1; : : : ; p, from its full conditional posterior distribution,

exp

"
nX
iD1

TX
tD1

 
xitkyitı3k�tk �Eit exp

 
pX
kD1

xitk�itk

!!
�
��;k

2

TX
tD1

.�tk � �t�1;k/
2

#
:

Step 5: Update ��;k , for k D 1; : : : ; p, from its full conditional posterior distribution,
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Step 6: Update ˇik , for i D 1; : : : ; n and k D 1; : : : ; p. Let S�
k
D
�
S�
1k
; : : : ; S�

rkk

�0
be the configura-

tion of the current distinct values of Sk . Then, we sample ˇ�
S�
sk

, for s D 1; : : : ; rk , from its full

conditional posterior distribution,
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Step 7: Update �ˇ;k , for k D 1; : : : ; p, from its full conditional posterior distribution,
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Step 8: Update Sik , for i D 1; : : : ; n and k D 1; : : : ; p, from its full conditional posterior distribution,
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Step 9: Update !isk , for s D 1; : : : ; rk and k D 1; : : : ; p, as
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