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Clustered boundary layer sign-changing solutions
for a supercritical problem

Seunghyeok Kim and Angela Pistoia

Abstract

We study the existence and profile of sign-changing solutions of the supercritical problem

−Δu = |u|p−1u in D, u = 0 on ∂D,

where D is a smooth open bounded domain in R
n and p > 1. In particular, for suitable domains D,

we prove that, for any integer m, if p is large enough, such a problem has a sign-changing solution
which concentrates positively and negatively along m different (n − 2)-dimensional submanifolds
of the boundary of D that collapse to a suitable submanifold of the boundary as p → +∞.

1. Introduction

We are interested in the classical Lane–Emden–Fowler problem

Δv + |v|p−1v = 0 in D, v = 0 on ∂D, (1.1)

where D is a smooth open bounded domain in R
n and p > 1.

As is well known, the existence of positive and sign-changing solutions to problem (1.1) when
p is above the critical exponent p∗1 := (n+ 2)/(n− 2) is a difficult issue.

When p ∈ (1, (n+ 2)/(n− 2)) compactness of Sobolev’s embedding ensures the existence of
at least one positive solution and infinitely many sign-changing solutions.

When p � (n+ 2)/(n− 2), the situation is much more delicate. Pohožaev [25] proved that
problem (1.1) does not have any solutions if the domain D is star-shaped. On the other hand,
Kazdan and Warner [15] proved that if the domain D is an annulus, then problem (1.1)
has infinitely many radial solutions. In the critical case, that is, p = (n+ 2)/(n− 2), Bahri and
Coron proved that a positive solution of (1.1) exists if the domain D is topologically nontrivial.
Moreover, in [14, 17] it was proved that if the domain D has a small hole, then the number
of sign-changing solutions of problem (1.1) increases as the size of the hole decreases. In the
supercritical case, that is, p > (n+ 2)/(n− 2), the presence of topology does not guarantee the
existence of solutions of (1.1). In fact, Passaseo [19, 20] proved that if n � 4 and 1 � k � n− 3
is a given integer, then there exists a smooth bounded domain in R

n homotopically equivalent to
a k-sphere such that problem (1.1) does not have any solutions if p � (n− k + 2)/(n− k − 2).

Let us define p∗k+1 := (n− k + 2)/(n− k − 2), 0 � k � n− 3 as the (k + 1)th critical
exponent and set p∗n−1 := +∞.

The almost first critical case, that is, p = p∗1 ± ε, when ε is positive and small enough, has
been widely studied. The slightly subcritical case, that is, p = p∗1 − ε, was considered in [3, 28],
where the existence of positive solutions which blow up at one or more points of D as ε→ 0
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was established. The existence of sign-changing solutions was studied in [6, 18, 24], where the
authors constructed a large number of solutions with simple or multiple positive and negative
blow-up points. The existence and nonexistence of positive solutions with one or more blow-up
points in the slightly supercritical case, that is, p = p∗1 + ε, was established in [8, 21, 23].

In [22], the authors considered the almost second critical case, that is, p = p∗2 − ε. They
proved that, for some suitable domains D, if ε is positive, small enough and different from an
explicit set of values, then problem (1.1) has a positive solution which concentrates along a one-
dimensional submanifold of the boundary ∂D. In the same paper, the authors ask the question
whether one can find concentration results for larger critical exponents. More precisely,

(Q1) for any integer k = 2, . . . , n− 2, if p approaches from below p∗k and p is (possibly) different
from an explicit set of values, for some suitable domains D does problem (1.1) have a
positive solution which concentrates along a k-dimensional submanifold of the boundary
∂D?

Having in mind that when p approaches from below the first critical exponent p∗1 a large
number of sign-changing solutions exist, another question naturally arises:

(Q2) for any integer k = 1, . . . , n− 2, if p approaches from below p∗k and p is (possibly) different
from an explicit set of values, for some suitable domains D does problem (1.1) have a
sign-changing solution which concentrates along a k-dimensional submanifold of the
boundary ∂D?

In [1, 16], we afford both questions in the almost (k + 1)th critical case for 1 � k � n− 3.
In the present paper, we consider the almost (n− 1)th critical case, that is, k = n− 2 and

we give a positive answer when p goes to +∞. More precisely, we exhibit some domains D such
that if p is large enough, then problem (1.1) has a positive solution which concentrates along
an (n− 2)-dimensional submanifold Γ0 of the boundary ∂D as p goes to +∞. Moreover, we
exhibit some domains D such that, for any integer m, if p is large enough, then problem (1.1)
has many sign-changing solutions which concentrate positively and negatively along (n− 2)-
dimensional submanifolds Γ1p, . . . ,Γmp of the boundary ∂D such that the Γip’s accumulate to
Γ0 as the exponent p goes to +∞.

Let us state our main result more precisely.
Let Ω be a smooth open bounded domain in R

2 such that

Ω̄ ⊂ {(x1, x2) ∈ R
2 : x1 > 0} or Ω̄ ⊂ {(x1, x2) ∈ R

2 : x1, x2 > 0}.

Let h = 1 or h = 2 be fixed. Let M = M1 +Mh with Mi � 2 and set

D := {(y1, yh, x
′) ∈ R

M1 × R
Mh × R

2−h : (|y1|, |yh|, x′) ∈ Ω}.

Then D is a smooth open bounded domain in R
n with n := M + 2 − h.

As mentioned, we are interested in finding sign-changing solutions for the supercritical
problem (1.1) when p is large enough.

The solutions we are looking for are G-invariant for the action of the group G := O(M1) ×
O(Mh) on R

N given by

(g1, gh)(y1, yh, x
′) := (g1y1, ghyh, x

′).

Here, O(Mi) denotes the group of linear isometries of R
Mi . More precisely, we look for solutions

that satisfy

v(y1, yh, x
′) = v(g1y1, ghyh, x

′) for all gi ∈ O(Mi), yi ∈ R
Mi , x′ ∈ R

2−h.
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A simple calculation shows that a function v of the form v(y1, yh, x
′) = u(|y1|, |yh|, x′) solves

problem (1.1) if and only if u solves

−Δu−
h∑

i=1

Mi − 1
xi

∂u

∂xi
= |u|p−1u in Ω, u = 0 on ∂Ω,

which can be rewritten as

−div(a(x)∇u) = a(x)|u|p−1u in Ω, u = 0 on ∂Ω,

where

a(x1, x2) = xn−2
1 if h = 1, (1.2)

a(x1, x2) = xM1−1
1 xM2−1

2 if h = 2 (here n = M1 +M2). (1.3)

Thus, we are led to study the more general anisotropic Lane–Emden–Fowler equation

Δau+ |u|p−1u = 0 in Ω, u = 0 on ∂Ω, (1.4)

where p is a large exponent, Ω ⊂ R
2 is a smooth bounded domain, a : Ω → R is a smooth

function over Ω̄ such that

0 < a1 � a(x) � a2 < +∞,

and Δa is an operator defined as

Δau =
1

a(x)
∇(a(x)∇u) = Δu+ ∇ log a · ∇u for any u ∈ H1

0 (Ω).

We will assume that

(A1) x̄ ∈ ∂Ω is a strict local minimum of a;
(A2) ∂νa(x̄) := 〈∇a(x̄), ν(x̄)〉 > 0 where ν = ν(x̄) is the inward unit normal at x̄ ∈ ∂Ω.

Our goal is to construct solutions to problem (1.4) with positive and negative bubbles which
accumulate to x̄ as p goes to +∞. It corresponds to construct solutions to problem (1.1) such
that they concentrate positively and negatively along (n− 2)-dimensional submanifolds of the
boundary of D which accumulate to the G-orbit of x̄ on the boundary of D as p goes to +∞. We
point out that the G-orbit of x̄ on the boundary of D is a (n− 2)-dimensional submanifold of
the boundary of D diffeomorphic to S

M1−1 × S
Mh−1 (recall that M − h = n− 2), where S

Mi−1

is the unit sphere in R
Mi .

Our first result concerns the existence of a single bubble solution for problem (1.4).

Theorem 1.1. Assume (A1)–(A2). There is p0 such that, for p > p0, there is a family
of positive solutions up for problem (1.4) with one positive bubble at x̄ as p→ +∞. More
precisely,

up(x) =
1

γμ2/(p−1)
log

8δ2

(δ2 + |x− ξp|2)2 +O

(
1
p

)
,

where the parameters γ, δ and μ satisfy

γ = pp/(p−1) e−p/2(p−1), δ = μ e−p/4,
1
Cp

� μ � C

p
,

for some C > 0 and ξp satisfies

ξp → x̄,
C̃1

p
� d(ξp, ∂Ω) � C̃2

p
,
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for some C̃1, C̃2 > 0. In particular, for any ρ > 0, as p→ ∞
p|up|pup ⇀ 8πeδx̄ weakly in D′(R2), (1.5)
up −→ 0 uniformly in Ω \Bρ(x̄) (1.6)

and

sup
x∈Bρ(x̄)

up(x) −→
√
e. (1.7)

The corresponding result for problem (1.1) reads as follows.

Theorem 1.2. Let a be as in (1.2) or in (1.3). Assume (A1)–(A2). There exists p0 such
that, for any p � p0, problem (1.1) has a positive solution vp which concentrates positively along
a (n− 2)-dimensional submanifold of the boundary of D, namely the G-orbit of x̄, as p→ +∞.

Our second result concerns the existence of a sign-changing solution for (1.4) with one
positive and one negative bubble which accumulates to the same point.

Theorem 1.3. Assume (A1)–(A2). There is p0 such that, for p > p0, there is a family of
sign-changing solutions up with one positive bubble and one negative bubble which accumulate
to x̄ as p→ +∞. More precisely,

up(x) =
1

γμ
2/(p−1)
1

log
8δ21

(δ21 + |x− ξp
1 |2)2

− 1

γμ
2/(p−1)
2

log
8δ22

(δ22 + |x− ξp
2 |2)2

+O

(
1
p

)
,

where the parameters γ, δi and μi satisfy, for i = 1, 2,

γ = pp/(p−1) e−p/2(p−1), δi = μi e
−p/4,

1
Cp log p

� μi � C log p
p

, (1.8)

for some C > 0 and ξp
i satisfies

ξp
i → x̄,

C̃1

p
� d(ξp

i , ∂Ω) � C̃2

p
and |ξp

1 − ξp
2 | � 1

p log p
,

for some C̃1, C̃2 > 0. In particular, for any ρ > 0, as p→ ∞
p|up|pup ⇀ 0 weakly in D′(R2), (1.9)

up −→ 0 uniformly in Ω \Bρ(x̄) (1.10)

and

sup
x∈Bρ/p2 (ξp

1 )

up(x) −→
√
e and inf

x∈Bρ/p2 (ξp
2 )
up(x) −→ −√

e. (1.11)

The corresponding result for problem (1.1) reads as follows.

Theorem 1.4. Let a be as in (1.2) or in (1.3). Assume (A1)–(A2). There exists p0 such
that, for any p � p0, problem (1.1) has a sign-changing solution vp which concentrates positively
and negatively along two different (n− 2)-dimensional submanifolds of the boundary of D that
accumulate to the G-orbit of x̄, as p→ +∞.
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We would like to point out that the solutions found in Theorem 1.3 are generated by a
minimum point of the reduced energy (see Section 4). In fact, in that case the interaction
between the two peaks is negative and that allows one to minimize the reduced energy in the
configuration space where the concentration points lie (see (2.1)). When the number of peaks
m � 3, the interaction between the peaks is no longer positive and so the reduced energy has
no longer a minimum point. Actually, in this case the reduced energy should have a critical
point of min–max type, which seems to be very difficult to catch. However, if we assume some
symmetry conditions which allow one to reduce the configuration space so that we can again
minimize the reduced energy, a solution with an arbitrary number of positive and negative
bubbles near a local minimum of a can be found. More precisely, we assume that:

(A3) Ω is symmetric with respect to the line L := {x̄+ �ν(x̄) : � ∈ R}, that is,

x̄+ (x, ν)ν + (x, τ)τ ∈ Ω ⇔ x̄+ (x, ν)ν − (x, τ)τ ∈ Ω,

and a is even with respect to the line L, that is,

a(x̄+ (x, ν)ν + (x, τ)τ) = a(x̄+ (x, ν)ν − (x, τ)τ),

where τ = τ(x̄) is a unit tangent vector at x̄ ∈ ∂Ω.

Theorem 1.5. Assume (A2)–(A3). Then, for any m ∈ N, there is p0 = p0(m) such that,
for p > p0, there is a family of sign-changing solutions um

p for problem (1.4) with m alternating
positive and negative bubbles which accumulate to x̄ as p→ +∞. More precisely,

um
p (x) =

m∑
i=1

(−1)i+1

γμ
2/(p−1)
i

log
8δ2i

(δ2i + |x− ξp
i |2)2

+O

(
1
p

)
,

where the parameters γ, δi and μi are as in (1.8) and every ξp
i = x̄+ tpi /pν is aligned on the

line L and satisfies

tpi → ti, i = 1, . . . ,m and 0 < t1 < · · · < tm.

Moreover, um
p is even with respect to the line L. In particular, for any ρ > 0, as p→ ∞

p|up|pup ⇀ 8πe
m∑

i=1

(−1)i+1δx̄ weakly in D′(R2),

up −→ 0 uniformly in Ω \Bρ(x̄)

and

sup
x∈Bρ/p2 (ξp

i )

up(x) −→
√
e (i is odd) and inf

x∈Bρ/p2 (ξp
i )
up(x) −→ −√

e (i is even).

We point out that if we assume (A3), then we do not require that x̄ is a minimum point of a.
The corresponding results for problem (1.1) read as follows.

Theorem 1.6. (i) Let a be as in (1.2). Assume (A2)–(A3) and assume also that Ω is
symmetric with respect to the x1-axis, that is, (x1, x2) ∈ Ω if and only if (x1,−x2) ∈ Ω.

For any integer m, there exists pm such that, for any p � pm, problem (1.1) has a
sign-changing solution vp concentrating positively and negatively along m different (n− 2)-
dimensional submanifolds of the boundary of D which accumulate to the G-orbit of x̄
as p→ +∞.
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(ii) Let a be as in (1.3), with n � 4 even and M1 = M2 = n/2. Assume (A2)–(A3) and also
that Ω is symmetric with respect to the line L := {(x1, x1) : x1 ∈ R}, that is, (x1, x2) ∈ Ω if
and only if (x2, x1) ∈ Ω.

For any integer m, there exists pm such that, for any p � pm problem (1.1) has a
sign-changing solution vp concentrating positively and negatively along m different (n− 2)-
dimensional submanifolds of the boundary of D which accumulate to the G-orbit of x̄ as
p→ +∞.

We point out that problem (1.4) was first studied in [2, 11, 26, 27] in the nonanisotropic
case, that is, a(x) ≡ 1. Successively, in [12, 13] the authors constructed for p large enough
positive and sign-changing solutions with simple positive and negative blow-up points. In [29],
the authors studied the effect of the anisotropic coefficient a. In particular, they constructed
positive solutions with an arbitrary large number of positive blow-up points which accumulate
to a strict local maximum point of a in Ω. We also quote the papers [31, 32] where the
authors studied the existence of positive solutions for an anisotropic Emden–Fowler equation
and the paper [30], where sign-changing solutions with multiple blow-up points are found for
an anisotropic sinh-Poisson equation.

The proof of our results rely on a very well-known Ljapunov–Schmidt reduction. In Section 2,
we write the approximate solution. In Section 3, we study the linear problem. In Section 4,
we reduce the problem to a finite-dimensional one, we study the reduced energy and we prove
Theorems 1.1 and 1.3. In Section 5, we treat the symmetric case and we prove Theorem 1.5.
In the Appendix, we recall some important estimates on Green’s function G(x, y) and Robin’s
function HR(x) = H(x, x), x, y ∈ Ω, where H is the regular part of Green’s function.

2. An approximation for the solution

A key ingredient to define an approximate solution to (1.4) is given by the standard bubble:

Uδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2 , ξ, x ∈ R
2, δ > 0.

It is well known (see [10]) that those are all the solutions of the problem

−Δu = eu in R
2,

∫
R2
eu < +∞.

Let us introduce the configuration space in which the concentration points belong to:

Λ :=

{
ξ = (ξ1, . . . , ξm) ∈ (Bρ(x̄) ∩ Ω)m :

C̃1

p
� d(ξi, ∂Ω) � C̃2

p
,

|ξi − ξj | � 1
p log p

, i, j = 1, . . . ,m, i = j

}
, (2.1)

where the constants C̃1 and C̃2 will be chosen in Lemma 4.3.
Next, we set, for i ∈ {1, . . . ,m},

γ = pp/(p−1) e−p/2(p−1), δi = μi e
−p/4,

1
Cp logm−1 p

� μi � C logm−1 p

p
,

for some C > 0 where the exact description for μi will be given later, and introduce a function
that was introduced in [13],

Ũi(x) =
ai

γμ
2/(p−1)
i

[
Uδi,ξi

(x) +
1
p
w0

(
x− ξi
δi

)
+

1
p2
w1

(
x− ξi
δi

)]
, (2.2)
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with ai ∈ {−1, 1}. Here, w0 and w1 are radial solutions of

Δwi +
8

(1 + |y|2)2wi =
1

(1 + |y|2)2 fi(|y|) in R
2, (2.3)

for i = 0, 1, respectively, with

f0 = 4U1,0, f1 = −8

(
U4

1,0

8
+
U3

1,0

3
− w0U

2
1,0

2
− w0U1,0 +

w2
0

2

)

having an asymptotic expansion

wi(r) = Ci log r +O

(
1
r

)
, ∂rwi(r) =

Ci

r
+O

(
1
r2

)
as r −→ ∞, r = |y|, (2.4)

for i = 0, 1 where

Ci =
∫∞

0

t
t2 − 1

(t2 + 1)3
fi(t) dt (2.5)

(see also [9]).
We now approximate the solution by

U =
m∑

i=1

Ui =
m∑

i=1

(Ũi +Hp
i ), (2.6)

where Hp
i is a correction term defined as a solution of

ΔaH
p
i + ∇ log a · ∇Ũi = 0in Ω, Hp

i = −Ũion ∂Ω. (2.7)

The following estimation was derived in [29].

Lemma 2.1. For any γ ∈ (0, 1), p large,

Hp
i (x) =

ai

γμ
2/(p−1)
i

[(
1 − C0

4p
− C1

4p2

)
H(x, ξi) − log(8δ2i ) +

log δi
p

(
C0 +

C1

p

)
+O(δγ

i )
]

uniformly in Ω.

Furthermore, we define μi (i = 1, . . . ,m) as a solution of

log(8μ4
i ) = H(ξi, ξi)

(
1 − C0

4p
− C1

4p2

)
+

log δi
p

(
C0 +

C1

p

)

+
m∑

j=1
j �=i

(aiaj)
(
μi

μj

)2/(p−1)

G(ξi, ξj)
(

1 − C0

4p
− C1

4p2

)
. (2.8)

As in [29, Lemma 2.4], we can check that (2.8) is solvable and μi satisfies

μi = exp

⎧⎨
⎩−3

4
+

1
4

⎛
⎝H(ξi, ξi) +

∑
j �=i

aiajG(ξi, ξj)

⎞
⎠
⎫⎬
⎭ ·

(
1 +O

(
log(log p)

p

))
. (2.9)

In particular, by our construction (2.1) of the configuration spaces, there exists a constant C > 0
independent of p and i such that μi ∈ [(Cp)−1 log1−m p, Cp−1 logm−1 p] for any p sufficiently
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large. Also, such a choice of (μ1, . . . , μm) gives us that if we write x = δiy + ξi for fixed i ∈
{1, . . . ,m}, then

U(x) = Ui(x) +
∑
j �=i

Uj(x)

=
ai

γμ
2/(p−1)
i

[
p+ U1,0(y) +

1
p
w0(y) +

1
p2
w1(y)

+
(

1 − C0

4p
− C1

4p2

)
(H(δy + ξi, ξi) −H(ξi, ξi)) +O(δγ

i )
]

+
∑
j �=i

[
Uj(x) − aj

γμ
2/(p−1)
j

G(ξi, ξj)
(

1 − C0

4p
− C1

4p2

)]
(2.10)

uniformly in (Ω − ξi)/δi owing to the previous lemma. In particular, from Lemma A.2 we have

U(x) =
ai

γμ
2/(p−1)
i

[
p+ U1,0(y) +

1
p
w0(y) +

1
p2
w1(y) +O

(
δγ
i

(
1 +

|y|γ
d(ξi, ∂Ω)

))]

+
∑
j �=i

aj

γμ
2/(p−1)
j

[
O(δγ

j ) +O

(
δγ
i |y|γ

d(ξj , ∂Ω)

)
+O(δγ̃

i |y|γ̃)
]
, (2.11)

in |x− ξi| < p−2 for any γ ∈ (0, 1), γ̃ ∈ (0, 1/2), x ∈ Ω and ξ ∈ Λ. This justifies our selection
of U as an ansatz for the solution of problem (1.4).

We will seek for a solution of (1.4) in the form u = U + φ. If we write W = p|U |p−1, then
(1.4) is equivalent to an equation of φ given by

L(φ) = −(R+N(φ)) in Ω, φ = 0 on ∂Ω,

where

L(φ) = Δaφ+Wφ, R = ΔaU + |U |p−1U

and

N(φ) = |U + φ|p−1(U + φ) − |U |p−1U −Wφ.

Define the norm

‖h‖∗ = sup
x∈Ω

∣∣∣∣∣∣
(

m∑
i=1

δi
(δ2i + |x− ξi|2)3/2

)−1

h(x)

∣∣∣∣∣∣ ,
for any h ∈ L∞(Ω). We then have the following estimation for the remainder term R.

Lemma 2.2. There exists C > 0 such that, for any ξ ∈ Λ and p large,

‖R‖∗ � C

p4
.

Proof. Since its proof is similar to the proof of [12, Proposition 2.1] (cf. [13, Lemma 2.1,
29, Proposition 2.1]), we give only a sketch. However, we stress that here we have to take care
of the effect due to the boundary of the domain.

If |x− ξi| � p−2 for all i = 1, . . . ,m, then the direct computation using (2.10) and (A.2)
yields that

|ΔaU(x)| = |ΔŨ(x)| � Cp5 log2(m−1) p e−p/2 and |U(x)| � C
log p
p

, (2.12)
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hence

‖ΔaU + |U |p−1U‖∗ � Cp logm−1 p ep/4

[
p5 log2(m−1) p e−p/2 +

(
log p
p

)p]
� Cp6 log3(m−1) p e−p/4.

On the other hand, if |x− ξi| � p−2
√
δi for some i, then, by (2.11), the relation(

p

γμ
2/(p−1)
i

)p

=
1

γδ2i μ
2/(p−1)
i

,

and the expansion(
1 +

A

p
+
B

p2
+
C

p3

)p

= eA

[
1 +

1
p

(
B − A2

2

)
+

1
p2

(
C −AB +

A3

3
+
B2

2
+
A4

8
− A2B

2

)

+O
(

log6(|y| + 2)
p3

)]
, (2.13)

which holds for |y| � C ep/8 provided −4 log(|y| + 2) � A(y) � C and |B(y)| + |C(y)| �
C log(|y| + 2), we have

‖ΔaU + |U |p−1U‖∗ � 1
p4
.

Finally, for p−2
√
δi � |x− ξi| � p−2, since (1 + sp−1)p � es, we get, from (2.11),

‖Up‖∗, ‖ΔU‖∗ � Cp1/2 log1/2(m−1) p e−p/8.

This concludes the proof.

3. The linearized problem

For fixed δi > 0, ξi = ((ξi)1, (ξi)2) and any x = (x1, x2) ∈ R
2, define

Zij(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δi
2
· ∂Uδi,ξi

∂δi
(x) =

−δ2i + |x− ξi|2
δ2i + |x− ξi|2 if j = 0,

δi · ∂Uδi,ξi

∂(ξi)j
(x) =

4δi(x− ξi)j

δ2i + |x− ξi|2 if j = 1, 2,
(3.1)

for i = 1, . . . ,m.
In this section, we will solve the following linear problem: find φ ∈W 2,2(Ω) and cij ∈ R

which solve ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(φ) = h+
m∑

i=1

2∑
j=1

cij e
Uδi,ξiZij in Ω,

φ = 0 on ∂Ω,∫
Ω

a eUδi,ξiZijφ = 0 for i = 1, . . . ,m, j = 1, 2,

(3.2)

if h ∈ C(Ω).

Proposition 3.1. For p large enough, ξ ∈ Λ and h ∈ C(Ω), (3.2) admits a unique solution
φ and cij which satisfies

‖φ‖L∞(Ω) � Cp‖h‖∗,
where C > 0 is independent of p.
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The proof of Proposition 3.1 consists of a series of lemmas.

Lemma 3.1. For sufficiently large p, ξ ∈ Λ and h ∈ C0,α(Ω) (α ∈ (0, 1) fixed), a solution
for ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L(ψ) = h in Ω,
ψ = 0 on ∂Ω,∫
Ω

a eUδi,ξiZijψ = 0 for i = 1, . . . ,m, j = 0, 1, 2

satisfies

‖ψ‖L∞(Ω) � C‖h‖∗, (3.3)

where C > 0 is independent of p.

Proof. The proof of this result consists of three steps.
Step 1. For sufficient large p, there is a large number R > 0 independent of p such that

the operator L satisfies the maximum principle in Ω̃ := Ω \⋃m
i=1BRδi

(ξi). In other words, if
Lϕ � 0 in Ω̃ and ϕ � 0 in ∂Ω̃, then ϕ � 0 in Ω̃.

To prove it, it suffices to construct a barrier Z in Ω̃, that is, Z > 0 and LZ < 0 in Ω̃. The
barrier which we introduce here is the one used in [31]. Let Φ0 be a solution of

−ΔaΦ0 = 1 in Ω, Φ0 = 2 on ∂Ω

and

Z(x) =
m∑

i=1

{
Φ0(x) −

(
δ

|x− ξi|
)α}

,

where α is any number in (0, 1).
For any R � 1 fixed, 1 � Z(x) � M in Ω̃ for some M > 0. Moreover, since

W � C
m∑

i=1

eUδi,ξi for some constant C > 0 (3.4)

(see [12, Lemma 3.1] or [29, Lemma 3.1]), we have

LZ(x) �
m∑

i=1

(
−1 − α(α+ 1)δα

i

|x− ξi|α+2
+ ∇ log a(x) · αδ

α
i (x− ξi)

|x− ξi|α+2
+

8CMδ2i
(δ2i + |x− ξi|2)2

)

:=
m∑

i=1

Ẑi(x).

Now fix i ∈ {1, . . . ,m}. In Rδi � |x− ξi| � p−2, for sufficiently large p and R,

Ẑi(x) � −1 − αδα
i

|x− ξi|α+2

(
α+ 1 − ‖∇ log a‖L∞(Ω) · 1

p2

)
+

8CMδ2i
(δ2i + |x− ξi|2)2

� −1 − α2δα
i

2|x− ξi|α+2
+

8CMδ2i
|x− ξi|4 < −1.

If |x− ξi| � p−2, then, for any large p,

Ẑi(x) � −1 + ‖∇ log a‖L∞(Ω)αδ
α
i p

2(α+1) + 8CMδ2i p
8 � − 1

2 .

Summing up, LZ(x) � −m/2 in Ω̃.



CLUSTERED BOUNDARY LAYER SIGN-CHANGING SOLUTIONS 237

Step 2. Define the inner norm of φ by

‖φ‖i = sup
x∈⋃m

i=1 BRδi
(ξi)

|φ(x)|.

Then there exists C > 0 such that every solution φ of Lφ = h in Ω, φ = 0 on ∂Ω with some
h ∈ C0,α(Ω) satisfies

‖φ‖L∞(Ω) � C(‖φ‖i + ‖h‖∗). (3.5)

This follows from the application of the maximum principle in Ω̃ obtained in Step 1 to the
function φ̃ := (‖φ‖i + ‖h‖∗)Z. In particular, we can check that φ̃ � |φ| in Ω̃, which gives rise
to (3.5).

Step 3. We conclude the proof. Suppose, on the contrary, that there are sequences of
parameters pn → ∞, m-tuples of points ξn = (ξn

1 , . . . , ξ
n
m) ∈ Λ, functions hn ∈ C0,α(Ω) and

corresponding solutions ψn such that

‖hn‖∗ −→ 0, ‖ψn‖L∞(Ω) = 1 as n −→ ∞. (3.6)

We consider the expansion of Wn = pn|Un|pn−1 where Un is defined by (2.6) with ξn ∈ Λ:
for |x− ξn

i | � p−2
n

√
δn
i ,

Wn(x) = Wn(δn
i y + ξn

i )

=
1

(δn
i )2

· 8
(1 + |y|2)2

[
1 +

1
pn

(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)

+O
(

log4(|y| + 2)
p2

n

)]
, (3.7)

which can be derived from (2.11), (2.13) and (A.2). Then employing (3.7) and elliptic regularity,
we can deduce that ψ̂n

i := ψn(δn
i · +ξn

i ) where ξn = (ξn
1 , . . . , ξ

n
m) ∈ Λ, μn = (μn

1 , . . . , μ
n
m) and

δn
i = μn

i e
−pn/4 for i ∈ {1, . . . ,m} converges uniformly over compact sets to a solution ψ̂∞

i of

Δφ+
8

(1 + |y|2)2φ = 0 in R
2, (3.8)

which satisfies

8a(ξ∞i )
∫

R2

−1 + |y|2
(1 + |y|2)3 ψ̂

∞
i (y) dy = 0 (3.9)

and

32a(ξ∞i )
∫

R2

yj

(1 + |y|2)3 ψ̂
∞
i (y) dy = 0, y = (y1, y2) ∈ R

2, (3.10)

for each i = 1, . . . ,m and j = 1, 2. Here, ξ∞i ∈ ∂Ω is an accumulation point of the sequence
(ξn

i )n. However, by the result of [5], any bounded solution of (3.8) can be expressed as a linear
combination of

−1 + |y|2
1 + |y|2 ,

4y1
1 + |y|2 and

4y2
1 + |y|2

(that is, Z1j defined in (3.1) with δ1 = 1 and ξ1 = 0 for j = 0, 1, 2). Therefore, (3.9) and (3.10)
imply ψ̂∞

i = 0 or limn→∞ ‖ψn‖i = 0. However, by (3.5) and (3.6), lim infn→∞ ‖ψn‖i > 0, which
is a contradiction.
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Lemma 3.2. For sufficiently large p, ξ ∈ Λ and h ∈ C0,α(Ω), a solution for⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L(φ) = h in Ω,
φ = 0 on ∂Ω,∫
Ω

a eUδi,ξiZijφ = 0 for i = 1, . . . ,m, j = 1, 2

satisfies

‖φ‖L∞(Ω) � Cp‖h‖∗, (3.11)

where C > 0 is independent of p.

Proof. Suppose, by contradiction, that there are sequences of parameters pn → ∞,m-tuples
of points ξn = (ξn

1 , . . . , ξ
n
m) ∈ Λ, functions hn ∈ C0,α(Ω) and corresponding solutions φn such

that

pn‖hn‖∗ −→ 0, ‖φn‖L∞(Ω) = 1 as n −→ ∞. (3.12)

For each i ∈ {1, . . . ,m}, define a sequence {φ̂n
i }n∈N of scaled functions by

φ̂n
i (y) := φn(δn

i y + ξn
i ) for all y ∈ Ωn

i := (Ω − ξn
i )/δn

i ,

with ξn = (ξn
1 , . . . , ξ

n
m) ∈ Λ, μn = (μn

1 , . . . , μ
n
m) and δn

i = μn
i e

−pn/4. Then, by (3.7) and elliptic
regularity, φ̂n

i converges to φ̂∞i uniformly over compact subsets in R
2 and consequently φ̂∞i

solves

Δφ̂∞i +
8

(1 + |y|2)2 φ̂
∞
i = 0 in R

2,

and satisfies

32a(ξ∞i )
∫

R2

yj

(1 + |y|2)3 φ̂
∞
i (y) dy = 0,

for each i = 1, . . . ,m and j = 1, 2 where ξ∞i ∈ ∂Ω is an accumulation point of the sequence
(ξn

i )n. By the nondegeneracy result on the linearized Liouville equation (3.8) in [5], it follows
that, as in the proof of Lemma 3.1,

φ̂n
i → φ̂∞i = Ĉi

|y|2 − 1
|y|2 + 1

in Cloc(R2), (3.13)

for some constant Ĉi ∈ R.
To obtain a contradiction, we will show that Ĉi = 0 for all i = 1, . . . ,m and, for this aim, we

consider smooth solutions w, t of

Δw +
8

(1 + |y|2)2w =
8

(1 + |y|2)2 · −1 + |y|2
1 + |y|2 ,

Δt+
8

(1 + |y|2)2 t =
8

(1 + |y|2)2 in R
2,

such that

w(y) =
4
3

log |y| +O

(
1
|y|

)
, t(y) = O

(
1
|y|

)
as |y| −→ ∞ (3.14)

and

∇w(y) =
4
3
· y

1 + |y|2 +O

(
1

1 + |y|2
)
, ∇t(y) = O

(
1

1 + |y|2
)

for all y ∈ R
2, (3.15)
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whose existence are shown in [12, Lemma 2.1]. Using these functions, for any i ∈ {1, . . . ,m}
and n ∈ N, set

un
i (x) = w

(
x− ξn

i

δn
i

)
+

4
3

log δn
i · Zi0(x) +

1
3
H(ξn

i , ξ
n
i )t

(
x− ξn

i

δn
i

)

and

ũn
i = un

i + hn
i ,

where hn
i is a solution of

Δah
n
i + ∇ log a · ∇un

i = 0 in Ω, hn
i = −un

i on ∂Ω.

By means of (3.14), (3.15), (A.2), (2.1) and elliptic regularity, it can be estimated that

‖hn
i + 1

3H(x, ξn
i )‖C0(Ω̄) = O(pnδ

n
i ) (3.16)

and

‖hn
i + un

i + 1
3G(x, ξn

i )‖C0({|x−ξn
j |�p−2

√
δn

j }) = O(pn log2 pnδ
n
i ) for j = i. (3.17)

Observe that ũn
i solves

Δaũ
n
i +Wnũn

i = (Wn − eUδn
i ,ξn

i )ũn
i + eUδn

i ,ξn
i Zi0 + eUδn

i ,ξn
i (ũn

i − un
i + 1

3H(ξn
i , ξ

n
i )).

Thus, it follows that∫
Ω

a[eUδn
i ,ξn

i Zi0φn + (Wn − eUδn
i ,ξn

i )ũn
i φn]

=
∫
Ω

a

[
ũn

i hn − eUδn
i ,ξn

i

(
ũn

i − un
i +

1
3
H(ξn

i , ξ
n
i )

)
φn

]
. (3.18)

We estimate each term of (3.18). First of all, by (3.13),
∫
Ω

a eUδn
i ,ξn

i Zi0φn =
∫
(Ω−ξn

i )/δn
i

a(δn
i y + ξn

i )
8

(1 + |y|2)2 · −1 + |y|2
1 + |y|2 φ̂n

i (y) dy

−→ Ĉia(ξ∞i )
∫

R2

8(|y|2 − 1)2

(|y|2 + 1)4
dy =

8π
3
Ĉia(ξ∞i ).

Moreover, the second term of the left-hand side of (3.18) can be estimated as∫
Ω

a(Wn − eUδn
i ,ξn

i )ũn
i φn

=
∫
|x−ξn

i |�p−2
n

√
δn

i

a(Wn − eUδn
i ,ξn

i )ũn
i φn dx

− 1
3

∑
j �=i

G(ξj , ξi)
∫
|x−ξn

j |�p−2
n

√
δn

j

aWnφn dx+O(e−(pn/8)(1−ε))

=
∫
|y|�Cp

−3/2
n log(1/2)(m−1) pn epn/8

[
8a(δn

i y + ξn
i )

(1 + |y|2)2 · 1
pn

·
(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)

·
{
w(y) +

4
3

log δn
|y|2 − 1
|y|2 + 1

+
1
3
H(ξn, ξn)t(y) − 1

3
H(δny + ξn, ξn) +O(δn)

}
φ̂n

i (y)
]
dy

− 1
3

∑
j �=i

G(ξj , ξi)
∫
|y|�Cp

−3/2
n log(1/2)(m−1) pn epn/8

a(δn
j y + ξn

j )
8

(1 + |y|2)2 φ̂
n
j (y) dy +O

(
1
p

)
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=
4
3
Ĉi

log δn
i

pn

∫
|y|�Cp

−3/2
n log(1/2)(m−1) pn epn/8

[
8a(δn

i y + ξn
i )(|y|2 − 1)2

(|y|2 + 1)4

×
(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)]
dy + o(1)

−→ 8π
3
Ĉia(ξ∞i ),

with constants C > 0 and ε ∈ (0, 1). In this chain of equalities, the first equality is due to (3.17),
and the second equality comes from (3.16) and (3.7). Besides, we used (A.2), the logarithmic
growth of U1,0 and w0 (see (2.4)) and

∫
R2

|y|2 − 1
(1 + |y|2)3 dy = 0,

∫
R2

8(|y|2 − 1)2

(|y|2 + 1)4

(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)
dy = −8π,

to obtain the third equality and the last implication.
On the other hand,

∫
Ω
aũn

i hn is bounded by a constant multiple of pn‖hn‖∗, since∣∣∣∣
∫
Ω

aũn
i hn

∣∣∣∣ � C‖hn‖∗
(∫

(Ω−ξn
i )/δn

i

|ũn
i (δny + ξn)| dy

(1 + |y|2)3/2

)
,

and the estimates (3.16) and (A.2) imply that ‖ũn
i ‖L∞ = O(log δn

i ) = O(pn). By (3.16) and
(A.2) again, we see that

ũn
i − un

i + 1
3H(ξn

i , ξ
n
i ) = 1

3 (H(ξn
i , ξ

n
i ) −H(x, ξn

i )) +O(pnδ
n
i )

= O(pn)|x− ξn
i |γ +O(pnδ

n
i ),

for any γ ∈ (0, 1), and so∣∣∣∣
∫
Ω

a eUδn
i ,ξn

i

(
ũn

i − un
i +

1
3
H(ξn

i , ξ
n
i )

)
φn

∣∣∣∣
� C

∫
Ω

[eUδn
i ,ξn

i (x){O(pn)|x− ξn
i |γ +O(pnδ

n
i )}] dx = O((δn

i )γ).

Summing up all of the estimates, we conclude that
16π
3
Ĉia(ξ∞i ) = 0,

or Ĉi = 0, which implies, in particular, that the inner norm ‖φn‖i → 0 as n→ ∞. However,
(3.12) and (3.5) tells us lim infn→∞ ‖φn‖i > 0, so a contradiction arises. The proof is completed.

Lemma 3.3. For p sufficiently large, ξ ∈ Λ and h ∈ C0,α(Ω), a solution for (3.2) satisfies

‖φ‖L∞(Ω) � Cp‖h‖∗,
with C > 0 independent of p.

Proof. As before, we assume the existence of sequences of parameters pn diverging to ∞,
m-tuples of points ξn = (ξn

1 , . . . , ξ
n
m) ∈ Λ, functions hn ∈ C0,α(Ω) and corresponding solutions

φn, cnij satisfying (3.12).
By Lemma 3.2, any solution φ of (3.2) must satisfy

‖φ‖L∞(Ω) � Cp

⎛
⎝‖h‖∗ +

m∑
i=1

2∑
j=1

|cij | · ‖eUδi,ξiZij‖∗
⎞
⎠ � Cp

⎛
⎝‖h‖∗ +

m∑
i=1

2∑
j=1

|cij |
⎞
⎠ .
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Hence, our assumption gives a small positive number ε0 such that

pn

m∑
i=1

2∑
j=1

|cnij | � ε0 > 0. (3.19)

We will show that pn

∑m
i=1

∑2
j=1 |cnij | → 0 as n→ ∞ to obtain a contradiction.

For i = 1, . . . ,m and j = 1, 2, let hn
i be a correction term defined as a solution of

Δah
n
ij + ∇ log a · ∇Zn

ij = 0 in Ω, hn
ij = −Zn

ijon ∂Ω,

where Zn
ij is equal to Zij with ξn ∈ Λ. Through W 2,p-estimation, we can check that

‖hn
ij‖H1,2(Ω) = O((δn

i )1−ε) uniformly in n for any ε > 0. (3.20)

Define then

Z̄n
ij = Zn

ij + hn
ij ,

so that it satisfies

ΔaZ̄
n
ij = ΔZn

ij = −eUδn
i ,ξn

i Zn
ij in Ω, Z̄n

ij = 0 on ∂Ω.

Multiplying aZ̄n
kl (k = 1, . . . ,m and l = 1, 2) on both sides of L(φn) = hn +

∑m
i=1

∑2
j=1 c

n
ij ×

eUδn
i ,ξn

i Zij and integrating, this yields
m∑

i=1

2∑
j=1

(
cnij

∫
Ω

a∇Z̄n
ij · ∇Z̄n

kl

)
+

∫
Ω

ahnZ̄
n
kl =

∫
Ω

aWnφnZ̄
n
kl −

∫
Ω

a e
Uδn

k
,ξn

k φnZ
n
kl. (3.21)

For the first term of the left-hand side of (3.21), the correction term estimation (3.20) shows∫
Ω

a∇Z̄n
ij · ∇Z̄n

il =
∫
Ω

a eUδn
i ,ξn

i Zn
ijZ̄

n
il =

∫
Ω

a eUδn
i ,ξn

i Zn
ijZ

n
il +O((δn

i )1−ε)

= 128
∫
(Ω−ξn

i )/δn
i

a(δn
i y + ξn

i )
yjyl

(1 + |y|2)4 dy +O((δn
i )1−ε)

=
32π
3
a(ξ∞i )δjl +O((δn

i )1−ε) (3.22)

and ∫
Ω

a∇Z̄n
ij · ∇Z̄n

kl = O(δn
i pn log pn) +O((δn

k )1−ε) for i = k, (3.23)

where δij denotes the Kronecker delta and ξn
i → ξ∞i ∈ ∂Ω along a subsequence. Besides, one

can immediately check ∣∣∣∣
∫
Ω

ahnZ̄
n
kl

∣∣∣∣ � C‖hn‖∗.

Next, the right-hand side of (3.21) can be estimated as follows, owing to (3.7):∫
Ω

aWnφnZ̄
n
kl −

∫
Ω

a e
Uδn

k
,ξn

k φnZ
n
kl

=
∫
Ω

a(Wn − e
Uδn

k
,ξn

k )φn(Zn
kl + hn

kl) +
∫
Ω

a e
Uδn

k
,ξn

k hn
klφn

=
∫
|x−ξn

k |�p−2
n

√
δn

k

a(Wn − e
Uδn

k
,ξn

k )φnZ
n
kl +O((δn

k )1−ε)

=
a(ξ∞k )
pn

∫
R2

32yl

(1 + |y|2)3
(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)
φ̂n

k (y) dy +O((δn
k )1−ε).
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Accordingly, (3.21) can be reduced to

32π
3
a(ξ∞k )cnkl + o(1)

m∑
i=1

2∑
j=1

cnij = O

(
‖hn‖∗ +

1
pn

)
,

or equivalently
m∑

i=1

2∑
j=1

|cnij | = O

(
‖hn‖∗ +

1
pn

)
.

This in particular implies that

φ̂n
i −→ C̄i

|y|2 − 1
|y|2 + 1

in Cloc(R2),

for some constant C̄i ∈ R and thus
∫

R2

32yj

(1 + |y|2)3
(
w0(y) − U1,0(y) −

U2
1,0(y)
2

)
φ̂n

i (y) dy −→ 0.

Therefore,
m∑

i=1

2∑
j=1

|cnij | = O(‖hn‖∗) + o

(
1
pn

)
,

which is impossible because of (3.19).

Proof of Proposition 3.1. Step 6 of the proof of [12, Proposition 3.1], based on a well-known
argument which utilizes the Fredholm alternative, can be adapted to our case with some minor
modifications. More precisely, in this case we have

Kξ =

⎧⎨
⎩

m∑
i=1

2∑
j=1

cijZ̄ij : cij ∈ R

⎫⎬
⎭ ,

K⊥
ξ =

{
φ ∈ L2(Ω) :

∫
Ω

a eUδi,ξiZijφ = 0 for i = 1, . . . ,m and j = 1, 2
}

and

Πξφ =
m∑

i=1

2∑
j=1

cijZ̄ij ,

where the coefficients cij are uniquely determined by the system of linear equations

∫
Ω

a eUδi,ξiZij

(
φ−

m∑
k=1

2∑
l=1

cklZ̄kl

)
= 0 for i = 1, . . . ,m and j = 1, 2,

owing to (3.22). Moreover, the Hilbert space K⊥
ξ ∩H1

0 (Ω) is equipped with the inner product

(φ, ψ)H1
0 (Ω) =

∫
Ω

a∇φ · ∇ψ.

We omit the details.
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4. The reduced problem

First, we want to solve the nonlinear problem: find φ ∈W 2,2(Ω) and cij ∈ R which solve⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(φ) = −(R+N(φ)) +
m∑

i=1

2∑
j=1

cij e
Uδi,ξiZij in Ω,

φ = 0 on ∂Ω,∫
Ω

a eUδi,ξiZijφ = 0 for i = 1, . . . ,m and j = 1, 2.

(4.1)

Proposition 4.1. For p large enough and ξ ∈ Λ, there is a unique solution φξ and cij,ξ
for (4.1) with

‖φξ‖L∞(Ω) � C

p3
, ‖φξ‖H1(Ω) � C

p3
and |cij,ξ| � C

p4
. (4.2)

Proof. Proposition 3.1 allows us to apply the contraction mapping principle to find a
solution for the problem (4.1) satisfying (4.2). Since it is a standard procedure, we shall not
present the detailed proof here. See the proof of [12, Lemma 4.1].

Let Ip be the energy functional whose critical points are solution to the problem (1.4), namely

Ip(u) =
1
2

∫
Ω

a(x)|∇u|2 dx− 1
p+ 1

∫
Ω

a(x)|u|p+1 dx for u ∈ H1
0 (Ω).

Using Proposition 3.1, we can introduce the reduced energy

Fp(ξ) = Ip(Uξ + φξ), ξ ∈ Λ, (4.3)

where the subscript ξ in Uξ is used to emphasize the dependence of U on ξ ∈ Λ.

Lemma 4.1. The function Fp : Λ → R is of class C1. Furthermore, if F ′
p(ξ) = 0, then ci(ξ) =

0 for i = 1, 2 and, in particular, Uξ + φξ is a solution of (1.4).

Proof. To obtain Fp ∈ C1(Λ), it suffices to check that ξ �→ φξ is C1. In fact, it follows from
the implicit function theorem with Proposition 3.1 (we refer the reader to [12, pp. 57–58] for
details).

Suppose now that ξ ∈ Λ is a point such that F ′
p(ξ) = 0. Then we have

0 = I ′p(Uξ + φξ)(DUξ +Dφξ)

= −
m∑

i=1

2∑
j=1

cij(ξ)
∫
Ω

a eUδi,ξiZijDUξ +
m∑

i=1

2∑
j=1

cij(ξ)
∫
Ω

aD(eUδi,ξiZij)φξ. (4.4)

To obtain the second equality, we took advantage of the relation
∫
Ω
a eUδi,ξiZijφξ = 0. Also, D

denotes the differentiation with respect to the parameter ξ = (ξ1, . . . , ξm), that is,

D =
(

∂

∂(ξ1)1
,

∂

∂(ξ1)2
, . . . ,

∂

∂(ξm)1
,

∂

∂(ξm)2

)
.

As the first step of estimation for (4.4), we assert

∂(Uξ)i

∂(ξi)j
(x) =

1

γμ
2/(p−1)
i δi

(
Zij(x) − 1

p

∂w0

∂(ξi)j

(
x− ξi
δi

)
− 1
p2

∂w1

∂(ξi)j

(
x− ξi
δi

)
+O

(
δ
(2−q)/q
i

))
,

(4.5)
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for arbitrary q ∈ (1, 2). To see this, we first decompose DUξ = DŨξ +D(Hp)ξ and estimate
each term. Since ∂μ/∂ξj = O(logm p) by definition (2.8) of μ and ‖Uδi,ξi

‖L∞(Ω) = O(p), we
obtain that

∂(Ũξ)i

∂(ξi)j
(x) =

1

γμ
2/(p−1)
i δi

(
Zij(x) − 1

p

∂w0

∂(ξi)j

(
x− ξi
δi

)
− 1
p2

∂w1

∂(ξi)j

(
x− ξi
δi

))
+O(log2m−1 p).

Furthermore, by the elliptic regularity of the equation that (∂/∂(ξi)j)(H
p
i )ξ satisfies, we

obtain ‖D(Hp
i )ξ‖L∞(Ω) = O(p−1δ

(2−2q)/q
i ) for any q ∈ (1, 2). Hence, putting them together,

we derive (4.5).
On the other hand, it can be shown that ‖D(eUδi,ξiZij)‖L∞(Ω) = O(δ−1

i ) by computing
directly. Consequently, (4.4) can be written as, for each k = 1, . . . ,m and l = 1, 2,

0 = −
m∑

i=1

2∑
j=1

cij(ξ)
∫
Ω

a eUδ,ξZijZkl +
m∑

i=1

2∑
j=1

cij(ξ)O
(

1
p

)

= 64a(ξ)ckl(ξ)
∫

R2

|y|2
(1 + |y|2)4 dy +

m∑
i=1

2∑
j=1

cij(ξ)O
(

1
p

)

=
16π
3
a(ξ)ckl(ξ) +

m∑
i=1

2∑
j=1

cij(ξ)O
(

1
p

)
,

which implies ckl(ξ) = 0. This proves the lemma.

Moreover, the following energy expansion holds.

Lemma 4.2. For sufficiently large p, it holds that

Fp(ξ) =
m∑

i=1

4πe
p
a(ξi)

[
1 − 2

log p
p

+
c

p
− 1
p
Ψi(ξ)

]
+O

(
1

p3−ε

)
(4.6)

uniformly for ξ = (ξ1, . . . , ξm) ∈ Λ where

Ψi(ξ) = H(ξi, ξi) +
∑
j �=i

aiajG(ξi, ξj), i = 1, . . . ,m, (4.7)

the constant c is defined as

c := 6 +
1
8π

∫
R2

(
8U1,0(y)

(1 + |y|2)2 − Δw0(y)
)
dy, (4.8)

and ε > 0 arbitrarily small.

Proof. By multiplying with a(Uξ + φξ) on both sides of

Δa(Uξ + φξ) + |Uξ + φξ|p−1(Uξ + φξ) =
m∑

i=1

2∑
j=1

cij e
Uδi,ξiZij in Ω, (4.9)

and applying (4.2), we get

Fp(ξ) =
(

1
2
− 1
p+ 1

) ∫
Ω

a(x)
(|∇Uξ|2 + 2∇Uξ · ∇φξ + |∇φξ|2

)
dx+O

(
1
p4

)
.
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We consider
∫
Ω
a(x)|∇Uξ|2 dx first. In fact, by (2.1), (2.2) and (2.11), we have∫

Ω

a(x)|∇Uξ|2 dx

=
m∑

i=1

∫
Ω

a(x) · ai

γμ
2/(p−1)
i

[
eUδi,ξi

(x) +
1
p
(Δw0)

(
x− ξi
δi

)
+

1
p2

(Δw1)
(
x− ξi
δi

)]
Uξ(x) dx

=
m∑

i=1

∫
|x−ξi|�p−2

a(x) · ai

γμ
2/(p−1)
i

[
eUδi,ξi

(x) +
1
p
(Δw0)

(
x− ξi
δi

)

+
1
p2

(Δw1)
(
x− ξi
δi

)
+O(e−p/2+ε)

]
Uξ(x) dx

=
m∑

i=1

∫
|y|�p−2δ−1

i

a(δiy + ξi)

(γμ2/(p−1)
i )2

[
8

(1 + |y|2)2 +
1
p
(Δw0)(y) +

1
p2

(Δw1)(y) +O(e−p+ε)
]

·
[
p+ U1,0(y) +

1
p
w0(y) +

1
p2
w1(y) +O

(
1

p1−ε

)]
dy

=
m∑

i=1

1

(γμ2/(p−1)
i )2

{∫
|y|�p−2δ−1

i

a(δiy + ξi)
8p

(1 + |y|2)2 dy

+
∫
|y|�p−2δ−1

i

a(δiy + ξi)
(

8U1,0(y)
(1 + |y|2)2 − Δw0(y)

)
dy +O

(
1

p1−ε

)}
,

where ε > 0 is sufficiently small. Furthermore, from the expansion

γ−2 =
e

p2
+

−2e log p+ e

p3
+O

(
1

p4−ε

)
, μ

−4/(p−1)
i = 1 − 4

p
logμi +O

(
1
p2

)
,

and (2.8), it follows that∫
Ω

a(x)|∇Uξ|2 dx

=
m∑

i=1

e

p2
a(ξi)

[
1 +

1
p
− 2 log p

p
+O

(
1

p2−ε

)]
·
[
1 − 4

p
logμi +O

(
1
p2

)]

·
[
8πp+

∫
R2

(
8U1,0(y)

(1 + |y|2)2 − Δw0(y)
)
dy +O

(
1

p1−ε

)]

=
m∑

i=1

8πe
p
a(ξi)

[
1 − 2

log p
p

− 1
p
Ψi(ξ) +

1
p

{
4 +

1
8π

∫
R2

(
8U1,0(y)

(1 + |y|2)2 − Δw0(y)
)
dy

}]

+O

(
1

p3−ε

)
. (4.10)

On the other hand, by virtue of (4.2), we deduce that∫
Ω

a(x)(2∇Uξ · ∇φξ + |∇φξ|2) dx = O

(
1
p4

)
. (4.11)

Consequently, putting (4.10) and (4.11) together, we obtain (4.6).

Now, we look for critical points of the reduced energy (4.3).

Lemma 4.3. Assume either m = 1 and a1 = +1 or m = 2, a1 = +1 and a2 = −1. For
sufficiently large p, the minimum of Fp in Λ is attained by a point in the interior of Λ.
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Proof. We consider the case when m = 2 only, since the case m = 1 is a little bit easier and
can be handled just as in the case m = 2.

Let ξp = (ξp
1 , ξ

p
2) ∈ Λ be a minimizer of Fp in Λ. We will show that it is contained in the

interior of Λ.
Define ξ01 = x̄+ ν(x̄)/p and ξ02 = x̄+ 2(ν(x̄)/p). Then the point ξ0 := (ξ01 , ξ

0
2) ∈ Λ provided

C̃1 < 1 and 2 < C̃2. By utilizing (A.4), we obtain an upper energy estimation:

min
ξ∈Λ

Fp(ξ) � Fp(ξ0) =
8πe
p
a(x̄)

(
1 +

2 log p
p

)
+
α

p2
+O

(
1

p3−ε

)
, (4.12)

where α is a positive constant.
Suppose now that ξp ∈ ∂Λ. Then one of the three alternatives holds:

ξp
i ∈ ∂Bρ(x̄), d(ξp

i , ∂Ω) =
C̃1

p
or

C̃2

p
, or |ξp

1 − ξp
2 | =

1
p log p

,

for some i = 1, 2.
First, if ξp

i ∈ ∂Bρ(x̄), by (A1) we deduce that there exists a positive constant C such that

a(ξp
i ) � a(x̄) + C.

Thus,

min
ξ∈Λ

Fp(ξ) = Fp(ξp) � 8πe
p
a(x̄)

(
1 +

2 log p
p

)
+

4πeC
p

+O

(
1
p2

)
,

but it contradicts (4.12). Note that this argument also shows that ξp → x̄ as p→ ∞. Here, we
used in a crucial way that the interaction between the peaks G(ξ1, ξ2) is positive.

Next, if d(ξp
i , ∂Ω) = C̃j/p (j = 1, 2) for some i = 1, 2, we denote by xp

i ∈ ∂Ω the orthogonal
projection of ξp

i into ∂Ω and by (A2) we can select C0 > 0 such that

a(ξp
i ) � a(xp

i ) + C0
C̃j

p
� a(x̄) + C0

C̃j

p
.

Hence,

min
ξ∈Λ

Fp(ξ) = Fp(ξp) � 8πe
p
a(x̄)

(
1 +

2 log p
p

)
+

1
p2

(β1C̃j − β2 log C̃j − γ),

where β1, β2 and γ are positive constants. This and (4.12) imply again a contradiction if we
choose C̃1 sufficiently small and C̃2 sufficiently large.

Finally, if |ξp
1 − ξp

2 | = 1/p log p, then we have G(ξp
1 , ξ

p
2) � C log log p for some positive

constant C. Therefore,

min
ξ∈Λ

Fp(ξ) = Fp(ξp) � 8πe
p
a(x̄)

(
1 +

2 log p
p

+ C
log log p

p

)
+O

(
1
p2

)
,

and yet it is again impossible in view of (4.12).
This proves that a minimum point ξp of Fp should be contained in the interior of Λ.

Proof of Theorems 1.1 and 1.3. Lemma 4.3 shows that Fp has a minimum point in Λ,
which is stable under C0-perturbations. Therefore, by Lemma 4.1, we have a solution to (1.4)
of the form Uξp + φξp with some ξp = (ξp

1 , . . . , ξ
p
m) ∈ Λp such that ξp

i → x̄ as p→ ∞, given p
is sufficiently large. This proves the existence part in the statement of Theorems 1.1 and 1.3.
The properties (1.5)–(1.7) in Theorem 1.1 and (1.9)–(1.11) in Theorem 1.3 follow from (4.2),
(2.12), (2.11) and (3.7).
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5. The symmetric case and the proof of Theorem 1.5

We will look for a solution of (1.4) as in (2.6) where the concentration points ξ1, . . . , ξm are
aligned on the line L (see (A3)):

ξi = ξi(t) = x̄+
ti
p
ν(x̄) with t = (t1, . . . , tm), 0 < t1 < · · · < tm. (5.1)

We search for solutions in the space He of functions which are even with respect to the
line L (see (A3)). We point out that the approximate solution (2.6) belongs to He when ξi
satisfies (5.1).

A standard argument (see, for example, [7]) proves that if t is a critical point of the reduced
energy F̂p(t) := Fp(ξ(t)) defined as in (4.3), then the function Uξ(t) + φξ(t) ∈ He is a solution
of problem (1.4). Therefore, we are led to compute the expansion of the reduced energy and,
with the aid of (A.4) and (A.1), we obtain that, given ai = (−1)i,

F̂ (t) = m
4πe
p
a(x̄)

[
1 +

2 log p
p

+
c

p

]
+

4πe
p2

Γ(t) + o

(
1
p2

)
,

where the constant c is defined in (4.8) and

Γ(t) :=
m∑

i=1

⎡
⎣(∂νa(x̄) · ti − 4a(x̄) log ti) + 4a(x̄)

∑
j �=i

(−1)i+j+1 log
|ti + tj |
|ti − tj |

⎤
⎦ .

Finally, Theorem 1.5 will follow by the next lemma, where we prove that Γ has a minimum
point which is stable under uniform perturbations.

Lemma 5.1. The set Γ has a minimizer in Λ̂ := {(t1, . . . , tm) : 0 < t1 < · · · < tm}.

Proof. We claim that Γ(t1, . . . , tm) → +∞ if there are i, j ∈ {1, . . . ,m}, i < j such that
either ti → 0 or +∞, or tj − ti → 0.

To show that ti → 0 or +∞ for some i implies Γ(t1, . . . , tm) → ∞, it suffices to prove
m∑

i=1

∑
j �=i

(−1)i+j+1 log
|ti + tj |
|ti − tj | = 2

m−1∑
i=1

m∑
j=i+1

(−1)i+j+1 log
tj + ti
tj − ti

� 0,

since ∂νa(0), a(0) > 0 by our hypothesis. If m− i is even, then we have
m∑

j=i+1

(−1)i+j+1 log
tj + ti
tj − ti

= log
(ti+1 + ti)(ti+2 − ti)
(ti+1 − ti)(ti+2 + ti)

+ · · · + log
(tm−1 + ti)(tm − ti)
(tm−1 − ti)(tm + ti)

,

and each summand in the right-hand side of the above identity should be nonnegative, since
it holds

(tk + ti)(tk+1 − ti)
(tk − ti)(tk+1 + ti)

� 1,

whenever k ∈ {i+ 1, i+ 3, . . . ,m− 1}. If m− i is odd, then
m∑

j=i+1

(−1)i+j+1 log
tj + ti
tj − ti

= log
(ti+1 + ti)(ti+2 − ti)
(ti+1 − ti)(ti+2 + ti)

+ · · · + log
(tm−2 + ti)(tm−1 − ti)
(tm−2 − ti)(tm−1 + ti)

+ log
tm + ti
tm − ti

,

which is nonnegative, too.
Finally, the claim follows arguing exactly as in [7, Proposition 3.1].
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Appendix. Estimates of Green’s functions and Robin’s functions

This appendix lists some interior and boundary estimates of Green’s function and Robin’s
function defined as follows.

Let GD(x, y) be Green’s function associated to −Δ with Dirichlet boundary condition,
namely,

−ΔxGD(x, y) = δy(x) for x ∈ Ω,
GD(x, y) = 0 for x ∈ ∂Ω,

and HD(x, y) be its regular part defined as

HD(x, y) = GD(x, y) − 1
2π

log
1

|x− y| .

Also, denote Green’s function of −Δa with Dirichlet boundary condition as G(x, y), that is,
let G(x, y) be a function satisfying the following equation:

−(Δa)xG(x, y) = 8πδy(x) for x ∈ Ω,
G(x, y) = 0 for x ∈ ∂Ω,

and define

H(x, y) = G(x, y) − 4 log
1

|x− y| .

Then we have the following estimations.

Lemma A.1. Let d0 > 0 be so small that there is a unique point xν ∈ ∂Ω satisfying
d(x, ∂Ω) = |x− xν | for any x ∈ Ω, d(x, ∂Ω) � d0. For such x ∈ Ω, let x∗ = 2xν − x denote
the reflection point of x with respect to ∂Ω. Then

G(·, x) = 4 log
| · −x∗|
| · −x| + o(1), (A.1)

where o(1) → 0 as d(x, ∂Ω) → 0 uniformly in Ω.

Lemma A.2. For any y ∈ Ω, y �→ H(·, y) is a continuous map from Ω into C0,γ(Ω̄),
∀γ ∈ (0, 1) and

‖H(·, y)‖L∞(Ω̄) = O(| log d(y, ∂Ω)|), ‖H(·, y)‖C0,γ(Ω̄) = O

(
1

d(y, ∂Ω)

)
(A.2)

uniformly in Ω. Moreover, we have

H(x, y) = 8πHD(x, y) + ∇ log a(y) · ∇(|x− y|2 log |x− y|) +H1(x, y), (A.3)

where y �→ H1(·, y) is a continuous map from Ω into C1,γ(Ω̄). The map (x, y) �→ H1(x, y) is in
C1(Ω × Ω) and, in particular, x �→ H(x, x) ∈ C1(Ω).

Lemma A.3. Let HR denote the Robin function x→ H(x, x). Then

HR(x) = 4 log(2d(x, ∂Ω)) +O(d(x, ∂Ω)), (A.4)

∇HR(x) = O

(
1

d(x, ∂Ω)

)
(A.5)

uniformly in Ω.
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Proof of Lemma A.1–A.3. Lemma A.1 was proved in [32, Lemma 2.1], while Lemma A.2
was proved in [31, Lemma 2.1] (see also [32, Lemma 2.2] and the paragraph following it) except
the L∞-estimate of H(·, y), which can be obtained from (A.3) and the fact that HD(x, y) =
O(| log d(y, ∂Ω)|). Finally, in considering Lemma A.3, the estimate (A.5) was obtained in
[32, Lemma 2.3], and (A.4) comes from (A.3) since

∇ log a(y) · ∇(|x− y|2 log |x− y|)|y=x = 0, H1(x, x) −→ 0 as d(x, ∂Ω) −→ 0

and

HD(x, x) =
1
2π

log(2d(x, ∂Ω)) +O(d(x, ∂Ω))

(see [4, Subsection 2.1]).
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25. S. I. Pohožaev, ‘Eigenfunctions of the equation Δu + λf(u) = 0’, Soviet Math. Dokl. 6 (1965) 1408–1411.
26. X. Ren and J. Wei, ‘On a two-dimensional elliptic problem with large exponent in nonlinearity’, Trans.

Amer. Math. Soc. 4 (1994) 749–763.
27. X. Ren and J. Wei, ‘Single point condensation and least energy solutions’, Proc. Amer. Math. Soc. 124

(1996) 111–120.
28. O. Rey, ‘The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev

exponent’, J. Funct. Anal. 89 (1990) 1–52.
29. L. Wang and D. Ye, ‘Concentrating solutions for an anisotropic planar elliptic problem with large

exponent’, Preprint, 2011.
30. L. Wei, ‘Changing-sign bubble solutions for an anisotropic sinh-Poisson equation’, Nonlinear Differential

Equations Appl. 18 (2011) 685–706.
31. J. Wei, D. Ye and F. Zhou, ‘Bubbling solutions for an anisotropic Emden–Fowler equation’, Calc. Var.

Partial Differential Equations 28 (2007) 217–247.
32. J. Wei, D. Ye and F. Zhou, ‘Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler
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