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A set of N uncoupled spiking neurons, each with dynamic range Q,  
supply a vast representational space (volume ~QN), (Fig. 1a). 
However, the representation has poor resistance to noise: each state 
is independent, and if it is changed to another, there is no restoring  
dynamics to correct the state. Even in the absence of noise, the states 
persist only for the time constant of single neurons.

Coupling between neurons generally disallows many states, shrink-
ing the representational space. An advantage of coupling is that it can, 
in special cases, produce stable fixed points (attractors) of the network  
dynamics that allow the network to hold a state after inputs are 
removed, for far longer than the single-neuron time constant (Fig. 1a). 
Moreover, if noise is present in the system, it may perturb the system 
off the attractor, but the perturbations are transient and automatically  
corrected as the system rapidly flows back toward the attractor (Fig. 1a).  
Discrete or point attractors, as in Hopfield networks, may be used 
to represent discrete items1. In many cases, the brain must represent 
continuous variables. In these cases, the value of the variable could 
be represented as a point on a continuous manifold of stable fixed 
points, of the same dimensionality D as the variable2–5. This manifold 
is called a low-dimensional continuous attractor if its dimensionality 
is much smaller than the number of neurons in the network (D << N). 
In these ways, attractors enable robust representation and memory, 
albeit at the cost of diminished representational space.

Low-dimensional continuous attractor dynamics have been widely 
hypothesized to underlie the stable tuning curves of population 
codes2,6, motor control3,7, neural integration3,4,8–15 and parametric 
working memory16,17. The predicted signatures of low-dimensional 
continuous attractors in the neural context are systematic differences 
in neural responses along the attractor manifold but conformity and 
stability otherwise3,4,12,15. For example, in a ring of neurons with local 
recurrent excitation and global inhibition along the ring, a local bump 

of activity is a stable state (bump A in Fig. 1a) as well as all its trans-
lations (bump B and other translations, Fig. 1a). Thus, each activity  
bump is one point on the 1D continuous attractor of all possible 
bump locations in the network (Fig. 1a). If points on this attractor 
are identified with the values of some circular variable in the external 
world, then all neural tuning curves for that variable will be identi-
cal, except for systematic differences along one dimension, in the 
preferred angle (translation along the ring). Differences in preferred 
angle are determined by neural placement and connectivity in the 
network: neurons in the span of one activity bump will be co-active, 
and the preferred angles of neurons separated by 90° on the ring will 
be in quadrature. When recurrent connectivity is fixed, these rules 
of co-activation will remain absolutely stable, regardless of how the 
mapping from the attractor states to the external variable might vary 
due to changing associations between the network and the external 
world (for example, rotation of the mapping induced by rotation of 
the world4 or more elaborate changes involving stretching or squeez-
ing of tuning curves15).

In other words, the responses of cells, when plotted against the 
external represented quantity, may change substantially, but pairwise 
relationships between cells should not. Despite these predictions, 
and beautiful empirical results7–11,18,19, definitive validation of the  
low-dimensional continuous attractor hypothesis has been elusive. 
In many cases, partly because of the difficulty of inducing sufficient 
change or perturbation in the neural responses and partly because 
quantitative analyses on simultaneously recorded neural pairs have 
not been conducted, it has been unclear whether the dynamics  
are truly low-dimensional, what the dimension is or where the  
dynamics originates10,18,19.

Mammalian grid cells20, each of which fires at the vertices of a 
regular spatial grid as the animal moves through its environment, 
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Specific evidence of low-dimensional continuous 
attractor dynamics in grid cells
KiJung Yoon1, Michael A Buice1, Caswell Barry2–4, Robin Hayman4, Neil Burgess2,3 & Ila R Fiete1

We examined simultaneously recorded spikes from multiple rat grid cells, to explain mechanisms underlying their activity.  
Among grid cells with similar spatial periods, the population activity was confined to lie close to a two-dimensional (2D) manifold: 
grid cells differed only along two dimensions of their responses and otherwise were nearly identical. Relationships between 
cell pairs were conserved despite extensive deformations of single-neuron responses. Results from novel environments suggest 
such structure is not inherited from hippocampal or external sensory inputs. Across conditions, cell-cell relationships are better 
conserved than responses of single cells. Finally, the system is continually subject to perturbations that, were the 2D manifold not 
attractive, would drive the system to inhabit a different region of state space than observed. These findings have strong implications 
for theories of grid-cell activity and substantiate the general hypothesis that the brain computes using low-dimensional  
continuous attractors.
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have been hypothesized12–15,20–23 to compute ongoing location 
estimates through integration of self-motion cues, based on the 
theoretical argument that their responses constitute a relatively context- 
independent code for spatial displacements. Across different familiar 
environments, the firing field locations in a grid cell change only 
through global phase shifts and rotations20,24, in contrast to what 
occurs in place cells, which change in more elaborate ways, by gains 
or losses and shifts in subsets of their place fields25–29. The notable 
regularity and stability of a grid cell’s response hints that the popula-
tion might be well described by relatively few parameters, a signature 
of an underlying low-dimensional dynamic system.

In contrast, spatially periodic firing in grid cells is neither necessary 
nor sufficient for inferring low-dimensional population dynamics: 
it is theoretically possible for the population dynamics to be low- 
dimensional and periodic without spatially regular firing in individual 
cells, because of poor velocity integration15. Conversely, if the N cells 
in a single population have periodic spatial responses but each exhibits  
independent shifts (relative to the other cells) of its spatial phase 
across environments, the dimensionality of the population response 
would be high, or ~N. Finally, experiments that involve resizing of a 
familiar environment, or exploration in novel environments, reveal 
that spatial responses of grid cells stretch along one or both dimen-
sions30–32, a malleable response that is possibly consistent with high-
dimensional dynamics.

Here we examined the spikes of simultaneously recorded pairs 
of grid cells, from several data sets across a range of experimental 
conditions, including cases where the single-cell responses changed 
considerably and where external inputs do not provide reliable spatial 
cues, to rigorously determine across conditions the dimensionality 
of the population response for each grid-cell ‘network’ or ‘module’ 
(that is, local groups of cells with a common spatial period and ori-
entation; such discrete networks or modules have been predicted to 
exist through modeling12,15,22,33 and subsequently experimentally 
validated30,32), and thus probe for evidence of low-dimensional 

continuous attractor dynamics in the brain. The results reported 
below include all simultaneously recorded cell pairs from these data 
sets, in which both cells of the pair have a common spatial period and 
meet a modified gridness score that assigns similarly high scores to 
equilateral and nonequilaterial triangular patterns of spatial activity 
(Supplementary Figs. 1 and 2 and Online Methods). We relate the 
empirical findings to dynamic models of grid cells, to generate con-
straints on the mechanisms that underlie grid-cell response.

RESULTS
Identical spatial responses up to 2D translation
We examined spikes from neurons recorded simultaneously from the 
same or nearby tetrodes. The activity peaks of a sample pair (Fig. 1b) 
were arranged in the spatially periodic firing patterns characteris-
tic of grid cells. Our definition of the spatial responses of grid cells, 
here and in the rest of this work, is the set of locations of the firing 
peaks. Six parameters are sufficient to characterize any periodic tiling 
in two dimensions, regardless of the shape of the tiles34. Thus, the 
spatial response of an individual cell in a particular environment is 
well described by four parameters for the angles and lengths of two 
primary lattice vectors (Fig. 1c), with two additional parameters that 
specify the 2D spatial phase of the lattice, relative to some reference 
phase or location.

We found that cell pairs from the same or nearby tetrodes had 
extremely similar values for the first four parameters (Fig. 1c; 
223 cell pairs: 24 from ref. 20; 97 from ref. 35; 12 from ref. 30; 90 
from ref. 31). This was the case even though the cells had very dif-
ferent spatial phases (Fig. 1d), that is, even when the cells were 
active in complementary parts of the environment. The relative 
phase between cell pairs, defined as the difference in their spa-
tial phases, seems to be uniformly distributed (n = 223 cell pairs;  
uniform under the two-dimensional paired Kolmogorov-Smirnov 
test, P = 0.2) over the unit cell of the lattice (Fig. 1d; consistent with a  
previous result20).

Figure 1  Spatial grid parameters other than 
phase are identical across cells recorded on the 
same or nearby tetrodes; cell-cell relationships 
are stable over time. (a) State space of N 
independent neurons (shown for three neurons; 
top), each described by a firing rate ri in 
[0,rmax], may lie anywhere in an N-dimensional 
cube of side length rmax. A low-dimensional 
attractor (dark blue) induced by appropriate 
neural coupling. Transient states (gray) are 
unstable and rarely seen. States very close to 
the attractor (light blue), through transient,  
may be observed if perturbations frequently 
drive the system into those states. An example 
ring network (bottom) of N neurons (small 
circles) with 1D continuous attractor dynamics. 
Blue bumps A and B, stable activity patterns. 
Gray, unstable population activity profile.  
(b) Column one: recorded spikes (red dots) of 
two simultaneously recorded cells as a function 
of space (rat trajectory: gray lines). Column 
two: autocorrelograms of the smoothed spatial response (peaks identified by black asterisks). Column three: template lattice (red circles) is fit to all 
the peaks of the autocorrelogram. Parameters of the template (c, inset) include the two primary axis lengths (λ1,λ2) and two angles (θ,ψ). Column four: 
cross-correlogram between the two cells (top), and the corresponding template fit (bottom). (c) Ratio of each lattice parameter across 223 cell pairs  
(for example, θ (cell i)/θ (cell j), where i > j) (median ratio: center line in box plots; interquartile ranges: box; lowest and highest values within 1.5× of  
interquartile range: outer horizontal lines; 95% confidence interval based on 223 randomly chosen pairs not recorded simultaneously: dotted outer  
horizontal lines). (d) Distribution of relative phases (


d ab, black circles; see definitions in Online Methods) between all cell pairs, plotted in a canonical  

unit cell of the grid lattice. (e) Discharge maps (as in b) of the same cell pair, recorded again after an interval of >60 min. (f) Parameter ratios (as in c) 
from this later trial, for the subset of cell pairs from c that were also recorded in this trial (n = 84 cell pairs).
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Cell-cell relationships more stable than single cells
We next examined the stability over time of each cell’s response and 
of cell-cell response relationships. Without any detailed analysis,  
the fact that a clear grid pattern was visible in the responses of indivi
dual neurons over a 20-min recording session means that the indi-
vidual spatial phases, relative to some environmental landmark, 
remained essentially constant over the session; if the phase shifted 
over time, the cell would fire at these different phases, and its spatial 
activity pattern would be washed out. It follows directly that the rela-
tive phase between cells of the same spatial period and orientation 
will also be constant over that interval.

We analyzed responses of grid cells over longer time intervals: we 
recorded cells in an environment, then after an interval in which 

we tested the rat under varying conditions and environments, we 
recorded the cells again in the original environment (Fig. 1e). The 
elapsed time between recordings in the original environment was  
>60 min. We found that cells that had essentially identical values of 
the first four grid parameters in the first measurement (Fig. 1b,c) had 
essentially identical parameter values in the subsequent measurement 
in the original environment (Fig. 1f; 84 cell pairs from refs. 30,31).

Moreover, the relative phases between cell pairs remained essen-
tially constant over this interval (Fig. 2a, 84 cell pairs), consistent with 
continuous attractor dynamics that stabilizes cell-cell relationships. 
However, this stability of relative phase between cells may be attribut-
able to the stability of the phases of individual cells across visits to the 
original environment. To differentiate between the two possibilities, 

Figure 2  Across time in familiar environments, the relative phases 
between cells are more stable than the phases of single cells.  
(a) Difference across time (trials separated by >60 min) in the relative 
phase between cell pairs (∆t ( )


d ab , black × symbols; see definitions 

in Online Methods); red circle indicates uncertainty in estimating 
relative phase differences (error analysis in Online Methods). Histogram 
(normalized by histogram area) of the magnitudes of these relative 
phase differences, with the null distribution (red curve), in which 
phase differences are not significantly different from zero and drawn 
independently from a Gaussian with s.d. equal to the uncertainty in phase 
estimation (bottom). The null distribution of magnitudes is Rayleigh. 
Black curve is the best-fit Rayleigh distribution to the data. (b) Difference 
across time (trials) of the phase of single cells (∆t ( )


f a , black × symbols;  

see definitions in Online Methods; n = 75 distinct cells of the cell  
pairs in a), and the normalized histogram of magnitudes (bottom), as in a.  
Data in a are not significantly different from the null hypothesis, but those 
in b are: P = 0.58 (a) and P < 10−4 (b); F test for whether the data and the null distribution come from a distribution of the same variance. P < 0.001; 
F-test for whether the data in a,b (bottom) come from a distribution of the same variance.

Figure 3  Grid parameter ratios and relative 
phases are stable even when grid parameters are 
rescaled as the environment is resized. (a) Firing 
fields of two simultaneously recorded cells  
in a familiar environment (trials 1 and 5) and  
resized versions of the familiar environments 
(trials 2–4). (b) Spatial cross-correlograms for 
the cell pair (top) and the best-fit template 
lattices (bottom). Black asterisks denote local 
peaks in the cross-correlogram. (c) Each grid 
parameter for cell 1 (top) or cell 2 (bottom) 
normalized by the value from trial 1. The 
parameters are substantially rescaled across 
trials 2–4. (d) The ratio, between cells 1 and 2, 
of each grid parameter, for each trial. The ratios 
are statistically very close to one, despite the 
significant rescaling in each cell, seen in c.  
Error bars (c,d), ±1 s.d. (n = 100 bootstrap 
samples, Online Methods). (e) Histogram of all 
grid parameters for the 11 cells in the resizing 
experiments from trials 2–4 normalized to 
the corresponding value from trial 1 (top). 
Histogram of the ratios of all grid parameter 
values between cells 1 and 2 for all seven cell 
pairs from trials 1–4 (bottom). Kolmogorov-
Smirnov test for whether the two data samples 
come from the same distribution, P < 0.001 
(top, n = 117; bottom, n = 121). F test for 
whether the two data samples come from a 
distribution of the same variance, P < 0.001. 
(f) Relative phases for the 7 cell pairs span the 
unit cell (copies of the same symbol represent different trials for one cell pair; different symbols represent different cell pairs). Gray ‘x’s, relative phase 
differences, computed across all cell pairs and trials. Red circle, uncertainty in the relative phase difference magnitude (Online Methods). The relative 
phase differences are not significantly different from zero (P = 0.6 for the same null hypothesis as in Fig. 2).
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we compared the stability in the spatial 
phase of single cells with the stability of rela-
tive phase between cells. The relative phase 
between cells was more tightly preserved than 
the phase of each cell (Fig. 2b), strongly sug-
gesting a low-dimensional internal dynamics 
that yokes together the responses of differ-
ent cells in the network rather than spatially 
informative external cues.

Cell-cell relationships stable despite grid distortions
Next we tested pairwise relationships between grid cells that undergo 
a nonuniform rescaling of their individual spatial response patterns 
when a familiar enclosure is suddenly resized30 (Fig. 3a,b). This res-
caling constituted a major change in the responses and grid param-
eters of individual cells (Fig. 3c). But despite rescaling, the ratios of 
the first four grid parameters between cell pairs remained fixed very 
close to 1, indicating that these parameters changed in tandem across 
the population (Fig. 3d). This result held for all cell pairs (Fig. 3e, 7 
cell pairs from ref. 30).

The relative phases between cells remained constant (Fig. 3f). Thus 
relative phase was strongly conserved even when the responses of 
single cells, influenced by changing external cues, had changed con-
siderably, again strongly suggesting a 2D state space and simultane-
ously suggesting that internal dynamics rather than external cues are 
responsible for the low-dimensional response.

Cell-cell relationships stable without place cell stability
The preceding results are consistent with a population response that 
is confined to a 2D manifold: given the spatial response of one cell, 

the responses of the others are always predictable, differing from the 
single cell only by a fixed 2D phase shift, which remains invariant 
across conditions. However, it remains possible that, rather than aris-
ing from attractor dynamics generated in the grid-cell network, the 
low-dimensional response of grid cells is externally imposed, by sen-
sory cues from the familiar room, that somehow are flexible enough to 
permit rescaling of individual responses yet rigidly force fixed relative 
phases, or more plausibly, by inputs from the hippocampus.

To address these possibilities, we analyzed responses of grid cells 
from the rats’ first exposures to novel environments. Grid cells had 
been recorded first in a familiar environment, then in a novel envi-
ronment and then again in several subsequent sessions in the novel 
environment as it became gradually more familiar31. In the first expo-
sure to a novel environment, the spatial periods of grid cells expanded 
suddenly and the responses became less regular (Fig. 4a–c; 24 cell 
pairs from ref. 31). As the novel environment became more famil-
iar, notable changes occurred: the responses became more grid-like 
(Fig. 4b) and the grid periods contracted steadily (Fig. 4c). Indeed, 
the four parameters of the spatial grid patterns all changed in the 
novel environment then relaxed back over ~7 d to values observed 
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Figure 4  Spatial patterns of grid cells become 
less stable and expand in novel enclosures, 
but grid parameter ratios between cells 
remain stable. (a) Firing fields of pairs of 
simultaneously recorded cells in a familiar 
environment and novel ones across five 
consecutive trials on one day, and corresponding 
cross-correlograms and best-fit template 
lattices. On different days, the recordings 
involved different cells from the same tetrodes 
in the same area in the rat (Supplementary 
Fig. 4). (b) Development of average modified 
gridness in novel environments (24 cell pairs, 
from ref. 31; means ± s.e.m.). (c) Change, 
across trials and days in the novel environment, 
of the average grid period (mean of the first two 
grid parameters across all cells in a trial:  
means ± s.e.m.; 24 cell pairs total: 1, 6, 
10, 3, 1 and 3 on days 1, 3, 4, 5, 6 and 7, 
respectively; no cells in day 2 passed the 
gridness criterion). (d) Grid parameters of one 
typical cell pair from each day (all cell pairs 
shown in Supplementary Fig. 4), normalized 
by the corresponding parameter values from 
the first trial (familiar environment) of the 
day. Clusters of four narrow bars represent 
the four parameters, in the same ordering and 
color scheme as in Figures 1 and 3. (e) Grid 
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and days. Almost all these ratios are statistically 
indistinguishable from 1 (for all cell pairs, see 
Supplementary Figs. 4 and 5). Error bars (d,e), 
±1 s.d. (Online Methods).
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in familiar environments (Fig. 4d), while the environmental sensory 
input remained unchanged. This suggests that the response of grid 
cells and their relationships are not determined, and by extension, not 
stabilized, by the environmental sensory input during this contraction 
period. With this in mind, we next examined the relationships of grid 
parameters between cells. The ratios of each grid parameter between 
cell pairs remained close to unity in the novel environment, as in 
familiar environments, starting with the very first exposure in the 
novel environment (Fig. 4e) and continuing throughout the period of 
contraction of the grid period. The relative phase between cells again 
remained essentially unchanged between the familiar environment 
and the very first exposure to a novel environment (Fig. 5; 24 cell pairs 
from ref. 31) despite the large changes in the spatial activity patterns of 
neurons and thus in their absolute phases. The relative phase between 
cells continued to remain fixed as their spatial activity patterns shrank 
over repeated exposures to the novel environment (Fig. 5).

Because the rat in a novel space has not yet learned to associate 
external sensory cues with location36,37 and because the external cues 
remained fixed as the spatial activity patterns of grid cells shrank over 
several days, it follows that the relationship between grid cells and 
the external world is less stable than is the relationship between grids 
cells. It is therefore unlikely that external sensory cues are stabilizing 
cell-cell relationships across novel and familiar environments.

In contrast to responses of grid cells in the novel environment, simul-
taneously recorded place cells underwent complete remapping31, defined 
as the loss of some of their firing fields and gain of others, with little pres-
ervation of spatial correlations between place-cell firing fields. Similar 
to the grid cells, place cell firing fields also expanded, then shrank, but 
to a much lesser extent than the grid cells, and for a shorter time. The 
remapped responses were not immediately stable, taking hours to stabi-
lize31 (see also refs. 25,38–40 for similar results on place-cell remapping). 
Thus, hippocampal representations, and by extension place cell–grid 
cell relationships, are in flux whereas grid cell–grid cell relationships 
remain stable, suggesting that hippocampal input is not stabilizing rela-
tive phases between grid cells in the transition from familiar to novel 
environments and in the novel environment. Taken together, these find-
ings suggest that the hippocampus cannot be generating and feeding 
forward the 2D stable responses observed in grid cells.

The above result is not inconsistent with the finding that hippocampal 
inputs might be required for activity of grid cells41. A decrease in excita-
tory drive from the hippocampus and the resulting diminished activa-
tion of grid cells can, if the recurrent connections between grid cells are 
dominantly inhibitory42,43, result in a failure of the recurrent connec-
tions to induce population patterning and low-dimensional dynamics, 
as shown in the models of refs. 15,41. Hippocampal inputs might also 
correct errors in path integration by selecting the appropriate grid-cell 
population state for a given location from a set of stable population  
patterns23,44,45, thus enabling accurately patterned spatial responses 
over a trajectory15. In either of these cases, the two-dimensionality of 
the grid-cell population response is intrinsic to the entorhinal cortex, 
but abolishing hippocampal drive may abolish spatial patterning.

We conclude, first, that the response of the grid-cell population is 
restricted to the same 2D manifold at the first exposure to novel envi-
ronments as in familiar environments and second, that this restriction 
to the 2D manifold cannot easily be ascribed to external sensory cues 
or hippocampal inputs because relative phases and parameter ratios 
are stable even when these inputs are not.

Smoothness (continuity) of 2D manifold
We next more closely examined the 2D manifold of stable grid 
parameters and relative phases to determine whether it exhibits a 
granular or ‘lumpy’ structure, in which cell-cell stability is dependent  
on cell-cell similarity. A scenario in which cells with similar spatial 
phases conserved their relationships with each other more strongly, 
would be consistent with distinct subnetworks of cells with similar  
spatial-response patterns stabilizing each other and not others  
with more dissimilar responses. Thus, we reexamined the results 
from familiar, rescaled and novel environments, plotting parameter 
ratios as a function of relative phase between cell pairs. Parameter 
ratios were consistently close to 1, independent of the distance in 
phase between cells (Fig. 6a). The stability in cell-cell relationships 
across rescaled and novel enclosure trials, as measured by stability of 
parameter ratios (Fig. 6b) and stability of relative phases (Fig. 6c),  
did not vary with relative phase magnitude between cell pairs. 
Therefore, up to experimental resolution, the 2D manifold of states 
was continuous.
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Stability (attractiveness) of the 2D manifold of states
We established that the response of the grid-cell population is local-
ized to the neighborhood of a 2D manifold, over extended periods of 
time and across varying external conditions that induce considerable 
changes in responses of grid cells. This localization is very likely due 
to internal recurrent dynamics, not a low-dimensional external input. 
What can we say about the dynamical stability of the 2D manifold?

Real-world dynamic systems are localized to their stable or attrac-
tive states. They are seldom (with vanishing probability) found at or 
near unstable fixed points, precisely because such points are unstable 

and the smallest perturbation will drive the system away. Conversely, 
the dimensionality of state space occupied by the system is indica-
tive of the dimensionality of the attractive states of the system. If a 
low-dimensional manifold is stable but is part of a higher-dimen-
sional manifold of stable fixed points (Fig. 7a), then high-dimen-
sional noise, however small, will cause the system to random-walk 
through the larger manifold46. The system will consequently be 
found to inhabit any of the states across all dimensions of the stable 
higher-dimensional manifold. Grid cells are likely subject to high-
dimensional internal noise: for example, stochastic vesicle release 
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Figure 6  Stability of cell-cell relationships is independent of distance in spatial phase. (a) Parameter similarity between cell pairs (defined as the 
square-root of the squared deviation of parameter ratios around the value 1, averaged over all parameters for the cell pair), plotted as a function of 
the pair’s relative phase (223 cell pairs from Fig. 1c,d). Each dot represents one trial from one cell pair. Black, linear regression; ρ, Spearman’s rank 
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in synapses47 causes independent perturbations in every postsyn-
aptic neuron (noise dimension ~N, where N is the number of neu-
rons). We analyzed spiking variability as a source of noise in grid 
cells (Supplementary Fig. 3). The fact that the grid-cell population 
nevertheless primarily occupied the neighborhood of a 2D manifold 
of states, in which cell-cell relationships are tightly conserved, sug-
gests that the 2D manifold is attractive (Fig. 7b) and that locally, 
the attractive manifold has a dimension neither greater than nor  
smaller than 2.

In addition to the deduction above, that the grid-cell system is 
subject to perturbations off the attractor through internal stochastic  
dynamics, we found evidence that external perturbations, in the 
form of velocity inputs, drive the grid-cell system away from the 
2D manifold. To see this, we selected all the spikes emitted by a cell 
during parts of the trajectory when the rat was headed ‘northward’  
(north ± 45°), to form a north spatial activity map. We then computed 
the relative phase between a cell pair only for the northward maps of 
each pair. The difference between this relative phase and the relative 
phase computed over the full trajectory was the perturbation off the 
attractor that northward motion induced in the state. All grid cells in 
our analysis had negligible directional tuning (Supplementary Fig. 2);  
thus changes in relative phase cannot be attributed to a direct velocity 
modulation. We performed the same analysis for the south, east and 
west conditions. The resulting directional shifts in relative phase were 
significant (north, P = 0.0004; west, P = 0.0444; south, P = 0.0003; 
and east, P = 0.0201 under the null hypothesis of no shift in relative 
phase; see Online Methods for bootstrapped P values), compared to 
controls computed from similarly sized trajectory fragments unsorted 
by heading direction (Fig. 7c,d: data from the same cells in Fig. 1c,d). 
The shifts in relative phase between cells were consistent with the 
respective heading directions (Fig. 7c), suggesting that these shifts 
were indeed due to directional velocity input to the system. Thus, 
ongoing movements push the network away from the attractor by 
causing small deformations of the population pattern, in the form 
of a slight stretching of the population pattern along the direction 
of motion.

Finally, we examined the dynamics of perturbation by sliding the 
spike-selection windows in time relative to the centers of, for example, 
the northward trajectory fragments (Online Methods). The shift in 
relative phase decayed as the window was slid by a few seconds, and 
the decay time constant was very similar to the autocorrelation time 
for directional motion in the rat trajectories (Fig. 7e). Thus, the off-
manifold (perturbed) components of the network state relaxed back 
to the 2D manifold on a time scale similar to or faster than the few-
second time scale on which the perturbing input changed (Fig. 7e–h). 
The quick return of the system back to the 2D manifold of states after 
perturbation from the external velocity input is direct evidence that 
the 2D manifold is attractive.

DISCUSSION
We have shown that, over short durations and in familiar enclosures, 
the spatial responses of individual grid cells are well-characterized 
by a low-dimensional set of six parameters, with essentially the only 
difference between cells in the same network given by a 2D phase 
representing a rigid translation of the same basic response pattern. 
Over time and across environmental manipulations, the responses 
of individual grid cells change, and thus the parameters that describe 
their responses vary. Therefore, the responses of an individual grid 
cell are not described by a single set of six parameters.

Crucially, however, the dimensionality of the population response 
remains invariant. The responses of different grid cells are yoked 

tightly together: over time or with experimental manipulation, 
when the spatial response patterns of the individual neurons change 
considerably, not only through rigid rotations but anisotropic and 
isotropic deformations of the grid pattern through stretching, the 
grid parameter ratios and relative phases between simultaneously 
recorded neurons in each network or module remained essentially 
constant (cells with distinct grid periods, that is, cells from differ-
ent networks, could never have in common a stable spatial phase 
relationship even if all single-neuron grid parameters were perfectly 
stable, because the relative spatial phase between two perfectly peri-
odic patterns of different frequency will necessarily precess relative 
to each other across cycles). In familiar enclosures, where stability  
may be attributed to external cues, we found that the cell-cell relation
ships are more stable than single-neuron responses, which argues 
against the external-cue hypothesis. Cell-cell relationships persist 
with the same fidelity immediately upon the rat entering a novel 
environment, even though landmark cues suddenly change and 
remain unassociated with specific locations, but responses of place 
cells continue to change, arguing strongly for stabilizing constraints 
in the grid-cell system.

Thus, population activity is confined to the immediate vicinity of a 
2D manifold, across time and across conditions in different environ-
ments. Confinement of the system to a 2D manifold despite stochastic 
internal dynamics and external velocity-driven perturbations off the 
manifold suggest that the 2D manifold of states is an attractor.

Relationship to past work and implications for models
Data in ref. 24 (not included in our present analysis) afforded a 
glimpse that the responses of different grid cells are yoked together: 
the spatial phases of ~5–9 simultaneously recorded grid cells shifted 
when the rat had been moved from one environment to another, and 
the shifts appeared to be of a similar magnitude and direction across 
cells. However, both environments were familiar, so that hippocampal 
representations were stable (albeit different), and external cues could 
be used to provide locational information. Thus, without a compara-
tive analysis of variability of phase within and between cells in a single 
environment, or an experiment involving destabilized hippocampal 
representations and external cues, the qualitatively different possibil-
ity of feed-forward stabilization by hippocampal inputs or external 
cues cannot be ruled out.

Intracellular recordings in head-fixed mice navigating through vir-
tual environments48,49 show that membrane potentials of grid cells 
exhibit a substantial slow depolarizing ramp at the firing field loca-
tions. This is consistent with excitatory (or disinhibitory) network 
drive that depolarizes neurons for the duration of a field. However, 
given that the intracellular recordings cannot distinguish between 
feed-forward and feed-back network inputs, and do not examine the 
structure and dimensionality of population activity, they do not pro-
vide specific evidence for continuous attractor models.

We have shown through population analysis that each grid-cell net-
work is localized to a 2D manifold and that the manifold is attractive, 
which constitutes specific and direct evidence in support of continu-
ous attractor network models of grid-cell activity12–15,22.

To be consistent with our findings, models of populations of grid 
cells need to include recurrent interactions that constrain the sys-
tem to lie on a 2D continuous attractor. The translation-invariant 
recurrent connectivity patterns described in refs. 2,4,12,14,15,22 are 
examples of such an interaction. Mechanisms for generating stretched 
or squeezed grid-cell tuning curves, as in rescaled familiar environ-
ments and novel environments, while maintaining low-dimensional 
continuous attractor dynamics in the population are described in  
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ref. 15. Within the constraint of 2D continuous attractor dynamics, 
however, models of grid-cell networks may be quite different: some 
consist of a single recurrent network with a 2D attractor, in which the 
grid cells integrate velocity inputs12,14,15. In others, the 2D dynam-
ics of grid cells arises from the feed-forward summation of inputs, 
from two 1D ring attractors, each of which integrates one component 
of rat velocity50. In future work, it will be interesting to distinguish 
experimentally between such alternatives.

To conclude, our analysis contributes strong new evidence  
(see also refs. 10,11,19) supporting the idea that the brain uses low-
dimensional continuous attractor dynamics in its integration and 
memory functions.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Binning and rate maps. Cell-sorted spikes of putative grid cells from foraging 
rats were assigned to 1 cm × 1 cm spatial bins derived from position samples 
taken at 50 Hz. The number of spikes assigned to each bin was divided by the 
rat’s total dwell time in that bin, to remove the effects of inhomogeneous spatial 
exploration on estimating the probability of spiking at each location. This defined 
the rate map. Smoothed rate maps were generated by convolving the rate maps 
with a 2D Gaussian kernel (σ = 4 bins).

Autocorrelations and cross-correlations. To characterize the spatial response 
patterns of grid cells, we computed spatial autocorrelations from the smoothed 
rate maps of individual cells. To compare pairs of cells, we computed spatial 
cross-correlations from the smoothed rate maps of simultaneously recorded cell 
pairs. If the smoothed rate maps are R1 and R2, both spatial correlations are 
generated as follows:
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where γ (u,v) is the correlation coefficient at the bin (u,v), Γ is region of spatial 
overlap between R1 and R2, and Ri,Γ is the mean of Ri(x, y) within the region Γ. 
For autocorrelations, R1 replaces R2.

Modified gridness score. The standard gridness score35,51 penalizes any regu-
lar grid pattern if it is not of an equilateral triangular pattern (Supplementary  
Fig. 1a,b). A novel scoring procedure was proposed52, with the aim of assigning 
high scores despite elliptical distortions in a hexagonal grid. However, it was 
limited by the fact that either the major or minor axis of the circumscribed ellipse 
was always assumed to pass through one of six nearest peaks. We used a modified 
gridness score that more generally allows both isotropic (equilateral triangle) 
and anisotropic (squeezed or stretched) grids to get a high score. For maximal 
sample size, and to test in principle the dimensionality of the grid-cell response, 
it is important to include cells with anisotropic triangular grids: it is critical to 
determine whether cells with deformed spatial activity patterns still lie on a low-
dimensional manifold.

The modified gridness score is defined on the autocorrelogram of a cell. We first 
apply a transform on the correlogram that maps the central lattice cell (given by 
the six peaks nearest the center) into a regular hexagon (Supplementary Fig. 1c).  
This transform is determined by mapping the ellipse that circumscribes the cen-
tral cell into a circle via a combined rotation, rescaling, and rotation transforma-
tion. If the number of nearest peaks (defined as the six or fewer peaks whose 
distance from the origin is less than two times the shortest distance from the 
origin to a neighboring peak) is less than or equal to four, the transformation 
is not applied.

Given the transformed autocorrelogram, we defined an annular region with 
inner radius Ri and outer radius Ro. We rotated the autocorrelation map in steps 
of 6° and computed the Pearson correlation between the rotated map and the 
original map with each confined to the annular region. The gridness for a given 
annular region is defined by the minimum difference between crests and troughs 
in rotated correlations:

Gridness( , ) min{ ( ), ( )} max{ ( ),, , ,R Ri o i o i o i o i= ° ° − °r r r r60 120 30 ,, ,( ), ( )}o i o90 150° °r

where ρi,o(φ) is the correlation value when one map is rotated by angle φ relative 
to another over the annular region defined by Ri, Ro.

We did this for various values of Ri and Ro, letting Ri change from 0.5r to r and 
Ro change from Ri + 1 cm to 1.5r (or to the maximum allowed value based on the 
autocorrelogram), each independently and in steps of 1 cm. r is the mean distance 
to the nearest six peaks from the center in the transformed autocorrelogram. The 
modified gridness of the cell is then defined as the maximum gridness score over 
these various annular regions.

Our results were not qualitatively changed if we used the former gridness scor-
ing technique52; they also did not qualitatively change if we used our technique 
with a higher threshold (threshold of 0.5).

Cell selection. In this paper, we analyzed data sets from four different 
sources20,30,31,35 (data20,35 available at http://www.ntnu.no/cbm/gridcell).  
A modified gridness score was computed for each grid cell, and cells with a 
gridness score less than zero were rejected (Supplementary Fig. 2). (When we 
restricted our cell sample based on the gridness score more commonly used 
in the past, the sample become smaller but the qualitative results remained 
unchanged. Indeed, because the uncertainty in grid parameter estimation drops 
for cleaner spatial activity patterns, the cell-cell relationships and ratios become  
slightly tighter.)

For pairwise analyses, we used all possible cell pairs that were simultaneously 
recorded in the same individual rat and had a common grid period whose maxi-
mum difference between cells was smaller than 30% in the familiar enclosure 
(provided both members were above threshold on the modified gridness score). 
Cells above threshold that had no simultaneously recorded cells to pair with that 
also met the threshold for cell-cell comparisons, were also rejected from further 
analysis. Data from 223 cell pairs are shown in Figure 1c,d, from many experi-
ments (24 from ref. 20; 97 from ref. 35; 12 from ref. 30; 90 from ref. 31). Data 
from 84 cell pairs (75 cells) are shown in Figures 1f and 2a,b, from both resizing30 
and novel enclosure experiments31, recorded in both trials 1 and 5. Data from the 
same cells in Figure 1c are shown in Figure 7c–h. Note that all grid cells from 
all data sets that met our gridness criterion happened to have extremely weak 
directional sensitivity (Watson U2 score < 10, by the scoring method of refs. 35,52; 
Supplementary Fig. 2). In Figures 3–5, cell pairs that have lower gridness than 
the fixed threshold in both familiar enclosures or in more than two intermediate 
trials were discarded, which results in 7 cell pairs in Figure 3 and 24 cell pairs 
in Figures 4 and 5.

Template matching algorithm to estimate grid parameters. We identified local 
maxima in the autocorrelogram and noted the coordinates and heights of the 
peaks. The local maxima whose heights were lower than 1% of the height of the 
global maximum were not considered as ‘local peaks’. We then generated a 2D 
template lattice. Any 2D periodic lattice centered at the origin is fully specified by 
the magnitudes (λ1,λ2) and orientations (ψ1, ψ2) = (ψ, θ − ψ) of two basis vectors 
(Fig. 1c). The angles are measured from the x axis. The template lattice was gener-
ated by populating the explored spatial environment by vertices whose locations 
are determined by the basis vectors and their translations. The lattice parameters 
were determined by finding values that minimize a cost function that quantifies 
the fit between the template and the data. The cost function is given by the sum of 
the squared distances from every data peak to the nearest vertex in the template 
lattice, weighted by the autocorrelation amplitude at that data peak:

C w p vi
i

n

i i= −
=
∑

1
2

where pi is the (x, y) location of the data peak, vi is the vector for the point in the 
lattice nearest to the ith data peak, wi is the correlation coefficient at pi, and n is 
the total number of peaks in the autocorrelogram.

The central peak of a cross-correlogram is typically not at the origin but shifted 
by some displacement vector 


d  from the origin. Thus, two additional param-

eters 

d d dx y= ( , ) were estimated simultaneously with (λ1,λ2) and (ψ1, ψ2) by 

minimizing the same cost function to find the best-fit template lattice of the 
cross-correlogram.

Relative phase, relative phase difference and phase magnitude. Let 

f a  repre-

sent the phase of cell α, where the component fa
i  is the phase along the ith lattice 

basis vector. The relative phase between cells α and β is then

  
d f fab a b≡ −( ) mod1

where ‘mod1’ is understood to apply to each component. The relative phase between 
a pair of cells is closely related to the shift 


d  in the peak of their spatial cross-

correlogram. If the two cells have precisely the same lattice parameters,  
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then 

d will equal the relative shift of the two cells’ grid patterns. The oblique projec-

tion of 

d  onto the two primary lattice vectors 


e1 and 


e2 produces the components 

( , )d dproj proj
1 2 . When the components are normalized by λ1 and λ2, respectively, 

and considered modulo 1, we get the relative phase:

( , ) ( , ) mod

( / , / ) mod

d d f f f f

l l

ab ab a b a b
1 2 1 1 2 2

1 1 2 2

1= − −

= d dproj proj 11

If the relative phase between the same two cells is measured in two different 
conditions (such as in distinct trials), we can define the relative phase difference 
as the difference in 


d ab  between the two conditions. We will denote this as 

∆C ( )


d ab , where C labels the condition. Relative phase differences are equivalent 
modulo 1 and representing them on the unit lattice cell with components in the 
interval [0,1) has the consequence that values close to zero will appear in the four 
corners of the unit cell (Supplementary Fig. 6a,b). To avoid this and map values 
close to zero together, we remapped the unit lattice cell to the equivalent unit cell 
with components in the interval [−0.5,0.5). Thus, the relative phase difference at 
distinct times t1,t2 is given by:

∆t t tf

f x
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where 


d d dab ab ab
t t1 1 2 1= ( , )  and 


d d dab ab ab
t t2 1 2 2= ( , )  are relative phases between 

cells α, β at time t1 and t2. The function f x( )


 maps (x1, x2) within the interval 
[0,1) into [−0.5,0.5) by subtracting 0.5 from each component, if that component 
is greater than or equal to 0.5 (Supplementary Fig. 6c).

For relative phase, we took the relative ‘phase magnitude’ to be of the 
form || || ( ) ( ) ,


d d d d dab ab ab ab ab= + +1

2
2

2
1 2 , and similarly for relative phase 

difference magnitudes.

Error analysis. The error bars ( )ε  in Figures 3c,d and 4d,e for the ratio of two 
uncertain quantities λ1/λ2 were given by the standard method of error propa-
gation given a covariance matrix Σ for the uncertainties in λ1 and λ2. Σ was 
estimated via bootstrap resampling: given an original spike (discharge) map of 
M total spike locations, we created 100 new spike maps of M total spikes each, 
by picking spike locations from the original map one at a time, at random, and 
with replacement. Next, we used these spike maps to generate rate maps using 
the same procedure as for the original, with the original trajectory data (that 
is, with a normalization given by the same visitation frequency as the original 
spike map) and estimate grid parameters from the spatial autocorrelogram with 
the template matching algorithm. This procedure generated 100 samples of the 
grid parameters, from which we computed the covariance matrix as an estimate  
for Σ. The error for the ratio λ1/λ2 is given by:

l
l

l
l

l
l l l l l

1

2

1

2

1

2

11

1
2

22

2
2

12

1 2
2± = ± + −ε

Σ Σ Σ

The radius (r) of the red circles in Figures 2a,b, 3f and 5, signifies the measure-
ment error of the differences across trials, in phase per cell (Fig. 2b) or in relative 
phase per cell pair (Figs. 2a, 3f and 5). This measurement error is estimated by 
applying the same bootstrapping technique to every cell (pair), computing now 
the (relative) phase difference as defined above for each bootstrap sample, and 
then subtracting the mean of sampled (relative) phase differences for each cell 
(pair). The error in (relative) phase difference across (pairs of) cells is given by 
collapsing all the bootstrap samples of zero-mean (relative) phase differences 
and fitting a 2D Gaussian with a multiple of the identity matrix as a covariance 
to those samples (by expectation-maximization algorithm). The radius in the 
figures is the square root of the estimated covariance.

Analysis of velocity-driven perturbation. We defined cardinal direction labels 
as north (45°–135°), west (135°–225°), south (225°–315°) or east (315°–45°). 
Each time point t in the rat’s trajectory was labeled by the rat’s velocity at that 

time (given by the vector difference quotient between the position at t + ∆t and t). 
Spikes that occurred at time t were labeled by the trajectory direction label at that 
time. This produced four sets of trajectories and for each cell, four corresponding 
sets of spike maps, labeled by north, south, east and west. For each direction, we 
generated rate maps and relative phases (as we did earlier for the full-trajectory 
and full-spike maps). For each cell pair, we thus obtained four ‘direction-labeled 
relative phases’, given by 

  
d f fab a b
dir dir dir= −( ), where dir ∈ {north, south, east, 

west} and α,β refer to the cells. We denoted the relative phase for the full spike 
maps, obtained earlier, as ( )


d ab
full . The ‘direction-labeled relative phase differences’ 

for each cell pair were defined as the differences between the direction-labeled 
relative phase and the full relative phase (that is, ∆dir dir full( )

  
d d dab ab ab= − ). The 

mean value of the direction-labeled relative phase difference, with the average 
taken over all simultaneously recorded cell pairs, is shown in Figure 7c. It is 
written as 〈 〉∆dir ( )


d ab

ab .
To assess whether the shifts in relative phase as a function of motion direction 

were meaningful, we created a null hypothesis distribution by segmenting the 
full trajectory into continuous pieces of a length consistent with the lengths of 
the continuous pieces generated in the direction-labeled trajectory segmenta-
tion described above (the fragment length was set equal to the correlation time 
of the rat’s heading direction; a representative value of the heading direction 
correlation time across experiments is approximately 0.65 s, and we chose 1.6 s  
to provide a window of at least two time constants). However, the segmenta-
tion did not correlate with movement along a specific direction. The segments 
resulting from this process were divided, randomly, into four sets of equal 
size. We considered one such set of directionally mixed or random segments, 
and labeled it ‘R’, in contrast to the ‘north, south, east and west’ labels of the 
directional trajectory segments. The relative phase difference for this one set of 
directionally mixed trajectory segments was denoted ∆R R full( )

  
d d dab ab ab= − .  

Averaging this relative phase difference for one set of trajectory segments, across 
all simultaneously recorded cell pairs, gives one sample of 〈 〉∆R( )


d ab

ab , which 
can be seen as one gray vector in Figure 7c. Repeating this procedure 400 times 
produced the 400 different gray vectors in Figure 7c. The lengths of these vectors 
represent the expected magnitude of deviation from the full phase simply due 
to subsampling errors from subdividing the full trajectory into four sets, inde-
pendent of directional effects. Thus, these vectors provide the null hypothesis for 
no directional motion effects on relative phase. We approximated the sampled 
distribution of vectors 〈 〉∆R( )


d ab

ab by a symmetric 2D Gaussian with s.d. σ2. 
Using this distribution, the P value of the mean direction-labeled relative phase 
differences, l dir= 〈 〉∆ ( )


d ab

ab , is given by:

p r dr
l

= −
∞

∫ exp( )2

2

22s

In Figure 7d, we tested the opponency of shifts in relative phase, for opposite move-
ment directions, by computing the magnitude of the difference between opposing 
mean labeled relative phase differences, || ( ) ( ) ||〈 〉 − 〈 〉∆ ∆North South

 
d dab

ab
ab

ab  
and || ( ) ( ) ||〈 〉 − 〈 〉∆ ∆West East

 
d dab

ab
ab

ab . The magnitude of opponency 
expected under the null hypothesis is given by the expected magnitude of 
the differences between the gray bars in Figure 7c, that is, by averaging 
|| ( ) ( ) ||〈 〉 − 〈 〉∆ ∆R

i
R

j 
d dab

ab
ab

ab , where i and j index values of 〈 〉∆R( )


d ab
ab 

from the 400 samples shown in Figure 7c. This gives the height of the “random” 
bar in Figure 7d. The fraction of samples with || ( ) ( ) ||〈 〉 − 〈 〉∆ ∆R

i
R

j 
d dab

ab
ab

ab  

that is larger in size than || ( ) ( ) ||〈 〉 − 〈 〉∆ ∆North South
 

d dab
ab

ab
ab  gives the  

P value that the direction-labeled relative phase differences can be accounted for 
by the null hypothesis.

Analysis of relaxation from the perturbation. We tracked the mean shifts 
in relative phase for each cardinal direction as a function of time to examine 
the dynamics of perturbation off the attractor. First, we used the northward  
direction–labeled trajectory fragments to define a corresponding set of time win-
dows to select spikes for analyzing relative phase along that movement direction. 
Next, we slid the same set of time windows forward, so that instead of being 
centered in time at the northward fragments, they were centered 1 s after the 
center (in time) of each northward fragment, and so on, in steps of 1 s. We did the 
same in the opposite direction, sliding the windows back. For each position of the 
windows, we computed the relative phase for spikes obtained from those windows 
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and subtracted from it relative phase obtained from the full trajectory. For each 
time shift, we averaged the result across all 223 cell pairs in our data set.

Analysis of stochastic dynamics. To investigate the variance of spiking in grid 
cells, we computed the distribution of the interspike interval using firing times 
{τi} that were rescaled from the original firing times {ti} via t li

ti t dt= ∫0 ( ) , where 
λ(t) is the time varying firing rate of the cell. λ(t) was approximated by sliding a 
rectangular window function along the spike train. The coefficient of variation in 

the left part of Supplementary Figure 3 was derived from the rescaled interspike 
interval with ∆t = 0.5 s. The coefficient of variation as a function of window size 
for four representative cells is shown on the right in Supplementary Figure 3.

51.	Langston, R.F. et al. Development of the spatial representation system in the rat. 
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