
Journal of Combinatorial Theory, Series A 120 (2013) 1087–1115
Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

Zigzag strip bundles and crystals

Jeong-Ah Kim a,1, Dong-Uy Shin b,2

a Department of Mathematics, University of Seoul, Seoul, 130-743, Republic of Korea
b Department of Mathematics Education, Hanyang University, Seoul 133-791, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2012

Keywords:
Zigzag strip bundles
Nakajima monomials
Kashiwara embeddings
Crystals

We introduce new combinatorial models, called zigzag strip bundles,
over quantum affine algebras Uq(B(1)

n ), Uq(D(1)
n ) and Uq(D(2)

n+1),

and show that the sets of all zigzag strip bundles for Uq(B(1)
n ),

Uq(D(1)
n ) and Uq(D(2)

n+1) realize the crystal bases B(∞) of U−
q (B(1)

n ),

U−
q (D(1)

n ) and U−
q (D(2)

n+1), respectively. Further, we discuss the
connection between zigzag strip bundle realization, Nakajima
monomial realization, and polyhedral realization of the crystal
B(∞).
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0. Introduction

Since Kashiwara introduced the crystal basis theory in [11,12], it has played an important role in
answering problems in many areas of mathematics and mathematical physics. In particular, crystal
basis theory is a powerful combinatorial tool to investigate the structures of integrable modules over
quantum groups and quantum groups themselves. Hence one of the most important problems in
the crystal basis theory is to realize crystal bases explicitly using several combinatorial objects. In
many articles, one can find several kinds of realizations of crystal bases of integrable highest weight
modules over quantum groups (for example, [2,3,5,7,8,14–16,23–25]).

For the crystal bases B(∞) of the negative parts U−
q (g) of quantum groups Uq(g), in [4], Kang,

Kashiwara and Misra gave the path realizations of the crystals B(∞) for quantum affine algebras using
the perfect crystal theory developed in [5,6].

In [13], Kashiwara introduced an embedding of crystals Ψi : B(∞) ↪→ B(i), where i is some infinite
sequence from the index set of simple roots. But, in general, it is not easy to find the image Im Ψi .
In [1], Cliff described the image Im Ψi of the Kashiwara embedding for classical Lie algebras. For
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more general types, Zelevinsky and Nakashima obtained the image of the Kashiwara embedding by a
unified method, called the polyhedral realization [26]. However, their descriptions of the images of the
Kashiwara embeddings contain many redundant inequalities, and except for classical quantum finite
algebras and quantum affine algebra of type A, the minimal set of inequalities is unknown.

In [9], Kang and the authors modified the notion of Nakajima monomials, a combinatorial model
realizing the highest weight crystal, by adding a new variable 1, and defined a crystal structure on
the set of modified Nakajima monomials. Moreover, they showed that the connected component con-
taining 1 is isomorphic to the crystal basis B(∞) of U−

q (g). Even though the characterization of the
connected component containing 1 for classical quantum finite algebras and the quantum affine alge-
bra of type A have been obtained in [9,17], it is still unknown for general quantum affine algebras.

In [18], the authors gave a new realization of the crystal B(∞) for the quantum affine algebra
Uq(A(1)

n ) using so-called generalized Young walls, and they gave a 1-1 correspondence between the set
of generalized Young walls and the set of paths given in [4]. However, it is not easy to extend the
theory of generalized Young walls to other quantum affine algebras.

The main goal of this paper is to give a new realization of the crystal B(∞) over the quantum
affine algebra Uq(g), where g = B(1)

n , D(1)
n or D(2)

n+1. More precisely, we introduce new combinatorial
objects zigzag strip bundles for Uq(g), and give the rules and patterns for building zigzag strip bundles
and the action of Kashiwara operators explicitly in terms of zigzag strip bundles. Then we show
that the set S(∞) of all zigzag strip bundles for Uq(g) is isomorphic to the crystal B(∞) by giving
a Uq(g)-crystal isomorphism between S(∞) and the connected component M(∞) containing 1 in
the set of all Nakajima monomials. Moreover, using the crystal isomorphism between M(∞) and the
image of the Kashiwara embedding Ψi given in Section 2.3, we give a crystal isomorphism from S(∞)

to the image of Ψi . It means that one can understand the description of the connected component
M(∞) and the image of Ψi using the combinatorics of zigzag strip bundles.

We expect that we can extend the theory of zigzag strip bundles to other quantum affine algebras
[20]. Also, we believe that the combinatorics of zigzag strip bundles can be applied to the construc-
tion of highest weight crystals for quantum affine algebras [21]. In [19], motivated by the zigzag
strip bundle realizations of the crystals B(∞) over quantum affine algebras, the author introduced
strip bundles and realized the crystals B(∞) over Uq(B∞), Uq(C∞) and Uq(D∞) using strip bundles.
Recently, Lee and Salisbury gave a combinatorial description of the Gindikin–Karpelevich formula in
type A using Young tableaux [22], and Kang, Lee, Ryu, and Salisbury extend their work to the affine
type A(1)

n using generalized Young walls [10]. We think that zigzag strip bundles can be used to give
a combinatorial description of the affine Gindikin–Karpelevich formula in type B(1)

n , D(1)
n and D(2)

n+1.

1. Crystals

1.1. Quantum affine algebras

Let I = {0,1, . . . ,n} be an index set and let A = (aij)i, j∈I be a Cartan matrix of affine type. Let

P∨ = Zh0 ⊕Zh1 ⊕ · · · ⊕Zhn ⊕Zd

be the dual weight lattice and let h =C⊗Z P∨ be the Cartan subalgebra. We define the linear functionals
αi and Λi (i ∈ I) on h by

αi(h j) = a ji, αi(d) = δ0,i, Λi(h j) = δi, j, Λi(d) = 0 (i, j ∈ I).

The αi and hi (i ∈ I) are called the simple roots and simple coroots, respectively, and the Λi (i ∈ I) are
called the fundamental weights. We denote by

Π = {αi | i ∈ I} and Π∨ = {hi | i ∈ I}
the set of simple roots and simple coroots, respectively. The affine weight lattice is defined to be

P = {
λ ∈ h∗ ∣∣ λ

(
P∨) ⊂ Z

}
.
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The quintuple (A,Π,Π∨, P , P∨) is called an affine Cartan datum. To each affine Cartan datum, we
can associate infinite dimensional Lie algebras g and Uq(g) called the affine Kac–Moody algebra and
the quantum affine algebra, respectively. Let us denote by U+

q (g) and U−
q (g) the subalgebras of Uq(g)

generated by the ei ’s and the f i ’s, respectively. We also denote by P+ = {λ ∈ P | λ(hi) � 0 for all i ∈ I}
the set of dominant integral weights.

1.2. Abstract crystals

An abstract crystal for Uq(g) or a Uq(g)-crystal is a set B together with the maps

wt : B → P , εi,ϕi : B → Z∪ {−∞}, ẽi, f̃ i : B → B ∪ {0} (i ∈ I)

such that for all i ∈ I and b ∈ B ,

(i) ϕi(b) = εi(b) + 〈hi , wt(b)〉,
(ii) wt(ẽib) = wt(b) + αi if ẽib = 0,

(iii) wt( f̃ ib) = wt(b) − αi if f̃ ib = 0,
(iv) εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1 if ẽib = 0,
(v) εi( f̃ ib) = εi(b) + 1, ϕi( f̃ ib) = ϕi(b) − 1 if f̃ ib = 0,

(vi) f̃ ib = b′ if and only if ẽib′ = b for b,b′ ∈ B ,
(vii) ẽib = f̃ ib = 0 if εi(b) = −∞.

For the crystals B1 and B2, a map ψ : B1 ∪{0} → B2 ∪{0} sending 0 to 0 is called a crystal morphism
from B1 to B2 if the following conditions are satisfied: for all b,b′ ∈ B1, i ∈ I

(i) if ψ(b) ∈ B2, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), ϕi(ψ(b)) = ϕi(b),
(ii) if ψ(b),ψ(b′) ∈ B2 and f̃ ib = b′ , then f̃ iψ(b) = ψ(b′) and ψ(b) = ẽiψ(b′).

Example 1.1. (a) The crystal basis B(λ) of the irreducible highest weight module V (λ) with λ ∈ P+ is
a Uq(g)-crystal, where the maps εi,ϕi (i ∈ I) are given by

εi(b) = max
{
k � 0

∣∣ ẽk
i b = 0

}
, ϕi(b) = max

{
k � 0

∣∣ f̃ k
i b = 0

}
.

(b) The crystal basis B(∞) of the negative part U−
q (g) of a quantum group Uq(g) is a Uq(g)-crystal,

where

εi(b) = max
{
k � 0

∣∣ ẽk
i b = 0

}
, ϕi(b) = εi(b) + 〈

hi,wt(b)
〉
.

(c) For λ ∈ P , the singleton Tλ = {tλ} is a crystal with the maps defined by

wt(tλ) = λ, εi(tλ) = ϕi(tλ) = −∞, ẽitλ = f̃ itλ = 0 for all i ∈ I.

(d) For each i ∈ I , let Bi = {bi(n) | n ∈ Z}. Then Bi is a crystal with the maps defined by

wt
(
bi(n)

) = nαi,

εi
(
bi(n)

) = −n, ϕi
(
bi(n)

) = n, ẽibi(n) = bi(n + 1), f̃ ibi(n) = bi(n − 1),

ε j
(
bi(n)

) = ϕ j(bi(n)) = −∞, ẽ jbi(n) = f̃ jbi(n) = 0 if j = i.

The crystal Bi is called an elementary crystal.

1.3. Tensor product of crystals

Let B and B ′ be crystals. Then their tensor product

B ⊗ B ′ = {
b ⊗ b′ ∣∣ b ∈ B, b′ ∈ B ′}
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is also a crystal with the maps wt, εi , ϕi , ẽi , f̃ i given by

wt
(
b ⊗ b′) = wt(b) + wt

(
b′),

εi
(
b ⊗ b′) = max

{
εi(b), εi

(
b′) − 〈

hi,wt(b)
〉}

,

ϕi
(
b ⊗ b′) = max

{
ϕi

(
b′),ϕi(b) + 〈

hi,wt
(
b′)〉},

ẽi
(
b ⊗ b′) =

{
ẽib ⊗ b′ if ϕi(b)� εi(b′),
b ⊗ ẽib′ if ϕi(b) < εi(b′),

f̃ i
(
b ⊗ b′) =

{
f̃ ib ⊗ b′ if ϕi(b) > εi(b′),
b ⊗ f̃ ib′ if ϕi(b)� εi(b′).

2. Kashiwara embeddings and Nakajima monomials

2.1. Kashiwara embeddings

Let i = (i1, i2, . . .) be an infinite sequence of indices in I such that every i ∈ I appears infinitely
many times, and let

B(i) = {(
bik (−xk)

)∞
k=1 ∈ · · · ⊗ Bik ⊗ · · · ⊗ Bi1

∣∣ xk ∈ Z�0, xk = 0 for all k � 0
}
.

Fix j ∈ I . For b = · · · ⊗ bik (−xk) ⊗ · · · ⊗ bi1 (−x1) ∈ B(i), choose a sufficiently large N > 0 such that
xk = 0 for all k > N and j = ik for some k = 1, . . . , N . Set

b′ = · · · ⊗ biN+2(0) ⊗ biN+1(0), b′′ = biN (−xN ) ⊗ · · · ⊗ bi1(−x1).

We define

ε j
(
b′) = ϕ j

(
b′) = 0,

ε j
(
b′′) = max

{
ε j

(
bik (−xk)

) +
N∑

l=k+1

〈h j,αil 〉xil

∣∣∣ 1 � k � N

}
,

ϕ j
(
b′′) = max

{
ϕ j

(
bik (−xk)

) −
k−1∑
l=1

〈h j,αil 〉xil

∣∣∣ 1 � k � N

}
,

ẽ jb
′ = 0,

f̃ jb
′ = · · · ⊗ f̃ jbik (0) ⊗ · · · ⊗ biN+1(0)

(
k = min{t | t > N, it = j}),

and

ε j(b) = max
{

0, ε j
(
b′′)}, ϕ j(b) = max

{
ϕ j

(
b′′), 〈h j,wt

(
b′′)〉},

ẽ jb =
{

0 if ε j(b′′) � 0,

b′ ⊗ ẽ jb′′ if ε j(b′′) > 0,
f̃ jb =

{
f̃ jb′ ⊗ b′′ if ε j(b′′) < 0,

b′ ⊗ f̃ jb′′ if ε j(b′′)� 0.

Then B(i) is a Uq(g)-crystal. Moreover, we have

Theorem 2.1. (See [13].) There exists a unique strict embedding of crystals

Ψi : B(∞) ↪→ B(i) such that u∞ �→ · · · ⊗ biN+1(0) ⊗ biN (0) ⊗ · · · ⊗ bi1(0),

where u∞ is the highest weight vector in B(∞).
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2.2. Nakajima monomials

Let Yi(n) (i ∈ I,n ∈ Z) and 1 be commuting variables and let M be the set of all monomials of
the form

M = 1 ·
∏

i∈I,n�0

Yi(n)yi(n)

such that yi(n) ∈ Z and yi(n) = 0 for all but finitely many n’s. We call the monomials in M the
Nakajima monomials.

For a Nakajima monomial M ∈M, we define

wt(M) =
∑
i∈I

(∑
n�0

yi(n)

)
Λi,

ϕi(M) = max

{ ∑
0�k�n

yi(k)

∣∣∣ n � 0

}
,

εi(M) = ϕi(M) − 〈
hi,wt(M)

〉
,

n f = n f (M) = min

{
n � 0

∣∣∣ ϕi(M) =
∑

0�k�n

yi(k)

}
,

ne = ne(M) = max

{
n � 0

∣∣∣ ϕi(M) =
∑

0�k�n

yi(k)

}
. (2.1)

Choose a set C = (ci j)i = j of nonnegative integers such that ci j + c ji = 1, and for each i ∈ I , n ∈ Z�0,
define

Ai(n) = Yi(n)Yi(n + 1)
∏
j =i

Y j(n + c ji)
a ji .

We define the Kashiwara operators ẽi , f̃ i (i ∈ I) on M as follows.

ẽi M =
{

0 if εi(M) = 0,

Ai(ne)M if εi(M) > 0,

f̃ i M = Ai(n f )
−1M. (2.2)

Then M becomes a Uq(g)-crystal with the maps wt, εi , ϕi , ẽi, f̃ i (i ∈ I) defined in (2.1) and (2.2).
Moreover, we have

Theorem 2.2. (See [9].) For any maximal vector M ∈ M, i.e., ẽi M = 0 for all i ∈ I , the connected component
C(M) of M containing M is isomorphic to the Uq(g)-crystal B(∞)⊗ Twt(M) . In particular, we have C(1)

∼−→
B(∞).

2.3. Kashiwara embeddings and Nakajima monomials

Let M(∞) be the connected component containing 1 in M when we choose the set C = (ci j)i = j
of nonnegative integers as follows.

ci j = 0 if i > j, and ci j = 1 if i < j.

Let i = (0,1 . . . ,n,0,1, . . . ,n,0, . . .) be an infinite sequence of indices in I , and let Ψi : B(∞) ↪→ B(i)
be the crystal embedding given in Theorem 2.1.
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For a monomial

M = 1 ·
∏

i∈I,k�0

Ai(k)−ai(k) ∈ M(∞),

we now define a map φ :M(∞) → ImΨi by

φ(M) = · · · ⊗ b0
(−a0(2)

) ⊗ bn
(−an(1)

) · · · ⊗ b1
(−a1(1)

) ⊗ b0
(−a0(1)

)
⊗ bn

(−an(0)
) · · · ⊗ b1

(−a1(0)
) ⊗ b0

(−a0(0)
)
.

Then we have

Theorem 2.3. (See [17].) The map φ :M(∞) → ImΨi is a Uq(g)-crystal isomorphism.

3. Zigzag strip bundles

Young walls, combinatorial models realizing affine highest crystals introduced by Kang in [3], were
devised from the perfect crystal theory. In [18], motivated by the combinatorics of Young walls, the
authors introduced new combinatorial objects called generalized Young walls and they gave a real-
ization of the crystal B(∞) over Uq(A(1)

n ) using generalized Young walls. In this section, from the
theories of Nakajima monomials and crystal embeddings, we introduce the notion of zigzag strip bun-
dles for the quantum affine Lie algebras Uq(B(1)

n ), Uq(D(1)
n ) and Uq(D(2)

n+1). Moreover, in the next

section, we show that the set of all zigzag strip bundles for Uq(g) (g = B(1)
n , D(1)

n or D(2)
n+1) realizes

the crystal B(∞) over Uq(g) (g = B(1)
n , D(1)

n or D(2)
n+1).

3.1. Boards and blocks for zigzag strip bundles

For each quantum affine algebra Uq(g) (g= B(1)
n , D(1)

n , D(2)
n+1), we fix boards B and B with coloring

as follows:

(i) g = B(1)
n (n � 3); B = B =
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(ii) g= D(1)
n (n � 4); B = B =

(iii) g = D(2)
n+1 (n � 2); B = B =

Then we see that the B can be obtained by adding up the same subboard as B on the top of each B
continuously. We denote by Bt (t � 1) the tth subboard B appearing in B from the bottom. We also
see that the board B consists of squares with colorings, which we call sites of B, and we regard the
board B as the set N × N by identifying the jth site from the bottom of the ith column from the



1094 J.-A. Kim, D.-U. Shin / Journal of Combinatorial Theory, Series A 120 (2013) 1087–1115
right with (i, j) ∈N×N. For instance, the site of coloring 2, the shaded site, appearing in the second
from the bottom of the third column in B for Uq(B(1)

n ) corresponds to (3,n + 2).

The zigzag strip bundles for Uq(g) (g = B(1)
n , D(1)

n or D(2)
n+1) are built of colored blocks of three

different shapes on the board B according to the colors of sites of B:

(i) g = B(1)
n ;

, : unit width, unit height, half-unit thickness,

( j = 2, . . . ,n − 1) : unit width, unit height, unit thickness,

: unit width, half-unit height, unit thickness.

(ii) g = D(1)
n ;

, , , : unit width, unit height, half-unit thickness,

( j = 2, . . . ,n − 2) : unit width, unit height, unit thickness.

(iii) g = D(2)
n+1;

, : unit width, half-unit height, unit thickness,

( j = 1, . . . ,n − 1) : unit width, unit height, unit thickness.

With these colored blocks, we will pile up them on the board B according to some rules. For

convenience, we will use the notation for the stack of k-many j-blocks ( j = 0,1, . . . ,n). For

instance, for Uq(B(1)
3 ),

←→

3.2. Zigzag strip bundles for Uq(B(1)
n )

Before we introduce the zigzag strip bundles for Uq(B(1)
n ), we define zigzag strips as follows.

Definition 3.1. (a) We define a zigzag 0 (resp. 1)-strip for Uq(B(1)
n ) by a pile of colored blocks stacked

on a site with colorings 0 and 1 of the rightmost column of B as follows

,
(
resp. ,

)
.

Note that the pile can be regarded as both 0-strip and 1-strip.

(b) For each i ∈ I − {0,1,n}, we define a zigzag i-strip for Uq(B(1)
n ) by a pile of colored blocks

stacked on the board B satisfying the following conditions:
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(i) It is obtained by stacking colored blocks starting from an i-colored site of the first column from
the right in the pattern given below.

(ii) The volume of stacked blocks on each site of the pile is weakly decreasing from right to left and
from bottom to top.

(c) For each k ∈ Z>0, we define a kth zigzag n-strip for Uq(B(1)
n ) by a pile of colored blocks stacked

on the board B satisfying the following conditions:

(i) It is obtained by stacking colored blocks starting from an n-colored site of the kth column from
the right in the pattern given below.

(ii) Except for the rightmost site of the pile, the volume of blocks on each site of the pile is weakly
decreasing from right to left and from bottom to top.

Example 3.2. The following are zigzag 2-strips in B(1)
3 .

On the other hand, the following are not zigzag 2-strips.

Indeed, in the second column of the left pile, the volume of 2-colored blocks is bigger than the
volume of 1-colored blocks, and in the right pile, the volume of 2-colored blocks on the leftmost site
is bigger than the volume of 3-colored blocks.

Definition 3.3. A pile S of stacked blocks on the board B is called a zigzag strip bundle for Uq(B(1)
n ) if

there is a decomposition of S into zigzag strips satisfying the following conditions:
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(i) For each t,k � 1 and i ∈ I − {n}, there exist at most one zigzag i-strip and one kth zigzag n-strip
in Bt .

(ii) For each t,k � 1 and i ∈ I − {n}, if we let St
i , St

n,k be the zigzag i-strip and the kth zigzag n-strip
in Bt , respectively, then

St
i ⊃ St+1

i , St
n,k ⊃ St+1

n,k for all k, t � 1. (3.1)

Here, equalities hold only if zigzag strips consist of blocks of full height (unit height).
(iii) For each k, t � 1, if we let |St

n,k| be the number of blocks in the kth zigzag n-strip St
n,k , then∣∣St

n,k

∣∣ � ∣∣St
n,k+1

∣∣.
Here, |St

n,k| = |St
n,k+1| if and only if

St
n,k = St

n,k+1 = ∅ or St
n,k = St

n,k+1 =

or (
St

n,k, St
n,k+1

) = (
,

)
or

(
,

)
.

Remark 3.4. In (3.1), we regard St
i and St

n,k as only piles of stacked blocks without considering posi-
tions on the board B.

Example 3.5. Let

S =

be a pile for Uq(B(1)
3 ). Then it is decomposed into the following zigzag strips:
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We can easily check that

(i) S1
2 ⊃ S2

2, S1
3,1 ⊃ S2

3,1,

(ii) |S1
3,1| > |S1

3,2| > |S1
3,3| > |S1

3,4| = |S1
3,5|.

Therefore, S is a zigzag strip bundle for Uq(B(1)
3 ).

(b) Now, consider the following pile S for Uq(B(1)
3 ).

In any decomposition of S into zigzag strips, we have S1
3,1 = ∅ and S1

3,2 = ∅, and so it is not a zigzag
strip bundle. Indeed, according to the condition (i) in Definition 3.3, the only possible decomposition
of S into zigzag strips is as follows.

S1
2 = and S1

3,2 = .

Since |S1
3,1| = 0 < 2 = |S1

3,2|, it is not a zigzag strip bundle.

Example 3.6. The following pile for Uq(B(1)
3 )

is decomposed as follows:

S1
2 = S2

2 = .

But, the 3-block of S1
2 (and S2

2) is a block of half height, it does not satisfy the condition (ii) of
Definition 3.3.

On the other hand, the following piles are zigzag strip bundles for Uq(B(1)
3 ).

3.3. D(1)
n -type

As in the case Uq(B(1)
n ), we first define zigzag strips for Uq(D(1)

n ) as follows.
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Definition 3.7. (a) The zigzag 0 (resp. 1)-strips for Uq(D(1)
n ) are the same as those for Uq(B(1)

n ).
(b) For each i ∈ I − {0,1,n − 1,n}, we define a zigzag i-strip by a pile of colored blocks stacked on

the board B satisfying the following conditions:

(i) It is obtained by stacking colored blocks starting from an i-colored site of the first column from
the right in the pattern given below.

(ii) The volume of stacked blocks on each site of the pile is weakly decreasing from right to left and
from bottom to top.

(c) For each k ∈ Z>0, we define a kth zigzag (n − 1)-strip and a kth zigzag n-strip by piles of
colored blocks on the board B satisfying the following conditions:

(i) They are obtained by stacking colored blocks starting from an (n − 1) or n-colored site of the kth
column in the pattern given below.

(ii) Except for the rightmost site of the pile, the volume of blocks on each site of the pile is weakly
decreasing from right to left and from bottom to top.

Definition 3.8. A pile S of stacked blocks on the board B is called a zigzag strip bundle for Uq(D(1)
n ) if

there is a decomposition of S into zigzag strips satisfying the following conditions:

(i) For each t,k � 1 and i ∈ I −{n −1,n}, there are at most one zigzag i-strip, one kth zigzag (n −1)-
strip and one kth zigzag n-strip in Bt .

(ii) For each t,k � 1 and i ∈ I − {n − 1,n}, if we let St
i , St

n−1,k and St
n,k be the zigzag i-strip, the kth

zigzag (n − 1)-strip and the kth zigzag n-strip in Bt , respectively, then

St
i ⊃ St+1

i , St
n−1,k ⊃ St+1

n−1,k, St
n,k ⊃ St+1

n,k . (3.2)

(iii) For each k, t � 1, if we let |St
n−1,k| and |St

n,k| be the numbers of blocks in the kth zigzag (n − 1)-

strip St
n−1,k and the kth zigzag n-strip St

n,k , respectively, then∣∣St
n−1,k

∣∣ � ∣∣St
n,k+1

∣∣ and
∣∣St

n,k

∣∣� ∣∣St
n−1,k+1

∣∣.
Here, |St

n−1,k| = |St
n,k+1| (resp. |St

n,k| = |St
n−1,k+1|) if and only if St

n−1,k and St
n,k+1 (resp. St

n,k

and St
n−1,k+1) are emptysets, or they are one of the following forms and the last blocks, the
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blocks stacked on top of the leftmost column, in St
n−1,k and St

n,k+1 (resp. St
n,k and St

n−1,k+1) are
different:

Here, in right two zigzag strips, the numbers of blocks are strictly bigger than 1. That is, and

are not permitted.

Remark 3.9. In (3.2), we regard St
i , St

n−1,k and St
n,k as only piles of stacked blocks without considering

positions on the board B.

Example 3.10. Let

S =

be a pile for Uq(D(1)
4 ). Then it is decomposed into the following zigzag strips:

S1
3,1 = S1

3,2 =

S1
4,1 = S1

4,2 =

Therefore, it is clear that S is a zigzag strip bundle. Indeed, we can see that |S1
4,1| = 2 > 1 = |S1

3,2|, and

|S1
3,1| = |S1

4,2| = 3. Moreover, we find that S1
3,1 and S1

4,2 have the forms given in (iii) of Definition 3.8.

On the other hand, the following pile for Uq(D(1)
4 )

is decomposed into zigzag strips as follows:

S1
3,1 = S1

3,2 = S1
4,1 = S1

4,2 =
or

S1
3,1 = S1

3,2 = S1
4,1 = S1

4,2 =
In any case, they do not have the forms given in (iii) of Definition 3.8. Therefore, it is not a zigzag
strip bundle for Uq(D(1)

4 ).

3.4. D(2)
n+1-type

As in the case Uq(B(1)
n ) and Uq(D(1)

n ), we first define zigzag strips for Uq(D(2)
n+1) as follows.
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Definition 3.11. (a) We define a zigzag 0-strip for Uq(D(2)
n+1) by a pile consisting of only one 0-colored

block stacked on a 0-colored site of the rightmost column of B.
(b) For each i ∈ I −{0,n}, we define a zigzag i-strip for Uq(D(2)

n+1) by a pile of colored blocks stacked
on the board B satisfying the following conditions:

(i) It is obtained by stacking colored blocks starting from an i-colored site of the first column from
the right in the pattern given below.

(ii) The volume of stacked blocks on each site of the pile is weakly decreasing from right to left and
from bottom to top.

(c) For each k ∈ Z>0, we define a kth zigzag n-strip for Uq(D(2)
n+1) by a pile of colored blocks on the

board B satisfying the following conditions:

(i) It is obtained by stacking colored blocks starting from an n-colored site of the kth column from
the right in the pattern given below.

(ii) Except the rightmost site of the pile, the volume of blocks on each site of the pile is weakly
decreasing from right to left and from bottom to top.

Definition 3.12. A pile S of stacked blocks on the board B is called a zigzag strip bundle for Uq(D(2)
n+1)

if there is a decomposition of S into zigzag strips satisfying the following conditions are satisfied:

(i) For each t,k � 1 and i ∈ I − {n}, there are at most one zigzag i-strip and one kth zigzag n-strip
in Bt .

(ii) For each t,k � 1 and i ∈ I − {n}, if we let St
i , St

n,k be the zigzag i-strip and the kth zigzag n-strip
in Bt , respectively, then

St
i ⊃ St+1

i , St
n,k ⊃ St+1

n,k for all k, t � 1. (3.3)

Here, equalities hold only if zigzag strips consist of blocks of full height (unit height).
(iii) For each k, t � 1, if we let |St

n,k| be the number of blocks in the kth zigzag n-strip St
n,k in Bt ,

then ∣∣St
n,k

∣∣ � ∣∣St
n,k+1

∣∣.
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Here, the equality holds if and only if

St
n,k = St

n,k+1 = ∅, or

Remark 3.13. In (3.3), we regard St
i and St

n,k as only piles of stacked blocks without considering
positions on the board B.

Example 3.14. (a) Let

S =

be a pile for Uq(D(2)
4 ). Then it is decomposed into the following zigzag strips:

S1
1 = S1

3,1 = S1
3,2 =

Therefore, S is a zigzag strip bundle for Uq(D(2)
4 ).

(b) Let

S = and S ′ =

be piles for Uq(D(2)
4 ). Then by condition (ii) of Definition 3.12, S is a zigzag strip, but S ′ is not.

4. Realization of the crystal B(∞)

4.1. Crystal structure on the set of zigzag strip bundles

In this subsection, we give a crystal structure on the set of all zigzag strip bundles.

Definition 4.1. Let S be a zigzag strip bundle for Uq(B(1)
n ), Uq(D(1)

n ) or Uq(D(2)
n+1), and for each t � 1,

let St be the zigzag strip bundle in Bt consisting of blocks in Bt of S . Now, let St be decomposed into
zigzag strips {S j | j = 1, . . . , N}. From now on, for simplicity, we denote {S j | j = 1, . . . , N} by {S j}.
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(a) An i-colored block in a zigzag strip S j ( j = 1, . . . , N) of St is called a removable i-block with
respect to the zigzag strips {S j} if one can have another zigzag strip bundle in Bt from {S j} by
removing that block, that is, the zigzag strips obtained from {S j} by removing that block satisfy the
conditions (i) and (iii) given in Definition 3.3, Definition 3.8 and Definition 3.12.

(b) An i-colored site in Bt is called an i-admissible slot with respect to the zigzag strips {S j} if one
can have another zigzag strip bundle in Bt from {S j} by stacking an i-block on that site, that is, the
zigzag strips obtained from {S j} by stacking an i-block on that site satisfy the conditions (i) and (iii)
given in Definition 3.3, Definition 3.8 and Definition 3.12.

(c) A site P of the board Bt is said to be k-times i-removable and l-times i-admissible with respect
to the zigzag strips {S j} if there are k removable i-blocks on P and one can have another zigzag strip
bundle in Bt from {S j} by stacking l i-blocks on P .

Example 4.2. Let

S = = S1
2 ∪ S1

3,1 ∪ S1
3,2 = ∪ ∪

be a zigzag strip bundle lying on B1 for Uq(B(1)
3 ). Then it is easy to see that

(i) the site (2,3) is once 3-removable and once 3-admissible from the strip S1
2,

(ii) the sites (3,2) and (3,3) are once 2-removable and twice 3-admissible from the strip S1
3,1, re-

spectively,
(iii) the sites (4,1) and (3,2) are once 0-admissible and once 1-admissible, and once 2-removable

from the strip S1
3,2, respectively,

(iv) the site (3,3) is once 3-admissible because if we stack a 3-block on (3,3), then we have S1
3,3 =

, and S1
3,2 and S1

3,3 satisfy the condition (iii) of Definition 3.3,
(v) the sites (1,1) is once 0-admissible and once 1-admissible, and all sites in the rightmost column

of Bt (t � 2) are admissible.

The following describes all the removable and admissible sites with respect to the above zigzag strips
{S1

2, S1
3,1, S1

3,2}.

Remark 4.3. Note that the concepts of removable blocks, admissible slots, removable sites, and ad-
missible sites for zigzag strip bundles totally depend on the decomposition into zigzag strips. For
instance, for a zigzag strip bundle

S =

over Uq(B(1)
3 ), we can decompose into the following two different bundles of zigzag strips:
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(I) S1
2 = S1

3,1 =

(II) S1
2 = S1

3,1 = S1
3,2 =

Then in case (I), there is no removable 2-block and 2-admissible slot in B1, but in case (II), the site
(2,2) is once 2-removable from S1

2 and the site (3,2) is once 2-admissible from S1
3,2.

Fix i ∈ I and let a given zigzag strip bundle S be decomposed into zigzag strips {S j | j = 1, . . . , N}.
Let P1, P2, . . . , Pt be the all i-removable or i-admissible sites of B with respect to {S j} from west to
east and from south to north. To each site Pα (α = 1, . . . , t), we assign its i-signature sgni(Pα) as

− − −· · ·−︸ ︷︷ ︸
p-times

+ + +· · ·+︸ ︷︷ ︸
q-times

if Pα is p-times i-removable and q-times i-admissible. From the sequence(
sgni(P1), sgni(P2), . . . , sgni(Pt)

)
of +’s and −’s, cancel out every (+,−)-pair to obtain a sequence of −’s followed by +’s, reading
from left to right. This sequence is called the i-signature of S with respect to {S j}.

Remark 4.4. (a) Note that the i-signature of S with respect to {S j} contains the information of i-re-
movable or i-admissible sites.

(b) We can redefine a removable i-block and an i-admissible slot as follows. For each j, an i-block
of S j is a removable i-block if one can have another zigzag strip from S j by removing that block, and
an i-colored site is an i-admissible slot if one can have another zigzag strip from S j by stacking an

i-block on that site. Also, when g = B(1)
n or D(2)

n+1 (resp. D(1)
n ), if there exists an (n − 1)-block (resp.

(n − 2)-block) in the last zigzag n-strip (resp. (n − 1) or n-strip), then above n-site (resp. n or (n − 1)-
site) of (n − 1)-block (resp. (n − 2)-block) is an n-admissible (resp. n or (n − 1)-admissible) slot. Then
we can easily check that the i-signature of S with respect to {S j} according to Definition 4.1 and the
i-signature of S according to these exposition are the same.

Example 4.5. (a) Let S be a zigzag strip bundle for Uq(B(1)
3 ) given in Remark 4.3. Then it is easy

to see that all the removable and admissible sites of S with respect to two types (I) and (II) of
decompositions into zigzag strips are given below.

Therefore, we can easily see that the i-signatures (i = 0,1,2,3) of S with respect to (I) and (II) are
the same. Indeed, the 2-signatures of S with respect to (I) and (II) are

(+ + · · ·) and (+,−,+ + · · ·) = (+ + · · ·),
respectively.
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(b) Let S be the pile for Uq(D(2)
4 ) given in Example 3.14. Then as one can see in Example 3.14 and

Example A.5, we have the following two different decomposition into zigzag strips of S:

(I) S1
1 = S1

3,1 = S1
3,2 =

(II) S1
1 = S1

3,1 =

Then it is easy to see that all the removable and admissible sites of S with respect to two types (I)
and (II) of decompositions into zigzag strips are given below.

Therefore, it is easy to see that the i-signatures (i = 0,1,2,3) of S with respect to (I) and (II) are the
same.

In Example 4.5, we see that the i-signatures (i = 0,1,2,3) of S with respect to (I) and (II) are the
same. Indeed, it is not strange as one can see in below.

Proposition 4.6. Let S be a zigzag strip bundle for Uq(B(1)
n ), Uq(D(1)

n ) or Uq(D(2)
n+1), and let {S j | j =

1, . . . , M} and {Tk | k = 1, . . . , N} be any two decompositions into zigzag strips satisfying the conditions of
Definition 3.3, Definition 3.8 or Definition 3.12. Then the i-signature of S with respect to {S j | j = 1, . . . , M}
and the i-signature of S with respect to {Tk | k = 1, . . . , N} are the same. In other words, the i-signature of S
is independent of decompositions into zigzag strips of S.

Remark 4.7. In Proposition 4.6, the statement that the i-signature of S with respect to {S j | j = 1, . . . , M}
and the i-signature of S with respect to {Tk | k = 1, . . . , N} are the same means that they are the same
sequences, and the sites corresponding to − and + of the i-signatures are the same.

Proof of Proposition 4.6. Since the proofs are the similar, we only treat Uq(B(1)
n )-type. Now, for the

sites of board B, we adopt new exposition of admissibility and removability different from those given
in Definition 4.1 as follows.
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Another exposition of admissibility and removability: Consider an i-colored site P on which there
are k i-blocks. Then if i = n, the below and right sites are (i −1) and (i +1)-colored sites, respectively.
On the other hand, if P is an n-colored site, the below site is an (n − 1)-colored site and there is no
right site of P . For the numbers #(i − 1), #(i + 1) and #(n − 1) of (i − 1), (i + 1) and (n − 1)-blocks
on these (i − 1), (i + 1) and (n − 1)-sites, respectively, we set

l =
{

#(i − 1) + #(i + 1) − k if i = n,

2 · #(n − 1) − k if i = n.

Then the site P is said to be k-times i-removable and l-times i-admissible.
In Definition 4.1, removable blocks of a zigzag strip are the leftmost top blocks, and left or top

site of the leftmost top block is an admissible slot, and so we can easily check that i-signatures of a
zigzag strip according to Definition 4.1 and above exposition are the same. Indeed, for the following
cases

(i) (ii)

there is no i-admissible slot and removable i-block according to Definition 4.1, but if we adopt above
exposition, in (i), above site of (i − 1)-block is once i-admissible and the site of i-block is once
i-removable, and in (ii), left site of (i + 1)-block is once i-admissible and the site of i-block is once
i-removable. Thus, the i-signatures of a zigzag strip according to Definition 4.1 and above exposition
are the same. Also, consider the zigzag strip

S =
Then the above site of (n − 1)-block is once n-admissible according to Definition 4.1, but in the
above exposition, the above site of (n − 1)-block is twice n-admissible and the site of n-block is once
n-removable. Thus, the n-signatures of S according to Definition 4.1 and above exposition are the
same.

Now, as one can see in Remark 4.4, the i-signatures of a zigzag strip bundle S are determined by
the i-admissible slots and removable i-blocks of decomposed zigzag strips S j . Thus, the i-signatures
of zigzag strip bundle according to Definition 4.1 and above exposition are the same. Therefore, the
i-signatures of a zigzag strip bundle are also totally determined by the number of stacked blocks on
the sites, and so are independent of the decomposition into zigzag strips. �

According to Proposition 4.6, we may say the i-signature of S for a zigzag strip bundle S .
Now, let S(∞) be the set of all zigzag strip bundles, and let S ∈ S(∞) be a zigzag strip bun-
dle. We define f̃ i S to be the zigzag strip bundle obtained from S by stacking an i-colored block
on the i-admissible site corresponding to the leftmost + in the i-signature of S . We define ẽi S
to be the zigzag strip bundle obtained from S by eliminating the removable i-block correspond-
ing to the rightmost − in the i-signature of S . If there is no − in the i-signature of S , we define
ẽi S = 0.

We also define the maps

wt : S(∞) → P , εi : S(∞) → Z, ϕi : S(∞) → Z

by

wt(S) = −
∑

kiαi,
i∈I
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εi(S) = the number of −’s in the i-signature of S,

ϕi(S) = εi(S) + 〈
hi,wt(S)

〉
,

where ki is the number of i-colored blocks in S . Then it is straightforward to verify that
(S(∞), wt, εi,ϕi, ẽi, f̃ i) is an affine crystal.

Example 4.8. Let S be a zigzag strip bundle for Uq(B(1)
3 ) given in Remark 4.3. Then from the removable

and admissible sites of S given in Example 4.5(a), we have

f̃0 S = , f̃1 S = , f̃2 S = , f̃3 S =

and

ẽ0 S = , ẽ1 S = ẽ2 S = 0, ẽ3 S =

Example 4.9. Let

S =

be a zigzag strip bundle for Uq(D(1)
4 ). Then it is decomposed into the zigzag strips as follows.

S1
3,1 = S1

3,2 = S1
4,1 = S1

4,2 =
Hence all the removable and admissible sites are given below.

Therefore, we have

f̃0 S = , f̃1 S = , f̃2 S = ,

f̃3 S = , f̃4 S =

and

ẽ0 S = ẽ1 S = ẽ3 S = ẽ4 S = 0, ẽ2 S =
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Example 4.10. Let S be the pile for Uq(D(2)
4 ) given in Example 3.14. Then from the removable and

admissible sites of S with respect to two types (I) or (II) of decompositions into zigzag strips are
given in Example 4.5(b), we have

f̃0 S = , f̃1 S = ,

f̃2 S = , f̃3 S =

and

ẽ0 S = ẽ1 S = ẽ2 S = 0, ẽ3 S =

4.2. Realization of the crystal B(∞)

Let S(∞) be the set of all zigzag strip bundles for Uq(B(1)
n ), Uq(D(1)

n ) or Uq(D(2)
n+1).

Proposition 4.11. Every zigzag strip bundle S ∈ S(∞) for Uq(B(1)
n ), Uq(D(1)

n ) or Uq(D(2)
n+1) is connected with

the empty zigzag strip bundle ∅. That is,

if ẽi S = 0 for all i ∈ I, then S = ∅.

Proof. Suppose that S = ∅. Let B be the top block stacked on the top site of the leftmost column of S ,
and assume that its color is α. If above α-block B does not belong to a zigzag n-strip, it is clear that
B is a removable block, and by the definition of zigzag strip bundle and the definition of i-signature,
we have

sgnα(S) = (−, . . .),

where the leftmost − corresponds to the removable block B . Thus ẽα S = 0.
Also, if B belongs to the kth zigzag n-strip St

n,k on Bt and St
n,k+1 = ∅, then clearly ẽα S = 0. Now,

consider the case that B belongs to kth zigzag n-strip St
n,k on Bt and St

n,k+1 = ∅. In this case, note

that |St
n,k| � |St

n,k+1| + 2 because of the location of B and the definition of zigzag strip bundle, and so
B is a removable block. Thus we also have ẽα S = 0. �
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Example 4.12. The following is the top part of S(∞) over Uq(B(1)
3 ).
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Let M(∞) be the connected component containing 1 given in Section 2.3. Then we have

Theorem 4.13. For g = B(1)
n , D(1)

n or D(2)
n+1 , there is a Uq(g)-crystal isomorphism

Φ : S(∞)
∼−→ M(∞) ∼= B(∞)

sending ∅ to 1.

Remark 4.14. For quantum affine algebras, it is not easy to find the explicit description of monomials
in the connected component containing a maximal vector. Theorem 4.13 provides a characterization
of M(∞) using the combinatorics of zigzag strip bundles.

Proof of Theorem 4.13. Since the proofs are the similar, we only treat Uq(B(1)
n )-type. Let S be a zigzag

strip bundle in S(∞). We define Φ(S) to be the Nakajima monomial

Φ(S) = 1 ·
∏

i∈I,k�0

Ai(k)−si(k+1),

where si(k + 1) (k � 0) is the number of i-blocks in the (k + 1)st column of S . Then clearly Φ(∅) = 1.
But, we cannot convince that Φ(S) belongs to M(∞). Nevertheless, since S(∞) and M(∞) are
the connected components containing ∅ and 1, respectively, in order to show that Φ is a crystal
isomorphism, it suffices to show that Φ commutes with ẽi and f̃ i and it is 1-1.

For this, we use induction on the number of zigzag strips of zigzag strip bundles. First, consider
the case when the zigzag strip bundle S consists of only one zigzag strip, and assume that S is a
zigzag α-strip (α ∈ I). If α = 0 or 1, then S is one of the zigzag strips , and , and

Φ(S) =

⎧⎪⎪⎨⎪⎪⎩
1 · Y0(0)−1Y0(1)−1Y2(0) for S = ,

1 · Y1(0)−1Y1(1)−1Y2(0) for S = ,

1 · Y0(0)−1Y0(1)−1Y1(0)−1Y1(1)−1Y2(0)2 for S =
Thus, Φ(ẽi S) = ẽiΦ(S) and Φ( f̃ i S) = f̃ iΦ(S) for all i ∈ I . Consider the case that α = 2, . . . ,n − 2. Sup-
pose that S has a u-admissible slot and a removable v-block at the pth and qth columns respectively,
then we have two cases

(i) p = q,
(ii) p = q + 1.

Moreover, when p = q, we have the following three cases:

(i-1) 2 � v � n − 1, u = v + 1, i.e.,

S =

(i-2) v = 0 and u = 1, or v = 1 and u = 0, i.e.,

S = or

(i-3) u = v = n, i.e.,

S =
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For these cases (i-1), (i-2) and (i-3), we have Φ(S) as follows.

(i-1) 1 · Yα(0)−1Yα+1(0)Yu−1(p)−1Yu(p − 1);
(i-2) 1 · Yα(0)−1Yα+1(0)Y0(p)−1Y1(p − 1) or 1 · Yα(0)−1Yα+1(0)Y0(p − 1)Y1(p)−1;
(i-3) 1 · Yα(0)−1Yα+1(0)Yn(p − 1)Yn(p)−1.

Thus, it is clear that Φ(ẽi S) = ẽiΦ(S) and Φ( f̃ i S) = f̃ iΦ(S) for all i ∈ I . Also, when p = q + 1, there
are three possibilities as follows:

(ii-1) 3 � v � n − 1, u = v − 1, i.e., S = ;

(ii-2) v = 2 and u = 1, or v = 2 and u = 0, i.e., S = ;
(ii-3) u = n − 1 and v = n, i.e.,

S =

In each case, Φ(S) is given below.

(ii-1) 1 · Yα(0)−1Yα+1(0)Yu(q)Yu+1(q)−1;
(ii-2) 1 · Yα(0)−1Yα+1(0)Y0(q)Y1(q)Y2(q)−1;
(ii-3) 1 · Yα(0)−1Yα+1(0)Yn−1(q)Yn(q)−2.

Therefore, Φ(ẽi S) = ẽiΦ(S) and Φ( f̃ i S) = f̃ iΦ(S) for all i ∈ I . Similarly, for the cases α = n − 1 and
α = n, we can show that Φ(ẽi S) = ẽiΦ(S) and Φ( f̃ i S) = f̃ iΦ(S) for all i ∈ I . Indeed, the only differ-
ence between the case α = 2, . . . ,n − 2 and the cases α = n − 1 and α = n is that Yα(0)−1Yα+1(0)

appearing in Φ(S) for α = 2, . . . ,n − 2 is replaced with Yn−1(0)−1Yn(0)2 and Yn(0)−1 in Φ(S) for
α = n − 1 and α = n, respectively.

Now, let S ∈ S(∞) be decomposed into the zigzag strips {S1, . . . , SN}. Then there is a zigzag strip
S j such that {S1, . . . , SN } − {S j} is a decomposition of zigzag strip bundle S ′ . By the induction hy-
pothesis, we have f̃ iΦ(S ′) = Φ( f̃ i S ′) and ẽiΦ(S ′) = Φ(ẽi S ′) for all i ∈ I . Also, by the definition of Φ ,
we have Φ(S) = Φ(S ′)Φ(S j). As we can see in the case when the zigzag strip bundle consists of only
one zigzag strip, if S j has a u-admissible slot and a removable v-block at the pth and qth columns
respectively, then

Φ(S j) = 1 · Yu(p − 1)Y v(q)−1 · R(S j), (4.1)

where R(S j) is the product Yi(m)’s (i = u, v) in Φ(S j). Note that ẽi(1 · R(S j)) = 0 and f̃ i(1 · R(S j)) =
1 · R(S j) · Ai(0)−1 for all i ∈ I . Thus, for i = u, v , clearly f̃ i S (resp. ẽi S) is the union of f̃ i S ′ (ẽi S ′)
and S j , and f̃ iΦ(S) = f̃ iΦ(S ′) · Φ(S j) (resp. ẽiΦ(S) = ẽiΦ(S ′) · Φ(S j)), and so f̃ i (resp. ẽi) commutes
with Φ . Hence it suffices to show that f̃u , ẽu , f̃ v , and ẽv commute with Φ . Since the arguments are
the similar, we only show that Φ( f̃u S) and f̃uΦ(S) are the same. First, consider the case when f̃u S
is the union of f̃u S ′ and S j . In this case, if f̃u S ′ is obtained by stacking u-block on the lth (l � p)
column, then n f (Φ(S ′)) = l − 1, and so by (4.1), n f (Φ(S)) is also l − 1. Also, if f̃u S ′ is obtained by
stacking u-block on the lth (l < p) column, there should exist a removable u-block between lth col-
umn and pth column. By (4.1), it means that ϕu(S) = ϕu(S ′) + 1, but n f (Φ(S)) = n f (Φ(S ′)). Second,

if f̃u S is the union of S ′ and f̃u S j , and if f̃u S ′ is obtained by stacking u-block on the lth column,
then p � l, and so n f (Φ(S)) = p − 1. Therefore, Φ( f̃u S) and f̃uΦ(S) are the same.

Moreover, given the set (si(k): i ∈ I, k ∈ Z>0) of nonnegative integers, by the condition (ii) of def-
inition of zigzag strip bundle, there exists at most one zigzag strip bundle consisting of si(k) i-blocks
in the kth column of B. Thus, Φ is 1-1, which completes the proof. �
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Let i = (0,1 . . . ,n,0,1, . . . ,n,0, . . .) be an infinite sequence of indices in I . Let Ψi : B(∞) ↪→ B(i) be
the crystal embedding given in Theorem 2.1, and let φ : M(∞) → ImΨi be the crystal isomorphism
given in Theorem 2.3.

Corollary 4.15. For g = B(1)
n , D(1)

n or D(2)
n+1 , there is a Uq(g)-crystal isomorphism

Ψ : S(∞)
Φ−→ M(∞)

φ−→ Im Ψi
∼= B(∞)

sending ∅ to · · · ⊗ b0(0) ⊗ bn(0) · · · ⊗ b1(0) ⊗ b0(0).

Remark 4.16. In [26], Zelevinsky and Nakashima obtained the images of the Kashiwara embeddings
by a unified method, called the polyhedral realization. However, their descriptions of the images of the
Kashiwara embeddings contain many redundant (linear) inequalities. According to Corollary 4.15, one
can understand the description of the connected component M(∞) and the image of Ψi using the
combinatorics of zigzag strip bundles.

Example 4.17. Let

S =

be a zigzag strip bundle for Uq(B(1)
3 ) given in Example 3.5(a). Then

Φ(S) = 1 · (A2(0)−2 A3(0)−2) · (A0(1)−2 A1(1)−2 A2(1)−4 A3(1)−3)
· (A0(2)−2 A1(2)−1 A2(2)−3 A3(2)−3) · (A0(3)−2 A1(3)−2 A2(3)−4 A3(3)−5)
· (A0(4)−2 A1(4)−2 A2(4)−5 A3(4)−5) · (A0(5)−3 A1(5)−2 A2(5)−1) · A1(6)−1.

Moreover, for the sequence i = (0,1,2,3,0,1,2,3,0, . . .),

ψ
(
Φ(S)

) = · · · ⊗ b3(0) ⊗ b2(0) ⊗ b1(0) ⊗ b0(0) ⊗ b3(0) ⊗ b2(0) ⊗ b1(−1) ⊗ b0(0)

⊗ b3(0) ⊗ b2(−1) ⊗ b1(−2) ⊗ b0(−3) ⊗ b3(−5) ⊗ b2(−5) ⊗ b1(−2) ⊗ b0(−2)

⊗ b3(−5)⊗b2(−4) ⊗ b1(−2) ⊗ b0(−2) ⊗ b3(−3) ⊗ b2(−3) ⊗ b1(−1) ⊗ b0(−2)

⊗ b3(−3) ⊗ b2(−4) ⊗ b1(−2) ⊗ b0(−2) ⊗ b3(−2) ⊗ b2(−2) ⊗ b1(0) ⊗ b0(0).
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Appendix A. An algorithm to decompose zigzag strip bundles

In this section, we give an algorithm to decompose zigzag strip bundles for Uq(B(1)
n ), Uq(D(1)

n ) and

Uq(D(2)
n+1) into zigzag strips. Before we describe the algorithm, we give the notion of connectedness of

a pile as follows.

Definition A.1. A pile of colored blocks stacked on Bt for some t � 1 is called connected if the existence
of blocks on any site except for the sites of the rightmost column in Bt implies the existence of blocks
on below or right site of that site. Also, the pile is called disconnected if it is not connected.
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Example A.2. Let

S =

be a pile for Uq(D(2)
4 ). Then it is disconnected because there is no block below 3-block of the fourth

column from the right. However, the following pile

S ′ =

is connected.

Let S be a zigzag strip bundle for Uq(B(1)
n ), Uq(D(1)

n ) or Uq(D(2)
n+1), and let St (t � 1) be the pile

consisting of blocks on Bt of S . Then it is enough to describe an algorithm to decompose St into
zigzag strips.

(i) B(1)
n or D(2)

n+1-type. We first pick out the zigzag n-strip St
n,1 as long as possible so that the re-

maining pile is connected. Second, if exists, pick out the 2nd zigzag n-strip St
n,2 as long as possible

so that St
n,2 ⊂ St

n,1 and the remaining pile is connected. Continue this process until the last zigzag
n-strip, say the kth zigzag n-strip, which means the (k + 1)st zigzag n-strip does not exist. After that,
if exists, pick out the zigzag i-strip St

i from 0 to n − 1 as long as possible so that the remaining pile is
connected.

(ii) D(1)
n -type. First, we pick out zigzag (n−1)-strip St

n−1,1 and zigzag n-strip St
n,1 as long as possible

so that the remaining pile is connected. Second, if exists, we pick out the 2nd zigzag n-strip St
n,2 as

long as possible so that St
n,2 ⊂ St

n−1,1 and the remaining pile is connected, and then pick out the 2nd
zigzag (n − 1)-strip St

n−1,2 as long as possible so that St
n−1,2 ⊂ St

n,1 the remaining pile is connected.

Continue this process until the last zigzag (n − 1)-strip and n-strip. After that, as B(1)
n -case, we pick

out zigzag i-strips St
i (i = 0,1, . . . ,n − 2) from St .

Example A.3. Let

S =
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be a pile for Uq(B(1)
3 ) given in Example 3.5(a). Then the following zigzag 3-strip

is the longest the one which we can pick out from S1 of S so that the remaining pile is connected,

we say S1
3,1, and we have

S\S1
3,1 =

Similarly, we can pick out the following zigzag 3-strip from S\S1
3,1

which we call S1
3,2. Also, we have

S\{S1
3,1, S1

3,2

} =

Continuing this process, we have

S1
3,3 = S1

3,4 = S1
3,5 = S1

2 =

Also, we have

S2
3,1 = and S2

2 =

Example A.4. Let

S =
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be a pile for Uq(D(1)
4 ) given in Example 3.10. Then the following zigzag first 3-strip is the longest the

one which we can pick out from S1 of S so that the remaining pile is connected, we say S1
3,1,

and we have

S\S1
3,1 =

Similarly, we can pick out the following first zigzag 4-strip from S\S1
3,1

which we call S1
4,1, and we have

S\{S1
3,1, S1

4,1

} =

Also, we can pick out the following second zigzag 4-strip S1
4,2 from S\{S1

3,1, S1
4,1}

and the remaining pile is the second zigzag 3-strip.

Example A.5. Let

S =

be a pile for Uq(D(2)
4 ) given in Example 3.14. Then the following zigzag 3-strip

is the longest the one which we can pick out from S1 of S so that the remaining pile is connected,
we say S1

3,1, and we have

S\S1
3,1 = = S1

1.
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Remark A.6. Note that the decompositions of the piles given in Example A.3 and Example A.5 are
different from those given Example 3.5(a) and Example 3.14.
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