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Abstract—There have been lots of efforts on the construction
of quasi-cyclic (QC) low-density parity-check (LDPC) codes with
large girth. However, most of them focus on protographs with
single edges and little research has been done for the construc-
tion of QC LDPC codes lifted from protographs with multiple
(i.e., parallel) edges. Compared to single-edge protographs, mul-
tiple-edge protographs have benefits such that QC LDPC codes
lifted from them can potentially have larger minimum Hamming
distance. In this paper, all subgraph patterns of multiple-edge
protographs, which prevent QC LDPC codes from having large
girth by inducing inevitable cycles, are fully investigated based
on a graph-theoretic approach. By using combinatorial designs, a
systematic construction method of multiple-edge protographs is
proposed for regular QC LDPC codes with girth at least 12 and
another method is proposed for regular QC LDPC codes with
girth at least 14. Moreover, a construction algorithm of QC LDPC
codes based on certain liftings of multiple-edge protographs is
proposed and it is shown that the resulting QC LDPC codes have
larger upper bounds on the minimum Hamming distance than
those lifted from single-edge protographs. Simulation results are
provided to compare the performance of the proposed QC LDPC
codes with progressive edge-growth (PEG) LDPC codes and with
PEG QC LDPC codes.

Index Terms—Design theory, girth, inevitable cycle, minimum
Hamming distance, multiple-edge protograph, quasi-cyclic (QC)
low-density parity-check (LDPC) codes.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes [1] have
been one of the major research topics in coding theory

over the past decade due to their near capacity-approaching per-
formance. Since low decoding complexity can be achieved by
various iterative decoding algorithms, LDPC codes have been
adopted in many practical applications. Especially, quasi-cyclic
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(QC) LDPC codes are well suited for hardware implementa-
tion using simple shift registers due to the regularity in their
parity-check matrices.
Thorpe [2] introduced the concept of protograph-based

LDPC codes, a class of LDPC codes lifted from protographs.
QC LDPC codes belong to the protograph-based LDPC codes
because they can be regarded as being lifted from protographs
using cyclic permutations. Therefore, the performance of QC
LDPC codes mainly depends on how to design their pro-
tographs as well as how to assign shift values that specify the
cyclic permutations.
The performance of LDPC codes under message-passing iter-

ative decoding algorithms depends on the girth of the codes be-
cause a message sent by a node along a cycle propagates back to
the node itself after some iterations, which causes dependences
amongmessages and performance degradation. Therefore, there
have been lots of efforts to construct QC LDPC codes with large
girth [3]–[12]. In [4], necessary and sufficient conditions on de-
termining the girth of QC LDPC codes from circulant permuta-
tion matrices have been derived and some families of QC LDPC
codes have been constructed. Most of QC LDPC codes with
large girth are constructed based on algebraic structures [3]–[7],
[9], [11] while some optimization algorithms and greedy search
algorithms are used to find QC LDPC codes with large girth [8],
[10], [12]. Various combinatorial designs have also been widely
used to construct QC LDPC codes in order to guarantee girth at
least 6 [7], [9], [13]–[15].
The girth of QC LDPC codes constructed from protographs

is determined by the structure of the protograph, the lift size,
and all the shift values. The papers [3], [5], [7], and [16] dis-
cuss an upper bound on the girth of QC LDPC codes, which de-
pends only on the structure of the protograph. Especially, in [5],
all substructures of multiple-edge protographs, which inevitably
give rise to cycles of length up to 12, are searched but no con-
struction method of multiple-edge protographs for QC LDPC
codes with large girth is provided. The paper [7] identifies all
substructures of single-edge protographs which inevitably give
rise to cycles of length up to 20 in QC LDPC codes, and by using
combinatorial designs, some single-edge protographs for girth
larger than or equal to 18 and other single-edge protographs for
girth larger than or equal to 14 are constructed.
Although the behavior of iterative message-passing decoders

is mostly dominated by the pseudoweight of pseudocodewords
[17], [18], the minimum Hamming distance still plays an
important role because it characterizes the undetectable errors
and provides an upper bound on the minimum pseudoweight
of a code. Smarandache and Vontobel [19] derived two upper
bounds on the minimum Hamming distance of QC LDPC
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codes, where one bound is applied when QC LDPC codes are
explicitly given and the other bound can be applied even when
only the protographs are given. It is shown by experiments
that these upper bounds are very close to the actual minimum
Hamming distance when the lift size for a protograph is large
enough. Also, through several examples in [19], we can see
that when the size and row- and column-weights of incidence
matrices of protographs are given, these two upper bounds
increase as the number of multiple edges increases in the
protographs. Therefore, these upper bounds can be increased
if multiple-edge protographs are used to construct QC LDPC
codes, compared to the case of single-edge protographs. These
two upper bounds are extended to cover puncturing cases and
tightened for some specific cases [20].
In this paper, multiple-edge protographs, which can be lifted

to QC LDPC codes with large girth, are investigated. A search
for all single- and multiple-edge subgraphs, which inevitably
generate cycles of certain lengths in QC LDPC codes, is sys-
tematically performed based on a graph-theoretic approach as
an extension of the results in [5], [7], and [16]. Construction
methods of multiple-edge protographs using various combina-
torial designs are proposed and a lifting algorithm to construct
regular QC LDPC codes with large girth is also proposed.
The remainder of the paper is organized as follows. Section II

introduces QC LDPC codes, protographs, and the concept of
inevitable cycles. In Section III, all single- and multiple-edge
subgraphs that generate inevitable cycles in QC LDPC codes
are fully searched. Based on these subgraph patterns, Section IV
describes a design method for multiple-edge protographs of reg-
ular QC LDPC codes having girth larger than or equal to 12. In
Section V, construction methods of multiple-edge protographs
are proposed for regular QC LDPC codes having girth 14 when
the variable node degree is 3 and they are generalized for reg-
ular QC LDPC codes with variable node degree larger than 3.
In Section VI, a construction algorithm of QC LDPC codes that
are lifted from multiple-edge protographs is proposed. It is also
shown that the proposed QC LDPC codes have larger upper
bounds on the minimum Hamming distance than those lifted
from single-edge protographs and the performance of the pro-
posed QC LDPC codes is verified via numerical analysis. Fi-
nally, the conclusions are provided in Section VII.

II. INEVITABLE CYCLES OF QC LDPC CODES

A. QC LDPC Codes

Let be a binary LDPC code whose parity-check matrix
is a array of circulants or zero matrices as follows:

...
...

. . .
...

where a circulant is defined to be a matrix where each row
is cyclically shifted to the right by one position with respect
to the row above it. Such an LDPC code is called quasi-cyclic
because applying circular shifts to the length- subblocks of

a codeword gives another codeword. Also, a bipartite graph,
which has as its incidence matrix, is called the Tanner graph
of .
The weight of a circulant is defined as the number of the

nonzero elements in its zeroth column and denoted by .
A circulant is entirely described by the positions of the nonzero
elements in its zeroth column. Let , , be the
index of the st element in the zeroth column. Then, the
shift value (s) of a circulant is/are defined as the index (indices)
of the nonzero element(s) in the zeroth column. Note that a shift
value takes value in the set , where
is used as the shift value of a zero matrix .
QC LDPC codes can be fully represented by binary poly-

nomials as shown, e.g., in [19]. This polynomial representa-
tion is based on the isomorphism between binary circu-
lants and the polynomial ring . The polynomial
parity-check matrix of is defined as

...
...

. . .
...

where and
is the element with index in the zeroth column of . We
can see that the number of nonzero terms in , which is
denoted by , is equal to and the degrees of
all nonzero terms in are equivalent to the shift values of

.
The protograph [2] of a QC LDPC code is a bipartite graph

whose incidence matrix is , where .
There are two kinds of nodes in the protograph: namely, check
nodes correspond to rows in and variable nodes correspond to
columns in . The Tanner graph of is constructed by copying
the protograph times and cyclically permuting the same
edges. (If , there are multiple edges between the check
node with index and the variable node with index in the pro-
tograph.) Such a copy-and-permute operation is called lifting
and the length of a subblock is also called the lift size of . A
shift value is assigned to each edge in the protograph so that an
edge is lifted by using the cyclic permutation with the assigned
shift value to generate . Note that, because of the equivalence
of a bipartite graph and its incidence matrix, in this paper, the
term “protograph” refers to both of them.

B. Inevitable Cycles

Necessary and sufficient conditions on the existence of cycles
in the Tanner graph of QC LDPC codes are derived in terms of
shift values in [4]. These conditions are only applied to single-
edge protographs but they can be naturally extended to cover the
case of multiple-edge protographs as in the upcoming Lemma 1.
Let denote a graph with a vertex set and an

edge set . Let represent a vertex (an edge) in . A
walk is an alternating sequence of vertices and edges, denoted by

, where the vertices and are
the endpoints of the edge . The length of a walk , denoted
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Fig. 1. Examples of inevitable cycles in QC LDPC codes. (a) Inevitable cycle
of length 12. (b) Inevitable cycle of length 10.

by , is defined as the number of edges in . A walk is
closed if and a walk is nonreversing if
for . A closed walk is said to be tailless if

. In this paper, only connected graphs are considered
and a cycle is defined as a closed walk whose traversed vertices
and edges are all distinct. Also, the length of the shortest cycle
in a graph is called the girth of the graph.
Cycles in the Tanner graph of a QC LDPC code are

closely related to tailless nonreversing closed (TNC) walks
in its protograph. The shift sum of a walk in a pro-
tograph, denoted by , is defined as the alternating
sum of shift values assigned to the edges in , that is,

. Lemma 1 shows
necessary and sufficient conditions for a cycle of a certain
length in the Tanner graph of a QC LDPC code to be generated
from the underlying (single-edge or multiple-edge) protograph.
Its proof is directly derived from the results in [4] and [16].
Lemma 1: Let denote the set of all TNC walks of length
in a protograph. Suppose that a QC LDPC code is lifted from
the protograph with lift size . Then, the Tanner graph of this
QC LDPC code has a cycle of length if and only if there exists
a TNC walk such that and does
not contain any shorter TNCwalks whose shift sum equals zero.
The girth of QC LDPC codes is determined by the structure

of the protograph, the lift size, and all the shift values assigned
to the edges. However, we can derive an upper bound on the
girth of QC LDPC codes lifted from protographs without con-
sidering the lift size and the shift values based on the concept of
inevitable cycles [3], [5], [7].
Definition 1: An inevitable cycle induced by a protograph

is defined as a cycle that always appears in the QC LDPC code
lifted from the protograph regardless of the lift size and the shift
values.
It is well known that a QC LDPC code whose protograph has

the 2 3 (or 3 2) all-one matrix as a submatrix must have in-
evitable cycles of length 12 [3], [4]. In other words, the girth
of this QC LDPC code is less than or equal to 12. Such an in-
evitable cycle of length 12 is depicted in Fig. 1(a). In QC LDPC
codes lifted from multiple-edge protographs, inevitable cycles
can also appear. As an example, Fig. 1(b) shows an inevitable
cycle of length 10, which appears in QC LDPC codes lifted from
protographs with double edges. We can see that for a certain
subgraph structure, inevitable cycles are always generated no
matter what shift values are assigned to the edges.

III. SUBGRAPHS OF MULTIPLE-EDGE PROTOGRAPHS
INDUCING INEVITABLE CYCLES

In order for QC LDPC codes to have large girth, their pro-
tographs should not contain subgraphs which induce short in-
evitable cycles in the QC LDPC codes, and thus, it is neces-
sary to find out all such subgraphs. From now on, the terms
“an inevitable-cycle-inducing (ICI) subgraph of length ” will
refer to a subgraph inducing inevitable cycles of length . In
[5], ICI subgraphs of length up to 12 in single- and mul-
tiple-edge protographs were fully investigated and, in [7], all
ICI subgraphs of lengths 12 to 20 in single-edge protographs
were searched by a brute force method. After that, a graph-the-
oretical framework was provided in [16], which can be used
to search all single- and multiple-edge ICI subgraphs. In this
section, we will search and provide all ICI subgraphs as an
extension of [5], [7], and [16].
Define as the set of all irreducible ICI subgraphs of length
satisfying the following conditions.
1) A subgraph induces inevitable cycles of length
in the QC LDPC code.

2) A subgraph does not contain any proper subgraph,
which induces inevitable cycles of length less than or equal
to .

3) The number of rows in a subgraph is not larger
than that of columns.

4) From each isomorphic class in , only one protograph
must be chosen as a representative of that class.

The conditions 1) and 2) guarantee that if a protograph does not
have any subgraph for , the QC LDPC code
appropriately lifted from this protograph has girth larger than or
equal to . A subgraph is irreducible because con-
dition 2) implies that if any edge is removed from , it cannot
induce inevitable cycles of length . Conditions 3) and 4) are
required to choose a unique representative for each isomorphic
class of subgraphs inducing inevitable cycles of length .
For identifying , we need to investigate the relationship

between inevitable cycles and TNC walks. A TNC walk of
a protograph is called abelian-forcing[16] if for each edge in
, the number of traversals of the edge in a direction is the

same as that in the opposite direction. Clearly, the shift sum of
abelian-forcing TNC walks is zero regardless of the shift values
of their edges. An abelian-forcing TNC walk is said to be simple
if it does not contain any shorter abelian-forcing TNC subwalk.
It is obvious that inevitable cycles of QC LDPC codes are gen-
erated from simple abelian-forcing TNC (SAF-TNC) walks in
protographs.
Lemma 2: Any abelian-forcing TNC walk contains at least

two different cycles.
Proof: Consider an abelian-forcing TNC walk

. There exist and with
such that , i.e., . Also, there exists a path

in such that all vertices from to
are distinct. Since is nonreversing and tailless, that path

forms a cycle, and thus, contains at least one cycle.
Assume that contains only one cycle. Since is abelian-

forcing, there exists a path in
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Fig. 2. Theta graph and dumbbell graph. (a) Theta graph. (b) Dumbbell graph.

such that for all . This contradicts
the assumption that contains only one cycle because in , a
vertex cannot go back to itself without reversing. Therefore,
contains at least two different cycles.
As in [16], two classes of graphs are defined as illustrated in

Fig. 2.
Definition 2 ([16]): An -theta graph, denoted by

, is a graph consisting of two vertices, each of de-
gree three, that are connected to each other via three disjoint
paths , , of length , , and , respec-
tively. A -dumbbell graph, denoted by , is
a connected graph consisting of two edge-disjoint cycles and
of length and , respectively, that are connected

by a path of length .
Lemma 3: Connecting two different cycles always results in

either a theta graph or a dumbbell graph.
Proof: Let and denote two different cycles. Then,
and can be connected in only three ways: The number

of common vertices in and is 1) 0, 2) 1, or 3) larger than
or equal to 2. For cases 1) and 2), and form
with or , respectively. In case 3), is
formed where , , and is
the number of the common vertices.
Lemma 4: The lengths of SAF-TNC walks in

and are and ,
respectively.

Proof: Consider in Fig. 2(a). Let and
denote the left and the right vertices of degree three, respec-
tively, and let , , and be the paths from to .
Also, let , , and denote the reverse paths of , ,
and , respectively. Then, we can see that the SAF-TNC walk

has the length and any other
SAF-TNC walks possibly generated in have the
same length.
Similarly, consider in Fig. 2(b). Let and

denote the left and the right vertices of degree three, respec-
tively, and let and be the cycles rotating clockwise from
and , respectively, and let be the path from to .

Also, let , , and denote the reverse paths of , ,
and , respectively. Then, we can see that the SAF-TNC walk

has the length and any other
SAF-TNC walks possibly generated in have the
same length.
Note that if any edge is removed from or

, those inherent SAF-TNC walks disappear, and
thus, and are of irreducible form.

Now, we will check whether it is sufficient to only consider
theta graphs and dumbbell graphs for .
Lemma 5: Suppose that a graph contains at least one

theta graph or one dumbbell graph as its proper subgraphs. The
shortest SAF-TNC walk in occurs only in a theta graph or a
dumbbell graph.

Proof: Let denote the shortest SAF-TNC walk and as-
sume that traverses all edges in . From Lemmas 2 and 3,
should contain a theta graph or a dumbbell graph. Consider

the following two cases: 1) has some theta graphs, 2) does
not have any theta graphs.
In case 1), we first note that is at least twice the number

of edges in due to the definition of abelian-forcing TNC
walks. The SAF-TNC walk only generated by a theta graph in
is shorter than because the SAF-TNC walk has the length

exactly twice the number of edges in the theta graph. This con-
tradicts the assumption that is the shortest one. In case 2),
we note that a SAF-TNC walk should traverse the edge not be-
longing to any cycles at least four times because if the walk
traverses the edge twice, the walk will include two SAF-TNC
walks each of which occurs on different sides of the edge. Since
cycles in are connected with each other via only one path
which does not belong to any cycles, the SAF-TNC walk only
generated by a dumbbell graph in is shorter than . This con-
tradicts the assumption that is the shortest one. Therefore,
occurs only in a theta graph or a dumbbell graph.
In the next theorem, will be identified.
Theorem 1: is the collection of all ’s with

and all ’s with
.

Proof: From Lemmas 2 and 5, any subgraph
should be either a theta graph or a dumbbell graph. Therefore,
the proof is completed by Lemma 4.
Remark 1: Lemmas 3 and 4 are known results from [16] and

Theorem 1 is similar to Theorem 4.5 in [16]. However, in this
paper, is formally defined as the set of all irreducible ICI
subgraphs of length and it is clearly shown in Theorem 1
that is equivalent to a collection of all ’s with

and all ’s with
. For a natural flow from the definition of to The-

orem 1, we supplement Lemmas 2 and 5 which are not found in
[16].
Now, we can find all single- and multiple-edge ICI subgraphs

from and . A representative of an iso-
morphic class in can be uniquely chosen by selecting param-
eters satisfying the following conditions.
1)
2) , , are all even or all odd.
3) ,
4) and are even.
Note that the second and the fourth conditions follow from

the fact that each subgraph is a bipartite graph.
According to Theorem 1, each integer solution of the equa-

tions and yields an
ICI subgraph in . Note that all ICI subgraphs of any length
can be easily found and and are ICI sub-
graphs having multiple edges. All ICI subgraphs of length up
to 20 are listed as a form of theta or dumbbell graphs in Table I
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TABLE I
ALL ICI SUBGRAPHS OF LENGTH UP TO 20 (T: THETA GRAPH, D: DUMBBELL GRAPH, S: SINGLE EDGE, M: MULTIPLE EDGE)

and all ICI subgraphs of length up to 14 are listed as a form of
incidence matrices as follows:

where the single-edge ICI subgraphs in Table I were also listed
in [7] and all ICI subgraphs of length up to 12 were also listed in
[5]. Note that the transpose of each ICI subgraph also generates
inevitable cycles of the same length, and thus, will be used
to denote both the listed matrices and their transposes.

IV. CONSTRUCTION OF REGULAR PROTOGRAPHS AVOIDING
INEVITABLE CYCLES OF LENGTH LESS THAN 12

In this section, we will construct regular protographs that
avoid inevitable cycles of length less than 12 in QC LDPC
codes. Consider a regular protograph of which the
column- and row-weights are and , respectively, where

. If triple or more edges exist in the protograph, the girth
of the lifted QC LDPC code is limited to 6 because of .
Therefore, only protographs with single and double edges will
be considered in this paper. Let denote the number of double
edges in the protograph.
Most of the considered protographs have at least two cycles,

and thus, they always induce some inevitable cycles according
to Lemmas 3 and 4. Note that even if a protograph is designed
not to contain any with so that inevitable cycles of

length less than are avoided, this protograph may have some
inevitable cycles of length larger than or equal to .
To construct protographs that do not induce inevitable cycles

of length less than 10, a pair of 2’s should not appear in any row
or in any column of the protograph to avoid . As shown in the
next lemma, the number of double edges in a protograph should
be upper bounded by the number of check nodes to construct
QC LDPC codes with girth larger than or equal to 10.
Lemma 6: If a protograph does not induce inevitable

cycles of length less than 10, then .
Proof: If , there always exists a row that has at least

two 2’s, and thus, the protograph contains . This contradicts
the assumption.
In order for QC LDPC codes to have girth larger than or equal

to 12, their protographs should not contain , , and .
We will explain that an incidence matrix of a balanced ternary
design (BTD) with and is also the incidence
matrix of a regular protograph with that does not induce
inevitable cycles of length less than 12.
Definition 3 ([21]): A BTD is an ar-

rangement of elements into multisets, or
blocks, each of cardinality , , satisfying that 1) each
element appears times altogether, with mul-
tiplicity one in exactly blocks, with multiplicity two in
exactly blocks and 2) every pair of distinct elements appears
times, i.e., if is the multiplicity of element in the
th block, then for any elements and with , we have

.
Note that a incidence matrix of a BTD

is simply expressed as and
the column- and row-weights are and , respectively.
Theorem 2: A incidence matrix of a BTD

with and does not
contain , , and .

Proof: Let be an incidence matrix of a BTD
with and . Since every

element of this BTD can have multiplicity up to two, does
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TABLE II
REGULAR PROTOGRAPHS WITH AVOIDING INEVITABLE CYCLES OF

LENGTH LESS THAN 12 CONSTRUCTED FROM BTDS FOR

Fig. 3. Two regular protographs with and avoiding inevitable
cycles of length less than 12. (a) 6 12. (b) 6 8.

not appear in . The condition implies that 2
appears once in each row of and implies that each
column of can have at most one 2. Hence, does
not contain . Since a pair of distinct elements will appear at
least three times in this BTD if has as its submatrix,

does not contain .
All possible BTDs with are given in [22]. Table II lists

all parameters of regular protographs with avoiding
inevitable cycles of length less than 12 constructed from BTDs.
Example 1: An incidence matrix of BTD

is shown in Fig. 3(a) and we can see that any ICI subgraph
for does not appear.
As shown in Table II, the incidence matrices of BTDs with

and do not provide a sufficiently large number
of regular protographs. In fact, the condition that every pair of
distinct elements appears exactly twice is not necessary and the
condition that each pair of distinct elements appears at most
twice is enough for constructing regular protographs avoiding
inevitable cycles of length less than 12. Besides the regular pro-
tographs listed in Table II, there are many regular protographs
with avoiding inevitable cycles of length less than 12.
Example 2: We want to find the smallest regular protograph

with and avoiding inevitable cycles of length
less than 12. We first derive a necessary condition for the exis-
tence of such a regular protograph by regarding the protograph
as an incidence matrix of a block design as shown in Definition
3. There are total pairs of distinct elements in ,
and, on the other hand, the number of all possible pairs of dis-
tinct elements in such a block design is .
Since every pair of distinct elements appears at most twice, that
is, does not appear in the protograph, we have the necessary
condition

(1)

For , due to and , the necessary condition
(1) is not satisfied. For , by counting the edges in the pro-
tograph, the equality , that is, holds. Since

Fig. 4. Structure of regular protographs avoiding inevitable cycle of length less
than 14.

the smallest integer root of this equality is , we
have and (1) is not satisfied. Similarly, for ,
should be larger than or equal to 10 and (1) is not satisfied either.
For , from , the smallest possible protograph

has size 6 8 and it satisfies (1). By first constructing a 6 6
regular matrix where each column and each row has one 2 and
then properly adding two columns only consisting of 0’s and
1’s, a 6 8 regular protograph can be constructed as given in
Fig. 3(b). This is the smallest regular protograph with
and avoiding inevitable cycles of length less than 12.

V. CONSTRUCTION OF REGULAR PROTOGRAPHS AVOIDING
INEVITABLE CYCLES OF LENGTH LESS THAN 14

Now, we will focus on the construction of regular multiple-
edge protographs avoiding inevitable cycles of length less than
14. By avoiding only the third ICI subgraphs of , a sys-
tematic construction method of single-edge regular protographs
avoiding inevitable cycles of length less than 14 was provided
in [7]. Since multiple-edge protographs are considered, we have
to additionally avoid , , and the remaining two ICI sub-
graphs of , which makes the problem more complicated.
In this section, systematic construction methods for multiple-
edge protographs are proposed based on various combinatorial
designs.
Consider a regular protograph whose column- and

row-weights are and , respectively. We remind the reader
that denotes the number of double edges in the protograph.
Assume that because regular QC LDPC codes with

are not used in general due to their poor performance.
Using row and column permutations, every regular proto-

graph not inducing inevitable cycles of length less than 14 can
be represented as in Fig. 4. The submatrix has ’s
as its diagonal elements and the other elements of should be
zero to avoid the first ICI subgraph of . is a
submatrix consisting of columns of weight . By appro-
priate column permutation of all but and in the protograph,
all the columns whose lower parts have nonzero weight form
the submatrix , and the remaining columns form the
submatrix , where has column-weight and is
an all-zero matrix. Let and be and ma-
trices, respectively.
By Lemma 6, cannot be larger than . Moreover, if the

regular protographs, which do not induce inevitable cycles of
length less than 14, are considered for , the following
theorem provides an additional condition on .
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Theorem 3: Assume that a regular protograph with
and does not induce inevitable cycles of length less than
14. Then, .

Proof: The inequality holds by Lemma 6. The
protograph with should be of the form from
Fig. 4 and the submatrix is no longer a diagonal matrix due
to . Therefore, should contain the first ICI subgraph of

because each column of also contains exactly one 1, and
hence, should be less than .
Now suppose that . The protograph has the form

of Fig. 4 and is the all-1 matrix. Due to ,
cannot be less than . If , becomes the

all-1 matrix and each column of has a pair
of 1’s, which generates in the union of , , , and . If

, the protograph is made up of only , , , and ,
and the size of is because the
column- and row-weights of are 3 and , respectively.

Since should not have as its submatrix to avoid the

second and the third ICI subgraphs of in the union of ,
, and , a pair of 1’s in the same column can appear at most

once in . To satisfy this condition, the number of all possible
columnwise pairs of 1’s should be larger than or equal to the
number of actual columnwise pairs of 1’s in . Therefore, we
have , i.e., . Due to

, this contradicts the assumption of .
Based on Theorem 3, the case of and

is considered in Section V-A and the construction method of
regular protographs for and is extended not
only to the case of and but also to the case
of in Section V-B.

A. Regular Protographs With and

In this section, we elaborate the construction of regular pro-
tographs with and . Moreover, we derive
necessary conditions on and for the existence of regular
protographs with and which avoid in-
evitable cycles of length less than 14 as follows.
Theorem 4: Assume that a regular protograph with ,

, and does not induce inevitable cycles of
length less than 14. Then, and should satisfy either
1) , , and ; or
2) , , and ; or
3) , , and ; or
4) , , and ; or
5) , , and ; or
6) , , and .
Proof: By counting the edges in the protograph, we have

. Since and is an integer, .
Also, the submatrix in Fig. 4 is a matrix consisting
of weight-1 columns. Consider two cases: 1) contains an all-1
row, 2) does not contain an all-1 row.
For case 1), if , the ICI subgraph appears in the

union of , , , and . If , is a matrix
with an all-1 row at the complementary row position from the
all-1 row of . Then, there exist a row containing a pair of 1’s
in because has column-weight 2 and so has a total of

TABLE III
ALL POSSIBLE REGULAR PROTOGRAPHS AVOIDING INEVITABLE CYCLES OF
LENGTH LESS THAN 14 WHEN AND FOR

’s, which generates the second ICI subgraph of
in the union of , , and . Therefore, case 1) is impossible.
For case 2), if a column of has a pair of 1’s, the column

including this pair in the protograph and another column in the
union of and generate . Therefore, no column of and
can have a pair of 1’s. Since the number of columns in is

and the total number of columns in and is , we
have , where the equality holds when and
do not appear in the protograph. If a row of has a pair of 1’s,
either or the second ICI subgraph of must occur in the
union of , , , and . Therefore, each row of can have
at most one 1 so that the number of 1’s in cannot exceed the
number of rows in . Since the column-weight of is 2 and
has ’s, we obtain from

. Finally, it remains to determine the

structure of such that the submatrix does not appear

in the union of and to prevent the second ICI subgraph of
. As in the proof of Theorem 3, by counting the number of

columnwise pairs of 1’s in and , we obtain the condition
yielding

.
The aforementioned conditions on and are summarized

as follows:

Since and are integers, the aforementioned conditions
reduce to simple linear relations with respect to modulo 6 as
given in the theorem statement.
In Theorem 4, all possible regular protographs avoiding in-

evitable cycles of length less than 14 are provided for
and , and Table III only lists those for among
them.
Now, we focus on the existence problem and the construction

of the regular protographs with the parameters found in The-
orem 4. Note that the proposed protographs we will construct
may not be all instances with the parameters in Theorem 4 but
we provide at least one instance per each set of parameters and
also note that , , , and

. For given and , the matrices , , ,
and can be constructed step by step as follows.
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1. For constructing and at once, an incidence matrix of a
combinatorial block design suitably chosen for each case in
Theorem 4 is modified such that it has size ,
whereby the columns corresponding to have disjoint
pairs of 1’s (these pairs have no overlap at all), the other
columns have weight 3, all rows have weight , and
any columnwise pair of 1’s appears at most once to avoid
the second and the third ICI subgraphs of in .

2. In , 1’s are placed such that columns have 1’s in
the first row and the other columns have 1’s in the second
row.

3. For constructing , 1’s are placed such that the union of
, , , and does not contain .

Note that the placement of 1’s in the third step is guaranteed by
the bound in the proof of Theorem 4.
Since the conditions in Theorem 4 are necessary ones for the

existence of , a protograph may not exist for some parameter
values. However, as we show in the Appendix, there exist pro-
tographs for all parameter values given in Theorem 4. We do
this by providing explicit combinatorial design-based construc-
tion methods for the submatrices and of the protographs.

B. Regular Protographs With and , and
With

Regular protographs that do not induce inevitable cycles of
length less than 14 for the case of and and
the case of also have the same structure as the matrix
in Fig. 4 and the construction method in the previous section
can be similarly applied to these cases. However, we do not
elaborate on deriving necessary conditions in the sameway used
in the proof of Theorem 4 and providing specific construction
methods for all cases because they have to be done case by case
and are very lengthy. Instead, for given , , , , and , we
provide a general framework for checking the constructibility
and for constructing each submatrix.
First, some basic conditions on the parameters , , , ,

and are provided to determine whether a regular protograph
with the given parameters can be potentially constructed. In ,
the number of all possible columnwise pairs of 1’s should be
larger than or equal to the number of actual columnwise pairs
of 1’s, that is, . Also, the last rows of
the protograph must have ’s and the matrix must
have ’s, and thus, we have .
Second, consider constructing of size .

The matrix has the constant row-weight and is not
allowed to have any repeated columnwise pairs of 1’s in order to
avoid the second and the third ICI subgraphs of in .
Moreover, has constant column-weight . The matrix
can be constructed from an incidence matrix of block designs
such as , configurations , PBD , group
divisible designs (GDD) [21] and so on because they do not have
any repeated columnwise pairs of 1’s. If an incidence matrix of
an or a configuration has the desired size of

, it can be directly used as whereby is an empty
matrix, i.e., . Otherwise, an incidence matrix of some
block designs can be used as by doing a simple modifi-
cation. Note that an incidence matrix of PBDs or GDDs may

Fig. 5. 15 30 regular protograph with and .

not have a constant row-weight, while an incidence matrix of
or configurations is always regular.

To obtain from an incidence matrix of different size,
we may use the following modification schemes.
1) Remove some rows.
2) Remove a row and some columns incident to the row.
3) Remove some parallel classes.
4) Delete some 1’s and insert some columns such that
does not have any repeated columnwise pairs of 1’s.

5) Insert some parallel classes such that does not have
any repeated columnwise pairs of 1’s.

By properly applying these modification schemes, an incidence
matrix is changed into having no repeated columnwise
pairs of 1’s and proper size. Moreover, Schemes 1), 3), and 5)
change all row-weights by the same amount and Schemes 2) and
4) flexibly control row-weights according to how the columns
and the 1’s are selected. Therefore, we can freely use the afore-
mentioned modification schemes until the desired size and the
constant row-weight of are achieved.
For given , , , , and , it may be possible for

to take various forms, which implies that each may have a
different number of columns and a different distribution of 1’s.
Therefore, some bounds on , or the number of columns of ,
need to be satisfied in order for a matrix to exist. Since
the number of 1’s in is and each
column in can have weight from 1 to , we have

which yields
. Therefore, when

is constructed by selecting and modifying an incidence matrix
of a block design, the aforementioned bound on must be
considered.
Finally, consider constructing of size and

of size . If is already constructed, the column-
weights of are also determined and 1’s in should be located
to avoid the second and the third ICI subgraphs of in the
union of , , and . Then, for a given , ’s in
should be located such that the union of , , and does not
contain the second and the third ICI subgraphs of , and the
union of , , , and does not contain while enforcing
row-weights of to be and column-weights of to be

.
For given parameters , , , , and , a general pro-

cedure for constructing regular protographs, which avoid in-
evitable cycles of length less than 14, is summarized as follows.
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Fig. 6. 28 49 regular protograph with and .

1. Check if the parameters satisfy the conditions
and . If the conditions

are not satisfied, stop the procedure.
2. Select an satisfying

.
3. Construct from an incidence matrix of a proper
block design.

4. Construct satisfying the weight constraints such that
the union of , , , and does not have and as
its subgraph.

Example 3: Consider the construction of a 15 30 regular
protograph with , , and . The given
parameters satisfy the conditions and

. The 12 18 matrix has
row-weight 4 and satisfies . An incidence
matrix of a symmetric configuration is chosen for the
construction of , which is constructed by removing
two parallel classes from a 12 20 incidence matrix of the
configuration in Fig. 11(b). By inserting a parallel
class consisting of six weight-2 columns to an incidence matrix
of the symmetric configuration , with is
constructed, where any repeated columnwise pairs of 1’s do not
appear. Since the column-weight of is 2, the 3 6 matrix
should have column-weight 1. Let each row of have two 1’s.
Then, should have column-weight 1 and row-weight 4, and
the 1’s in can be properly distributed so that and
do not appear in the union of , , , and . The resulting
15 30 regular protograph with , , and
is shown in Fig. 5.
Example 4: Consider the construction of a 28 49 regular

protograph with , , and . We can
check that those parameters satisfy the two necessary condi-
tions for the construction and . For constructing

a matrix of size 21 28, an incidence matrix of a sym-
metric configuration is considered. We can find a parallel
class consisting of seven weight-3 columns such that if those
seven columns are inserted to the incidence matrix, no repeated
columnwise pairs of 1’s appear. Thus, we obtain with

. The 7 7 matrix should have column-weight 1 and
its row-weight can be set to 1. The matrix has size 7 21,
column-weight 2, and row-weight 6. Due to , can
be constructed not to have any repeated columnwise pairs of
1’s. Also, we can choose so that it avoids in the union of
, , , and . The resulting 28 49 regular protograph with

, , and is shown in Fig. 6.

VI. CONSTRUCTION OF QC LDPC CODES AND THEIR
MINIMUM HAMMING DISTANCES

A. Construction of QC LDPC Codes From the Proposed
Protographs

To verify the effectiveness of the proposed protographs, QC
LDPC codes will be constructed by determining the lift size and
assigning an appropriate shift value to each edge of a proto-
graph. Given a protograph, it is not easy to find all shift values
even for a moderate lift size such that the girth of the QC LDPC
code is the same as the length of the shortest inevitable cycle.
Huang et al. [10] proposed a search algorithm for small lift size
and a shift value assignment scheme to achieve the target girth
based on a greedy search. This algorithm was originally de-
signed for single-edge protographs. However, by a slight mod-
ification, this algorithm can be extended to the case of mul-
tiple-edge protographs.
Consider a protograph with the column-weight ,

the row-weight , and the lift size . Each column of has
shift values and let , , denote the th shift
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value of the th column in . Our goal is to determine all shift
values and search the minimum when a protograph and
a target girth of QC LDPC codes are given. Let denote
the set of all TNC walks of length in . Then, by Lemma
1, the condition for achieving the target girth of QC LDPC
codes is that for any , , the shift
sum satisfies . However, it requires too
much computational complexity to find and the minimum
satisfying the aforementioned condition by considering the

entire search space of and .
In order to reduce the search space of shift values, let

as in [10], where is the st ele-
ment of the set which is constructed
from by specifying , , to be

. Thus, we only
need to find values of instead of values of , and

is typically chosen in an interval around zero. Moreover,
for further reduction of computational complexity, is deter-
mined in a greedy manner, that is, shift values of the th column
in are determined by considering only the first columns in
. For this, let denote the set of all TNC walks of length
in the matrix consisting of the first columns of .
For a given target girth , if is already determined such

that for every , , the
minimum , denoted by , can be suboptimally determined
as .
Note that for any , the target girth is achieved.

Algorithm 1: Greedy Search for the Minimum Lift Size
and Shift Values

INPUT: Target girth , protograph, search bound

OUTPUT: and

INITIALIZATION: ,
for

MAIN ROUTINE

for to begin

for to begin

Let for .

If for every , ,

.

Otherwise, .

end

Select the minimum and save the minimum
to and also save the argument to .

If there are multiple minima, randomly pick any one.

end

An algorithm to construct QC LDPC codes of moderate
length by determining all shift values and searching the min-
imum lift size, called Algorithm 1, is provided as follows. If the
target girth is set to the length of the shortest inevitable cycle,
we can generate QC LDPC codes of moderate length with the
maximum achievable girth from the proposed protographs.
Note that the computational complexity of Algorithm 1 is
the same for both single-edge protographs and multiple-edge
protographs under the same parameter values.
Four QC LDPC codes are generated by using Algorithm

1. From the 9 15 protograph in Fig. 13, a
QC LDPC code with girth 14, denoted by Proposed Code
1, is constructed, which has and

. From the 9 12 protograph in Fig. 17(b),
a QC LDPC code with girth 14, denoted by
Proposed Code 2, is constructed, which has and

.
From the 6 12 protograph in Fig. 3(a), a
QC LDPC code with girth 12, denoted by Proposed
Code 3, is constructed, which has and

. From the
6 8 protograph in Fig. 3(b), a QC LDPC code with
girth 12, denoted by Proposed Code 4, is constructed, which
has and .

B. Upper Bounds On the Minimum Hamming Distance of the
Proposed QC LDPC Codes

Smarandache and Vontobel [19] derived two upper bounds on
the minimumHamming distance of QC LDPC codes.While one
bound needs the entire code specification, e.g., the structure of
the protograph, the lift size, and the shift values, the other bound
only requires knowledge of the protograph.
These two upper bounds are shown in Theorems 5 and 6,

and they are directly derived by finding some low-weight code-
words as in Lemma 7. Let denote the submatrix of that
contains only the columns of whose index appears in the set
. Also, recall that the polynomial parity-check matrix is
defined as , where

, and is defined as the number of
nonzero terms in .
Definition 4 ([19]): The permanent of an matrix
over some commutative ring is defined to be

where the summation is over all permutations on the set
.

Lemma 7 ([19]): Let be a binary QC LDPC code defined
by a polynomial matrix with lift size . Let be an
arbitrary size- subset of and let

, where is a polynomial over
defined by

if
otherwise.

Then, is a codeword of .
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Fig. 7. Two single-edge regular protographs with avoiding inevitable
cycles of length less than 14. (a) 9 15. (b) 9 12.

Theorem 5 ([19]): Let be a binary QC LDPC code defined
by a polynomial matrix with lift size . Then, the
minimum Hamming distance of is upper bounded as

(2)

where the operator gives back the minimum value of all
nonzero entries in a list of values.
Theorem 6 ([19]): Let be a binary QC LDPC code lifted

from a protograph . Then, the minimum Hamming dis-
tance of is upper bounded as

(3)

Theorems 5 and 6 imply that for given , , , and , these
two upper bounds on the minimum Hamming distance of QC
LDPC codes possibly increase as the number of multiple edges
in the protograph increases, which is supported by examples for
some regular protographs in [19]. Note that in general the upper
bound in (2) approaches the upper bound in (3) for a large and
proper shift values.
Consider the (15000, 6000) Proposed Code 1. The upper

bounds in (2) and (3) for this code are 246 and 256, respectively.
For comparison, a QC LDPC code with the same parameter
values is generated from the 9 15 single-edge regular pro-
tograph in Fig. 7(a) by using Algorithm 1. This single-edge
protograph is constructed by attaching the last three columns
to an incidence matrix of to avoid inevitable cycles
of length less than 14. The upper bounds in (2) and (3) for this
code are 218 and 230, respectively.
Consider the (3600, 900) Proposed Code 2. The upper bounds

in (2) and (3) for this code are 362 and 416, respectively. For
comparison, a QC LDPC code with the same parameter values
is generated from the 9 12 single-edge regular protograph
in Fig. 7(b) by using Algorithm 1. By using the construction
method in [7], this single-edge protograph is constructed by
concatenating an incidence matrix of a configuration
and cyclically row-shifted matrix of it. The upper bounds in (2)
and (3) for this code are 314 and 384, respectively.
Consider the (7200, 3600) Proposed Code 3. The upper

bounds in (2) and (3) for this code are all 68. For comparison,
a QC LDPC code with the same parameter values is generated
from the 6 12 single-edge regular protograph in Fig. 8(a) by
using Algorithm 1. This single-edge protograph is the best one

Fig. 8. Two single-edge regular protographs with avoiding inevitable
cycles of length less than 12. (a) 6 12. (b) 6 8.

of the randomly constructed protographs in the sense of upper
bounds on the minimum Hamming distance. The upper bounds
in (2) and (3) for this code are both 56.
Finally, consider the (800, 200) Proposed Code 4. The upper

bounds in (2) and (3) for this code are 130 and 174, respec-
tively. For comparison, a QC LDPC code with the same param-
eter values is generated from the 6 8 single-edge regular pro-
tograph in Fig. 8(b) by using Algorithm 1. This single-edge pro-
tograph is the best one of the randomly constructed protographs
in the sense of upper bounds on the minimum Hamming dis-
tance. The upper bounds in (2) and (3) for this code are 98 and
110, respectively.
The aforementioned results clearly show that two upper

bounds (2) and (3) on the minimum Hamming distance of QC
LDPC codes are affected in a positive way by using double
edges in the protographs. In general, a multiple-edge protograph
is more difficult to design than a single-edge protograph under
the condition that they avoid the shortest inevitable cycles of
the same length. However, if multiple-edge protographs are
successfully constructed to avoid inevitable cycles of undesir-
able lengths, QC LDPC codes lifted from them can potentially
give a larger upper bound on the minimum Hamming distance
than those lifted from single-edge protographs. Nevertheless,
note that these are just upper bounds on the minimumHamming
distance and it is plausible that the actual minimum Hamming
distance behaves similarly, but need not be so.

C. Comparison of Error Correcting Performance

The performance of four proposed QC LDPC codes, that is,
Proposed Codes 1–4 is compared with those of the progressive
edge-growth LDPC codes, called PEG 1–4 [23] and the QC
LDPC codes, called PEG QC 1–4 [24] with the same code
length, code rate, and column-weight. PEG LDPC codes and
PEG QC LDPC codes are well known to have good error
correcting performance comparable to those of random LDPC
codes. Note that the girths of such (15000, 6000), (3600, 900),
(7200, 3600), and (800, 200) PEG LDPC codes and PEG QC
LDPC codes are 12, 12, 12, and 10, respectively, and these
codes are obtained by the PEG algorithm to have as large girth
as possible.
The binary input additive white Gaussian noise (BIAWGN)

channel is used for simulations. The belief propagation (BP) de-
coding algorithm is used and the number of maximum iterations
is set to 100. The frame error rate (FER) performances of all the
aforementioned LDPC codes are compared in Fig. 9 and we can
see that the proposed QC LDPC codes show as good error cor-
recting performance as the PEG LDPC codes and the PEG QC
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Fig. 9. Error correcting performance comparison of the proposed QC LDPC
codes, the PEG LDPC codes, and the PEG QC LDPC codes.

LDPC codes. Note that the bit error rate curves behave qualita-
tively the same as the FER curves and they are omitted in this
paper.

VII. CONCLUSION

The subgraphs of protographs having multiple edges, which
cause inevitable cycles in the QC LDPC codes, are fully inves-
tigated by taking a graph-theoretic approach. For regular QC
LDPC codes with girth larger than or equal to 12, we propose
a systematic construction method of protographs that avoids in-
evitable cycles of length less than 12 by using BTDs. For reg-
ular QC LDPC codes with girth larger than or equal to 14, we
provide construction methods of all protographs with
column-weight three and the number of double edges by
using various block designs. These construction methods can
be extended to construct regular protographs with double edges
less than and with column-weight larger than three. Also,
a construction algorithm of QC LDPC codes from the proposed
protographs is provided based on the work in [10]. To check
the validity of the proposed QC LDPC codes, we show that
the proposed QC LDPC codes have larger upper bounds on the
minimum Hamming distance than the QC LDPC codes lifted
from single-edge protographs. However, these upper bounds
only serve as a surrogate and it is an open problem to derive
better upper and lower bounds on the minimum Hamming dis-
tance for the proposed codes. Finally, the error correcting per-
formance of the proposed QC LDPC codes is compared with
those of PEG LDPC codes and PEG QC LDPC codes via nu-
merical analysis.

APPENDIX
CONSTRUCTION OF AND OF THE PROTOGRAPHS

IN THEOREM 4

In this appendix, we show that there exist regular protographs
for all parameter values given in Theorem 4 by providing ex-
plicit combinatorial design-based construction methods for the
submatrices and of the protographs.
1) and .

In this case, we have , , and
. We need to construct of size

to avoid repeated columnwise pairs of

1’s, i.e., the subgraph . For this, the following Steiner

system can be used.
Definition 5 ([21]): A design is a pair ,

where is a -set of points and is a collection of -subsets
(blocks) of with the property that every -subset of is con-
tained in exactly blocks in . A Steiner system is
the design with .

Lemma 8 ([21]): There exists only when
.

The number of blocks in is . Since three
columns have weight two and the other columns have weight
three in the matrix , the

incidence matrix of
may bemodified to be used as by deleting one 1 from each
of well-chosen three columns and adding one column of weight
three. In order for such a modified matrix to be a valid ,
we should check whether three columnwise pairs of 1’s in the
weight-2 columns are disjoint, all rows have weight ,
and any columnwise pair of 1’s appears at most once.
Without loss of generality, let , , and

, , be three blocks of corre-
sponding to three columns containing a cycle of length 6. Three
disjoint blocks , , and are obtained
by removing , , and from , , and

, respectively. Inserting a block to this
modified still makes every pair appear at most
once. An incidence matrix of has row-weight

and the aforementioned modifications clearly keep
the row-weight unchanged. Therefore, we propose a construc-
tion method of in the case of and
as follows:
1. Permute the columns of an incidence matrix of

so that the first three columns contain a cycle of length
6.

2. Delete a 1 on the cycle of length 6 from each of the first
three columns so that the resulting three columnwise pairs
of 1’s are disjoint.

3. Insert one column of weight three where three 1’s are lo-
cated in the rows traversed by the above cycle of length 6.

Actually, it is easy to choose three columns which contain a
cycle of length 6 because an incidence matrix of
has many cycles of length 6. The following lemma shows

how many cycles of length 6 exist in an incidence matrix of
.

Lemma 9: An incidence matrix of has
cycles of length 6.

Proof: Consider three points of
. Three pairs appear

in in either of two ways: 1) one block has all the
three pairs, that is, consists of ; or 2) each pair is con-
tained in a block which does not have the other two pairs, that
is, there are three blocks ,
where and . Three pairs in case 2) form
a cycle of length 6 in the incidence matrix of .
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Fig. 10. Construction of an 11 22 regular protograph with and
. (a) Incidence matrix of . (b) 11 22 regular protograph with
and .

Hence, the number of cycles of length 6 in the incidence matrix
can be enumerated by substracting the number of all blocks
from the number of ways of choosing three points in . This
yields .

Example 5: Fig. 10 illustrates the construction of an
11 22 protograph with and . A cycle of length
6 is denoted by the circles in the incidence matrix of ,
which has been already column-wisely permuted in Fig. 10(a).
To obtain , three 1’s marked by dotted circles are deleted
and the column with 1’s in the first, the second, and the fourth
rows is inserted as the first column of . Let ,
denote the points of , which also denotes the th row
of . We can see that every column in has none of
three pairs of 1’s and it is clear that
three pairs in are disjoint. The
resulting 11 22 protograph with and is shown
in Fig. 10(b) and we can check that with does not
appear in this protograph.
2) and .
In this case, we have , , and

. Since and do not appear in the pro-
tograph, should be designed to avoid repeated columnwise
pairs, where has constant row-weight and column-
weight 3. A configuration whose incidence matrix has column-
weight 3 and the size can be used
for .

Definition 6 ([21]): A configuration is an inci-
dence structure of points and blocks such that 1) each block
contains points, 2) each point lies on blocks, and 3) two dif-
ferent points are contained in at most one block. If and
hence , the configuration is called symmetric and denoted
by .
It is important to check the existence of the configuration with

the required parameters. The following theorem shows that such
configuration always exists and therefore can be constructed.

Theorem 7: There exists a configuration with
, , , and for all

and .
Proof: Necessary conditions for the existence of a

configuration [25] are given as 1) and , 2) ,
and 3) . We can easily check that the parameters
in the theorem statement satisfy these conditions. Finally, the
existence of such configurations is guaranteed by Theorem 3.1
in [25], that is, there exists a configuration with if and
only if the necessary conditions hold.
Now, a construction method of is proposed based on the

results in [25], which uses configurations with parallel classes
and resolvable configurations.

Definition 7 ([21]): A parallel class in a design is a set
of blocks that partition the point set. A resolvable design is a
design whose blocks can be partitioned into parallel classes.
If a configuration has at least one parallel class, for

some positive integer , we can obtain a matrix with rows,
columns, and a constant row-weight by removing

parallel classes from an incidencematrix of the configuration.
This property also helps to obtain from a configuration.
For , exists by Lemma 8. For
, an incidence matrix of a resolvable configuration

with , , , and
can be constructed by removing a row and its inci-

dent columns in an incidence matrix of [25]. For
, there is no resolvable configuration but we

can find a configuration in the same manner as illus-
trated in Fig. 11(b), which contains some parallel classes from

[25]. Since a parallel class of a configuration
with , , , and
consists of blocks and has all points exactly once, we
obtain by removing one parallel class from the incidence ma-
trices of these configurations. The construction procedure of
for and is summarized as follows.
1) Construct .
2) Construct an incidencematrix of a resolvable configuration

with , , , and
by removing a row and its incident columns

in an incidence matrix of .
3) Remove one parallel class which consists of
columns to obtain .
Example 6: An incidence matrix of is shown

in Fig. 11(a). An incidence matrix of a configuration
in Fig. 11(b) is constructed by removing the eighth row and
its incident columns in the incidence matrix of in
Fig. 11(a). We see that the fourth, the sixth, the thirteenth, and
the sixteenth columns form a parallel class. By removing these
columns, an incidence matrix of a configuration is
constructed, which is used as . The resulting 14 28 proto-
graph with and is shown in Fig. 11(c).
3) and :
3.1) , ;
In this case, we have and , and

thus, should have only one pair of 1’s. Since ex-
ists by Lemma 8, may be constructed by removing
columns from a incidence matrix
of and then deleting a 1 in some other column.
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Fig. 11. Construction of a 14 28 regular protograph with and
. (a) Incidence matrix of . (b) Incidence matrix of a configuration

. (c) 14 28 regular protograph with and .

To achieve the desired row-weight of , there
should exist a submatrix consisting of columns satisfying
that 1) two rows have weight 2 and the others have weight 1 and
2) one column has a 1 at each of these two rows of weight 2.
As seen in the case of and , for

and , contains as a substructure
a configuration with , ,

, and which has at least one parallel
class consisting of blocks. This implies that there are

blocks in which partition all but one point.
Also, there always exists another block containing that point in

. These blocks satisfy the aforementioned
requirements 1) and 2) for . The construction procedure
of for , , and is
summarized as follows.
1) Construct .
2) Select one row in an incidence matrix of
such that if the row and its incident columns are removed
from the incidence matrix, the remaining part forms an
incidencematrix of a configuration with ,

, , and including
at least one parallel class.

Fig. 12. Construction of a 15 35 regular protograph with and
. (a) Incidence matrix of . (b) 15 35 regular protograph with

and .

3) Find columns that form one parallel class in the
aforementioned configuration.

4) In the incidence matrix of , delete a 1 in the
selected row in Step 2 and remove the columns
obtained in Step 3.

5) Move the column which had the deleted 1 in Step 4 to the
leftmost to obtain .

Note that the aforementioned construction method cannot be
applied to the case of and because the configura-
tion does not have any parallel class. The case of
and will be covered in the last part of this section.

Example 7: Fig. 12 illustrates the construction of a 15 35
regular protograph with and . In an inci-
dence matrix of in Fig. 12(a), the fifth, the seventh,
the 16th, and the 20th columns partition the set of row indices
except for the index of the eighth row. Also, we can see that
the fourth column has a 1 in the eighth row. Thus, the 1 in the
fourth column and the eighth row is deleted and the four boxed
columns are removed from the incidence matrix. Then, the re-
sulting column of weight 2 is moved to the far left and a 15 35
protograph with and is shown in Fig. 12(b).
3.2) ;
In this case, we have and , and

there are three columnwise pairs of 1’s in . Since
exists for and by Lemma 8, the construc-
tion method for and can also be applied
to this case in the same way. As an example, a 9 15 regular
protograph with and is shown in Fig. 13.
4) and :
In this case, we have , , and

. To construct , start with
which always exists by Lemma 8. Similar to the case of

and , a configuration with ,
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Fig. 13. 9 15 regular protograph with and .

, , and can be
constructed by removing a row and its incident columns in an
incidence matrix of . Any blocks sharing
a common point in the configuration partition all points except
the common point and another point. Therefore, by removing
any row and its incident columns in an incidence matrix of the
configuration, a matrix with
rows of weight and a row of weight is
obtained. Removing a 1 in the row of weight results
in a matrix which has the desired row-weight and
exactly one column of weight 2. Clearly, this matrix can be used
as . The construction procedure of for
and is summarized as follows.
1) Construct a configuration with ,

, , and from
similar to the case of and .

2) Obtain a matrix of size by
removing a row and its incident columns.

3) Delete a 1 in the row of weight and move the
column having the deleted 1 to the leftmost to obtain .
Example 8: An incidence matrix of a configuration

is given in Fig. 11(b). By removing the first row and
its incident columns, we obtain an 11 15 matrix shown in
Fig. 14(a), where the seventh row has weight 5 and the others
have weight 4. Then, the 1 in the seventh row is deleted from
the second column and the second column is moved to the
far left. The resulting 13 26 protograph with and

is shown in Fig. 14(b).
5) and :
5.1) ;
In this case, we have and .

Similar to the case of and , an incidence
matrix of a configuration with ,

, , and can be used as . Such
configuration can be constructed by using difference triangle set
(DTS).

Definition 8 ([21]): An -difference triangle set, or
-DTS, is a set , where for ,

with an integer satisfying
, and the differences over the

integers for all , , , , , are all distinct
and nonzero.

Theorem 8 ([25]): If there is an -DTS, a configura-
tion for , , , and can be
constructed from this DTS.
For and , a configuration with

, , , and
can be constructed from -DTS by Theorem 8.

Fig. 14. Construction of a 13 26 regular protograph with and
. (a) 11 15 modified matrix. (b) 13 26 regular protograph with

and .

Fig. 15. 12 20 regular protograph with and .

According to [25], the construction procedure of is provided
as follows.
1. Construct a -DTS with ,

.
2. For each , , construct a column of
length denoted by , which has a 1 at the st,
the st, and the st rows and 0 at other rows.

3. For each , construct a matrix whose
th column, , is obtained by cyclically
shifting downward times.

4. Concatenate matrices in Step 3 to obtain .
Note that we can easily construct a -DTS from

the DTS lists in [26] for and . Fig. 15
shows a 12 20 regular protograph with and
constructed from -DTS.
5.2) ;
In this case, we have and . Pairwise

balanced designs (PBDs) can be used to construct .
Definition 9 ([21]): Let be a subset of positive integers

and let be a positive integer. A PBD of order with block sizes
from , denoted by PBD , is a pair , where
is a point set of cardinality and is a family of blocks of
which satisfy 1) if , then and 2) every pair of
distinct elements of occurs in exactly blocks of .
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Let PBD denote a PBD with and use
PBD to denote a PBD containing only one block
of size in the PBD, where is a positive integer. For

, it was shown in [27] that PBD
always exists. Note that five rows sharing a 1 with the column of
weight 5 have weight and the other rows have weight

in a incidence matrix
of PBD .

Theorem 9: Removing a row of weight and its
incident columns except the weight-5 column from an incidence
matrix of PBD makes a
matrix of constant row-weight .

Proof: Without loss of generality, assume that the first
column has 1’s at the first five rows in an incidence matrix
of PBD . Consider the
submatrix which consists of the columns incident to the first
row. Except the first row, each row of this submatrix has only
one 1 because every columnwise pair of 1’s should appear
exactly once in an incidence matrix of this PBD. Thus, the

submatrix obtained by removing the
first row and the first column from the
submatrix does not have 1 in the first four rows and each of
the other rows has only one 1. After removing the first row
and the submatrix from the incidence
matrix of PBD , the remainder forms the

matrix of row-weight .
The matrix constructed in Theorem 9 cannot be directly

used as due to the improper number of columns and
the weight-4 column, but it can be easily modified to meet the
requirements for by splitting the weight-4 column into
two weight-2 columns. The construction procedure of
for , , and is summarized as
follows.
1. Construct PBD .
2. Remove a row of weight and its incident columns
except the weight-5 column from an incidence matrix of
PBD .

3. Split the weight-4 column into two weight-2 columns and
move them to the leftmost to obtain .
Example 9: The construction process for a 12 24 regular

protograph with and is illustrated in Fig. 16. An
incidence matrix of PBD is shown in Fig. 16(a).
We can see that the submatrix consisting of the columns inci-
dent to the first row has exactly one 1 in each row except the first
row. By removing the first row and the second, the third, and
the fourth columns and splitting the weight-4 column into two
weight-2 column, is obtained. The resulting 12 24 reg-
ular protograph with and is shown in Fig. 16(b).
6) , and , .
Only two cases of Theorem 4 remain for which we need to

provide construction methods. When and , we
have and , and is a 7 5 matrix with
row-weight 2. Although the construction method of for

and cannot be directly used,
we can construct from an incidence matrix of
in Fig. 17(a). Since any two columns of an incidence matrix of

have a common 1, removing the first two columns
from an incidence matrix results in a 7 5 matrix where one

Fig. 16. Construction of a 12 24 regular protograph with and
. (a) Incidence matrix of PBD . (b) 12 24 regular protograph

with and .

Fig. 17. Construction of a 9 12 regular protograph with and .
(a) Incidence matrix of . (b) 9 12 regular protograph with
and .

Fig. 18. 10 20 regular protograph with and .

row has weight 1, four rows have weight 2, and the remaining
two rows have weight 3 as shown in Fig. 17(a). To obtain ,
first delete 1 from each of two rows of weight 3 in the 7 5 ma-
trix such that two deleted 1’s do not belong to the same column
and the columns containing two deleted 1’s do not have 1 in the
row of weight 1. These two deleted 1’s are marked by circle in
Fig. 17(a). Then, by replacing a 0 at the row of weight 1 and one
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of the columns containing the deleted 1’s with a 1, is con-
structed and the resulting 9 12 regular protograph is shown in
Fig. 17(b).
When and , we have and ,

and has disjoint four columnwise pairs of 1’s. An incidence
matrix of a symmetric configuration can be used as , which
does not have disjoint four columnwise pairs of 1’s. A 10 20
regular protograph with and is shown in Fig. 18.
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