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Abstract We propose a space-time stick-breaking process for the disease cluster
estimation. The dependencies for spatial and temporal effects are introduced by using
space-time covariate dependent kernel stick-breaking processes. We compared this
model with the space-time standard random effect model by checking each model’s
ability in terms of cluster detection of various shapes and sizes. This comparison was
made for simulated data where the true risks were known. For the simulated data,
we have observed that space-time stick-breaking process performs better in detecting
medium- and high-risk clusters. For the real data, county specific low birth weight
incidences for the state of South Carolina for the years 1997–2007, we have illustrated
how the proposed model can be used to find grouping of counties of higher incidence
rate.
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1 Introduction

Health data are now routinely available for many spatial locations for successive years.
This repeated year information introduces a further dimension that is often important
because of changes in socio-demographic structure or other health factors during the
time period of the study. It has also been observed that any significant changes close
in space can be close in time too. This observation underscores the importance of
space-time modeling and emphasizes the consideration of two potential dimensions
of dependency: between spatially neighbor locations, and between successive time
points. Including these dimensions in the analysis adjusts the parameter estimates
for spatial, temporal and spatial-temporal dependences, and contributes to the bet-
ter understanding of disease etiology. Central to small area health investigations, an
important application of these models is the identification of areas associated with
high rates of disease incidence, i.e cluster detection.

Recent works by Gelfand et al. (2005), Griffin and Steel (2006) and Duan et al.
(2007) have proposed to use Dirichlet process (DP) prior distribution for better risk
estimation of spatially reference health data. In these works, the spatial dependence
was introduced either by defining spatial model for the mixing weights or for the
mixing components. In Gelfand et al. (2005), dependent DP prior distributions are
assumed for the random mixing components, and stick-breaking prior distributions
are assumed for the weight components. The weights are not indexed by spatial loca-
tions. For the consideration of dependency among the neighboring spatial locations,
a zero-mean stationary Gaussian process model was considered for the base distribu-
tion from which the random mixing components are drawn. A generalization of the
above spatial dependence DP was proposed by Duan et al. (2007). In their proposal,
instead of a common surface selection (i.e., common weights) for all spatial locations,
a latent covariate was introduced to determine a random surface selection (i.e., the
weights are spatial location dependent). The latent covariates are generated from a
Gaussian random field. In these works (Gelfand et al. 2005; Duan et al. 2007), an
error process of Gaussian distributions was used for the mixing components to have
continuous supports for the observed data, and by this way the discreteness of the DP
prior distribution was resolved. In addition to this, the dependent DP was introduced
through the mixing components by assigning zero-mean stationary Gaussian process
prior distribution, i.e., by allowing the mixing parameter to be drawn from a random
field. In a different approach, Griffin and Steel (2006) proposed a dependent DP by
introducing an ordered stick-breaking prior distribution for the mixing weights. The
ordering depends on the closeness of a covariate value, i.e., distributions for similar
covariate values will be assigned to similar orderings. In a non-spatial setup, Dunson
and Park (2008) proposed kernel based stick-breaking processes to smooth the mixing
weights. Reich and Fuentes (2007) extended these kernels to include spatial processes
in order to model the spatial dependence where the weights are spatially indexed.

The development of space-time dependent Dirichlet Processes is very limited.
Gelfand et al. (2005) used the temporal observations as the replications at each spatial
location in their development of a spatial dependence DP. Instead of considering this
temporal information as independent replications in spatial dependence DP, Kottas
et al. (2007) viewed it as a temporally evolving spatial process. The proposal is based
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on the decomposition of mixing components with temporal index into a first-order
autoregressive term and a random innovation term. Dependent DP prior distributions
are assumed for the random innovations, and a zero-mean stationary Gaussian process
is considered for the base distribution.

In this paper, we propose a different space-time dependence DP mixture model
for the modeling of incidence count data that are observed at spatial locations for
successive time points. In our proposal, we introduce the dependencies for spatial
and temporal effects by using space-time covariate dependent kernel stick-breaking
processes. The space-time covariate dependent kernel can include spatially varying
regression coefficients and separable/non-separable space-time effects. The spatially
varying regression coefficients are modeled by a multivariate conditional autoregres-
sive (MCAR) type model, and the temporal effects are modeled by a first order auto-
regressive type model. Our proposal is different from Kottas et al. (2007) in at least
two ways: i) we use the mixing weights instead of mixing components to introduce
space-time dependency; and ii) our space-time dependent kernel includes separate
effects for space, time, and their interaction, instead of considering a dynamic spatial
process.

The rest of this paper is structured as follows. First, we give a brief description of DP
nonparametrics. Following that, we introduce the proposed space-time stick-breaking
process (Sect. 2). Section 3 describes a standard space-time random effect model,
employed here for comparison with the proposed stick-breaking process. Implemen-
tation of the posterior sampling algorithm and the prior distribution specifications are
discussed in Sect. 4. In sect. 5 we describe a simulation study with the aim of compar-
ative evaluation of the two modeling approaches. The comparisons are made by using
a cluster detection diagnostics by checking these models’ ability in terms of cluster
detection of various shapes and sizes. An application to county level low birth weight
incidences in the state of South Carolina is described in Sect. 6. With the real data,
we describe how the grouping information of space-time stick-breaking process can
be used for finding clusters of similar risk areas. Section 7 provides the concluding
remarks.

1.1 Dirichlet process mixture background

The data y1, . . . , yn are assumed to be generated from an unknown density r , i.e.

yi
iid∼ r(yi ), i = 1, . . . , n. Then, the unknown r in Dirichlet process mixture (DPM)

model (Ferguson 1983; Lo 1984) framework can be written as

r(y) =
∫

�

f (y|θ)dG(θ) (1.1)

where f (·|θ) is a conditional density for a given cluster membership, i.e. indexed by
θ which can be a scalar or a vector, and θ ∈ �. G(·) in (1.1) is the mixing distribution.
In Bayesian nonparametric, G(·) is a random probability measure (RPM), i.e., a prob-
ability measure over a set of probability distributions. The other way of seeing (1.1),
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marginally, the distribution of y is a mixture distribution over density f (y|θ). The
RPM G(θ) can be discrete or continuous. In order to achieve grouping in the observed
data, we are to introduce discreteness in G(θ). We select a DP prior distribution for
this RPM, G(·).

The stick-breaking construction of Sethuraman (1994) confirms that the measures
drawn from a DP are discrete with probability one. The probability measure G can
be represented as infinite mixtures of point masses, as G = ∑∞

j=1 ω jδθ j , where the

locations θ j
i id∼ G0, δθ denotes the point mass located at θ and the stick-breaking prob-

abilities ω j = γ j
∏ j−1

k=1 (1 − γk) with γ j
i id∼ Beta(1, α).

Using this constructive definition of the DP, Eq. (1.1) can be written as r(y) =∑∞
j=1 ω j f (y|θ j ). It reveals the fact that the prior distribution for the unknown r

can be defined by infinite mixtures of density f . The above can also be written as

yi
iid∼ ∑∞

j=1 ω j f (·|θ j ).
The DPM is defined by writing the above model in a Bayesian hierarchical fashion

yi
∣∣θ∗

i ∼ f
(·|θ∗

i

)
, i = 1, . . . , n

θ∗
i

∣∣∣∣G iid∼ G

G ∼ D P (α, G0)

(1.2)

In words, yi is drawn from f (·|θ∗
i ), parameterized by θ∗

i , θ∗
i is drawn independently

from an identical RPM G and G has a DP prior distribution with a base distribution G0
and a scale (or, concentration) parameter α. DPM is a mixture model since a number
of θ∗

i
′s can take the same value because of discrete G, and yi

′s with the same value of
θ∗

i belong to the same cluster. Hence, the θ∗
i

′s give rise to a partition of the set of yi
′s

and α controls the distribution of the number of partitions.
Another way of writing the above DPM models for a finite number of clusters (say,

K ) with a cluster assignment variable zi and θ∗
i = θzi as

yi |zi , θ ∼ f
(·|θzi

)
, i = 1, . . . , n

zi |ω1, . . . , ωK ∼ Discrete (ω1, . . . , ωK )

ω1, . . . , ωK ∼ D (α/K , . . . , α/K )

θ j ∼ G0, l = 1, . . . , K

In this representation, the cluster assignment variable zi loses the meaning of discrete-
ness as the space for zi becomes continuous in the limit K → ∞ since the number of
clusters becomes countably infinite and the prior expectation of any specific cluster
tend to zero. Hence, the assignment variable zi can be ignored and θzi can be replaced
by θ j . The parameter θ j is drawn from a DP with base distribution instead. Green
and Richardson (2001) showed that for large K when α/K → 0, the finite mixture
model with multinomial prior distributions for the assignment variables and Dirichlet
distribution for the weight (DMA in their terminology) converges to DPM.
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2 Stick-breaking process space-time (SBPST) model

We assume that disease incidence data are observed in a fixed set of small areas and for
discrete time periods. Denote the small area units as i = 1, . . . , n, and the temporal
units as t = 1, . . . , T . The observed count of incidence is denoted by Oit , and the
expected count by Eit for location i and time t . The expected count is usually assumed
to be fixed and obtained from a standard population after adjustment for case-mix.
The observed count can be modeled as a mixture of Poisson distributions as

Oit |K ,ω, θ ∼
K∑

j=1

ωi t j Poisson
(
Oit |Eitθ j

)
, (2.1)

where θ = (θ1, . . . , θK ) is a vector of mixing components, and non-negative ωi t j
′s are

the mixing weights and satisfy the condition
∑K

j=1 ωi t j = 1. The number of mixing
components K is not fixed beforehand and considered a random variable.

Following the De Finetti theorem, if (O11, O12, . . .) are infinitly exchangeable,
then the joint probability p(O11, O12, . . . , OnT ) has a representation as a mixture:

p (O11, O12, . . . , OnT ) =
∫ (

n∏
i=1

T∏
t=1

f (Oit |θ)

)
dG (θ)

for RPM, G(θ). A general representation of this can be written in the DPM framework
(1.2) as

Oit |Eit , θ j ∼ f
(·|Eitθ j

)
, i = 1, . . . , n and t = 1, . . . , T

θ j |G iid∼ G

G ∼ D P (α, G0) .

The functional form for f (·|·) can assume any probability distribution that belongs
to exponential family, and defined for positive random variable. Depending on this
specific distribution, θ j could be a scalar or a vector of parameters. We assume a
Poisson distribution for f (.|Eitθ j ) which is a reasonable assumption for count data
and because of this specification, θ j can be interpreted as a relative-risk parameter.
This interpretation of θ j potentially contributes to the specification of the baseline
distribution, G0. We assume a gamma distribution of the form Gamma(ς, ξ) for the
baseline measure G0, where ς and ξ are respectively the shape and scale parameters.

The stick-breaking construction of the RPM is G = ∑∞
j=1 ωi t jδθ j , where δθ j is the

mass probability at point θ j . The mixing weight, ωi t j is indexed by space and time so
that the component specific weights will be able to incorporate spatial and temporal
dependence into the mixture model. We define stick-breaking representation for the
weights by ωi t j = Bit j

∏ j−1
k=1 (1 − Bitk), where Bit j = qit j p j with qit j is a covariate

dependent kernel function and p j ∼ Beta(1, α). The above stick-breaking representa-
tion tells, the unit probability stick is broken off by the amount qit1 pt1 for the first basis,
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by the amount qit2 pt2 from the remaining probability (1 − qit1 pt1) for the second
basis, and it continues until using up the unit stick in the limit. Although there are many
possible kernel functions that can be used for spatially correlated data, e.g. uniform or
squared-exponential kernel (Reich and Fuentes 2007), or logistic normal or grouped
continuous kernel (Fernandez and Green 2002), we preferred to use logistic normal
kernel since Fernandez and Green (2002) already demonstrated its performance in dis-
ease mapping and also it is reasonably flexible to introduce spatially varying regression
coefficients with the space-time covariates to this kernel. The covariate dependent ker-
nel is specified by a logistic normal form qit j = exp(hit j/φ)/

∑K
l=1 exp(hitl/φ), where

the scaling parameter, φ(> 0), controls the smoothness of hit j , and the specific form
of it will depend on the application. Instead of logit link function, other link functions
such as probit are also possible but here we did not explore this possibility. The φ has
a uniform prior distribution with the range (0, φmax), φmax is assumed to be a small
number (generally, 10) (Green and Richardson 2002).

The dependency on covariates can be introduced by defining a function hit j =
β

T
i j Xi t , where Xi t = (1, X2i t , . . . , X pit )

T and βi1, βi2, . . . , βi K are K vectors of
unknown regression parameters and each of which has p elements. These parame-
ters are component specific, even though Xi t is constant across mixtures. This model
in addition of heterogeneous covariate effect, also considers the spatial dependence
between the covariates. In Hossain and Lawson (2010), we have implemented a sim-
pler model as hit j = κi j + γt j , where the κ ′s are the structured spatial random effects,
γ ′s are the structured temporal random effects. However, the function hit j can also
include unstructured spatial and temporal effects, and separable and non-separable
space-time interaction effects. In order to define the exact form for hit j , we need to
remember the fact in many applications with real data, including the non-separable
interaction effects does not improve the goodness-of-fit statistics (e.g., Knorr-Held
2000). In the current applications with South Carolina law birth weight data, we will
illustrate two other functional forms for hit j and also explain how to model non-sep-
arable space-time interaction effects.

To ensure that the above space-time stick-breaking prior is proper, i.e.,
∑K

j=1 ωi t j =
1, according to Ishwaran and James (2001) (see also, Ishwaran and Zarepour 2002) we
must show for infinite K that

∑∞
j=1 E(log(1 − Bit j )) = −∞. The proof is straight-

forward since E(qit j ) and E(p j ) are both positive. It is relevant to mention that qit j is
restricted to the interval [0, 1]. For finite K ,

∑K
j=1 ωi t j = 1 can be proved by setting

Bit K = 1. Setting the condition Bit K = 1 means, the infinite mixture is truncated to
a finite K by putting all of the masses for the components with j ≥ K to ωi t K .

3 Standard random effect space-time (SREST) model

We compare the above SBPST model to the standard random effect space-time
(SREST) model since it is one of the best performing model in disease mapping
for space-time data (Knorr-Held and Besag 1998; Knorr-Held 2000). Because of its
simple hierarchical structure, it is relatively easier to implement in any statistical soft-
ware (specifically, in WinBUGS). Although SREST model was initially introduced
for smoothing risks, this model can also be used to find clusters of excess risk regions.
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The SREST model can be regarded as a hierarchical generalized mixed model,
which allows any probability distribution that belongs to the exponential family to
be specified at the first level of hierarchy. For example Knorr-Held and Besag (1998)
used Bernoulli distribution for modeling the Ohio lung cancer mortality data. Since,
the outcome variable of our interest is a count data, we assume a Poisson distribution
at the first level of hierarchy, specified as

Oit |θi t ∼ Poisson (Eitθi t ) .

The specification for the model for relative-risk, θi t , will depend on study objective.
For example, the logarithm of relative risk could have the form log(θi t ) = β

T
i Xi t ,

where Xi t = (1, X2i t , . . . , X pit )
T , and βi1, βi2, . . . , βi p are p unknown regression

coefficients and the joint probability distribution for these coefficients can be specified
by multivariate CAR model (Assunção 2003). Since, our interest is to get a better area
specific relative-risk estimate for the observed cancer mortality for the simulated data-
set in order to compare each model’s ability in terms of cluster detection of various
shapes and sizes; it will be useful to include random effects to represent each source
of variation. Considering random effects model is also common (Best et al. 2005) in
small area health investigation since most often the disease under study is rare and
the area population sizes are small. These conditions increase the random variation
associated with risk estimates and including random effects to include each source of
these variations may improve the relative risk estimates. We consider a nearly saturated
model for the logarithm of relative-risk, defined as

log (θi t ) = ρ + κi + γt + εi + ξt + λi t ,

where ρ is an overall mean parameter, κi and γt are spatial and temporal random
effects for structured heterogeneity, εi and ξt are for unstructured heterogeneity, and
λi t is a space-time separable random effect.

4 Posterior sampling and the prior distribution specification

Recent research (Ohlssen et al. 2007) suggested that from computational aspect a
finite approximation of the stick-breaking representation of the full DP model is more
feasible to apply. The SBPST model in (2.1) can be regarded as a finite approxima-
tion of the full model where the number of mixing component, K could be fixed to a
number for which very minimal information is compromised. This finite approxima-
tion for SBPST model can be implemented in WinBUGS (Spiegelhalter et al. 2003)
by introducing space-time latent variables Z = (Z11, Z12, . . . , ZnT ). These latent
variables indicate the group membership for the unobserved variables θ j where the
mixing weights are defined as ωi t j = pr(Zit = j). WinBUGS uses Gibbs sampling
with necessary Metropolis-Hastings steps to obtain samples from the posterior dis-
tributions. The WinBUGS implementation of the SREST model is much easier and
straightforward.
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4.1 Prior distribution specification and the identifiability condition for the SBPST
model

The prior distribution for the spatial dependence between the βi j
′s will be specified

by a proper multivariate CAR model (Gelfand and Vounatsou 2003) which takes the
form (βi j ·|{βi ′ j ·, i ′ 	= i},ρ j , � j ) ∼ MCAR(ρ j , � j ), where � j is a variance-covari-
ance matrix of order p × p and ρ j is a vector of spatial autocorrelation of order p. In
the case of independent covariates, this multivariate specification will be reduced to
the proper univariate CAR model. The prior distributions for spatial autocorrelation
and covariance parameters can be simplified by assuming common prior distributions
for all mixture components so that information can be pooled over all components.
We implemented the latter approach. A standard choice of hyperprior distribution
for the precision matrix, �−1, is a Wishart distribution with p degrees of freedom,
�−1 ∼ W (�, p). A common practice is to set � to a unit matrix (Gelman et al.
2004). The hyperprior distributions for the scale and shape parameters of baseline
measure are assumed as, respectively, exp(0.1) and Gamma(0.001, 0.001) (Ohlssen
et al. 2007). The spread parameter α is assumed to have uniform distribution with the
range 0.3–10 (Ohlssen et al. 2007).

We are aware that when the covariates are introduced in the finite mixture model and
the parameters are space and component dependent, the issues of label switching and
potential overfitting become more delicate. Hennig (2000) showed that the regression
parameters are identifiable if the number K of clusters is smaller than the number of
distinct (p − 1)-dimensional hyperplanes generated by the covariates, i.e., if the covar-
iates show too little variability. We propose to imposing the restriction

∑n
i=1 βi ·· = C

as Assunção (2003) suggested, for the Bayesian spatially varying parameter model to
ensure identifiability.

4.2 Prior distribution specification for the SREST model

The prior distribution specifications for the structured spatial effect is assigned to
be a CAR model with the hyperprior distribution for the precision parameter as
Gamma(0.5, 0.0005) (Bernardinelli et al. 1995), and for the structured temporal effect
is assigned to be a first-order autoregressive model with the hyperprior distributions for
the autocorrelation parameter as Beta(1, 1) (Lawson et al. 2010) and the temporal stan-
dard deviation as Uniform(0, 20) (Lambert et al. 2005). All other random effects εi , ξt

and λi t are assumed to have prior distributions as, respectively, N (0, σ 2
ε ), N (0, σ 2

ξ ) and

N (0, σ 2
λ ). A flat prior distribution can be assumed for the overall mean parameter ρ as

N (0, kρ), where kρ is a large quantity (say, 10,000). All the standard deviation param-
eters are assumed to have the same prior distribution specifications as Uniform(0, 20)

(Lambert et al. 2005).

5 Simulation design: Ohio County geographies

We conduct a simulation study to assess the performance of the SBPST model in com-
parison to the SREST model. The aim was to check how these two models perform in
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estimating clusters of different shapes and sizes. We use the Ohio lung cancer mortality
dataset for our simulation since it is a freely available dataset (www.stat.uni-muenchen.
de/service/datenarchiv/ohio/ohio_e.html), and have been analyzed previously in many
studies (e.g., Xia and Carlin 1998; Knorr-Held and Besag 1998; Waller et al. 1997).

The state of Ohio in USA has 88 counties. We use the Ohio geographies and, the
county and year specific expected lung cancer mortality for the period 1968–1988 as a
base for our simulation. The simulation is as described in Hossain and Lawson (2010).
In short, the steps of simulation are as follows.

i. The underlying risks are generated by

μi t ∼ Uniform (0.5, 1.5) ; i = 1, . . . , 88, and t = 1, . . . , 21,

since in a normal situation it is expected that the relative risk at each county and
year will be close to ‘one’ with some small variation,

ii. The clusters of different shapes and magnitudes (δi t ) are embedded to the desired
counties and years to give θ true

i t = μi t + δi t , where θ true
i t is assumed to be the true

value of θi t . The values for δ′s are chosen in the range of 0.0–3.39 such that the
θ true vary in the range of 0.5–4.0, and

iii. The county and year specific lung cancer mortality count was generated from a
Poisson model with: ys

it |eitθ
true
i t ∼ Poisson

(
eitθ

true
i t

)
, where s = 1, . . . , S is the

size of replication.

In our simulation experiment, the number of replications was set at S = 100 and
was chosen as a balance between computation time and accuracy. We assume that
the size 100 is reasonable to capture all the variations in the replicated dataset. In
Fig. 1, the maps for the θ true

i t are given. The darker colors show the higher risk regions.
Some of the clusters are embedded with fairly high values, intended to check model
performances for this scenario.

1968 1969 1970 1971 1972 1973 1974

1975 1976 1977 1978 1979 1980 1981

1982 1983 1984 1985 1986 1987 1988

[0.0, 0.8] (0.8, 1.5] (1.5, 2.0] (2.0, 2.5] (2.5, 3.0] (3.0, 3.5] > 3.5

Fig. 1 Thematic maps of true relative risks of mortality from lung cancer incidences that have been assumed
for simulating the datasets for Ohio geographies for the years 1968–1988
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5.1 SBPST model

In the assessment of SBPST model for the simulated datasets, we have considered the
function, hit j = κi j + γt j , where the κ ′s are the structured spatial random effects, γ ′s
are the structured temporal random effects.

The structured spatial random effects κ j = (κ1 j , . . . , κnj ) have a CAR prior dis-

tribution, specified by: κi j |{κ−i j }, σ 2
κ j ∼ N (κ̄i j ,

σ 2
κ j

ni
), j = 1, . . . , K , where,

ni = ∑n
k=1 I (k ∈ {�i }), κ̄i j = ∑

i∈{�i }
κi j
ni

, {�i } is the set of first-order neighbors of
the i th region and {κ−i j } is the set of all κ ′s excluding κi j . A vague prior distribution
for the spatially hyperparameter σ−2

κ j ( j = 1, . . . , K ) is assigned and is specified as
Gamma(0.5, 0.0005) (Bernardinelli et al. 1995).

The structured temporal random effects γ j = (γ1 j , . . . , γT j ) have the first-
order autoregressive prior distribution: γ1 j |χ j , σ

2
γ j ∼ N (0, σ 2

γ j/(1 − χ2
j )), and

γt j |γt−1 j , χ j , σ
2
γ j ∼ N (χ jγt−1 j , σ

2
γ j ) for t = 2, . . . , T, and j = 1, . . . , K . The

first-order autocorrelation coefficient χ j ∈ (0, 1) and γt j reduces to temporal inde-
pendence when χ j = 0. When estimating γ1 j ( j = 1, . . . , K ), we restricted χ2

j to be
less than one to ensure identifiability. We assign a noninformative prior distribution
for χ j , specified as Beta(1, 1) (Lawson et al. 2010). The choice Beta(1, 1) gives the
standard uniform distribution. A noninformative prior distribution was assigned for the
temporal standard deviation σγ j ( j = 1, . . . , K ), and is specified as Uniform(0, 20)

(Lambert et al. 2005).

5.2 Results

For the simulated data where the true excess risk regions are known, it is possible
to check the relative performances of SBPST and SREST models in the recovery of
clusters. We use previously developed spatial-temporal diagnostic criteria in Hossain
and Lawson (2010) for this comparison. The SBPST and SREST models were imple-
mented in WinBUGS. The WinBUGS code developed for the SBPST model is avail-
able from the first author on request. The SBPST model was implemented for a finite
number of components; here it was set to 7. The number was chosen to balance between
the model complexity and computation time. To estimate all the model parameters,
we ran two parallel chains with widely different initial values for 15,000 iterations.
After discarding the first 10,000 iterations as burn-in samples, 5,000 from each chain
were considered for posterior inference. The reported results are the posterior mean
over these 10,000 MCMC samples. We checked the Gelman–Rubin statistic, kernel
density plot and the trace plot of each parameter to ensure convergence. In addition, we
performed a limited sensitivity analysis for the SBPST model for the choice of number
of components. We compared the posterior exceedance probability that was obtained
for the number of components 7 with that for the number of components 12, only
for the first simulated dataset, and observed that the estimates were consistent with
these numbers. Hence, the results reported for the SBPST model hereafter are for the
number of component, 7.The thematic maps for R (R is defined as the average number
of realizations where posterior exceedance probability is >0.95) for the selected years
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1969 1973 1980 1981 1987

1969 1973 1980 1981 1987

[0.00, 0.50] (0.50, 0.70] (0.70, 0.90] (0.90, 0.95] (0.95, 0.99] (0.99, 1.00]

Fig. 2 Thematic maps of R for the selected years (1969, 1973, 1980, 1981, and 1987) of Ohio simulated
data for the threshold value ‘one’. Top row stick-breaking process space-time (SBPST) model, and bottom
row standard random effects space-time (SREST) model

Table 1 Cluster misspecification rates and mean square error for the stick-breaking process space-time
(SBPST) model and the standard random effects space-time (SREST) model for the threshold values,
c = 1, 2, and 3

Threshold value (c) Cluster misspecification rate Mean square error

SBPST SREST SBPST SREST

1.00 0.013 0.016 0.015 0.014

2.00 0.006 0.011 0.036 0.062

3.00 0.100 0.175 0.021 0.087

1969, 1973, 1980, 1981, and 1987 are given in Fig. 2 where the top row is the result for
SBPST model and the bottom rows is for the SREST model. For space limitation we
report results only for those years where the clusters vary in shape and size. The pos-
terior exceedance probability (Richardson et al. 2004) was calculated for the threshold
value ‘1’, i.e.,

∑G
g=1 I (θ̂

g
it > 1)/G, where G is the posterior sample size and θ̂

g
it is

the estimated risk for the gth sample value from converged posterior sampling output.
The reported results are averages over the 100 replicates. This threshold level seems
to signal the clusters of high intensity well. It is also visible in these maps that these
two models seem to correctly signal all the spatio-temporal clusters. For the increasing
threshold value (i.e., 2–3), the R maps appear to become ‘cleaned out’, in that lower
risk areas no longer signal (the maps are not included here for space limitation).

Table 1 gives the threshold value specific cluster misspecification rates and the mean
square error (MSE) for each model. The threshold values are set at c = 1, 2, and 3.
Choosing these threshold values will help to define three risk levels as: low-risk level
when c = 1, medium-risk level when c = 2 and high-risk level when c = 3. It appears
that in detecting clusters of medium-risk (c = 2) and high-risk (c = 3), SBPST model
performs better than SREST models. In detecting clusters of low-risk (c = 1), SREST
model performs slightly better than SBPST model.
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6 South Carolina low birth weight data and results

Low birth weight (LBW) is an important indicator of women’s reproductive health
and general health status of population (Goldenberg and Culhane 2007). It is defined
as baby weighting <2,500 g at live-birth. The causes of LBW may include individual
level behavioral and psychosocial factors, neighborhood characteristics, environmen-
tal exposures, access to prenatal care, and biological factors. Recent studies on LBW
have focused on the effects of neighborhood factors such as environmental health fac-
tors, residential segregation, and income inequalities using ecological or multilevel
study design (Grady 2006; Janevic et al. 2010). In our current study, we sought to find
grouping of areas where rates of LBW incidence are relatively higher by modeling
the spatio-temporal patterns of LBW according to SBPST methods while considering
space- and time-varying covariates and the potential interactions between the spatio-
temporal factors.

The state of South Carolina has 46 counties, and the study period is considered as
years 1997–2007. We have considered three models for the county and year specific
South Carolina LBW incidences. The models are different based on their specification
of the function hit j . Model 1 considers no covariates, specified only by the structured
spatial and structured temporal random effects, i.e. hit j = κi j +γt j . Model 2 considers
covariates, and we consider the county and year specific covariates: population density
(PD), proportion of African-American (PAA), median household income (MHI), pro-
portion of poverty (PP), and unemployment rate (UR). These covariates are considered
by following the previous studies by Fang et al. (1999) and Pearl et al. (2001). Thus, we
use the form, hit j = β0 j +β1 j PDi t +β2 j PAAi t +β3 j MHIi t +β4 j PRi t +β5 j URi t +
κi j + γt j . This model assumes that the regression parameters are component specific
and has the flexibility to capture any effect of discontinuity or clustering pattern in
covariates on LBW. Model 3 considers a general approach by defining a function,
hit j = β0i j +β1i j PDi t +β2i j PAAi t +β3i j MHIi t +β4i j PRi t +β5i j URi t +β6i j t . This
model illustrates a simpler way to model a space-time interaction effect, and speci-
fying a multivariate prior distribution for βi j

′s ensures a nonseparable covariance for
this effect. Using a multivariate prior distribution for the joint modeling of covariate
effects is very practical in a sense that counties with a higher UR are likely to have a
higher PP and a lower MHI.

As an aid to model selection we use the deviance information criteria (DIC)
(Spiegelhalter et al. 2003) and mean square prediction error (MSPE)
(Gelfand and Ghosh 1998). Both of these criteria, DIC and MSPE, are based on the pre-
dictive ability of the model while the DIC captures the model complexity by the effec-
tive number of parameters. The DIC for model M is defined as DICM = D(�M )+ pM ,
where �M is the set of all parameters under model M, D(�M ) is the posterior mean
deviance and pM is the effective number of parameters, which is a measure of model
complexity. The pM is commonly measured by D(�M ) − D(�̂M ), where D(�̂M ) is
the deviance of the posterior means. In our mixture model, the latent variables to indi-
cate the group membership are discrete, and this membership indicator changes over
the MCMC iterations. Thus, it is not clear which group membership information will
be used to calculate D(�̂M ). Instead, we follow the Gelman et al. (2004) proposal to
measure pM which is defined as half the posterior variance of the deviance. The MSPE
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Table 2 The deviance information criteria (DIC) and the mean square predictive error (MSPE) values for
the three competing SBPST models for the South Carolina low birth weight (LBW) incidences for the years
1997 to 2007

Model Mean of
deviance

Variance of
deviance

DIC MSPE

Model 1 3636.0 27.71 3649.86 224.2

Model 2 3676.0 28.66 3690.33 256.0

Model 3 3664.0 20.76 3674.38 244.6

for model M is calculated by MSPEM = ∑G
g=1

∑n
i=1

∑T
t=1 (Oit − O

(g, M)

i t )2/nT G,

where O
(g, M)

i t is the predicted O for the model M at gthiteration and G is the MCMC
sample size. The predicted values are generated from the posterior predictive distribu-
tion, p(O(pred)|O) = ∫

p(O(pred)|�)p(�|O)d�, after ensuring the convergence
of all model parameters, �. As it appears, MSPE does not separate out any measure for
model complexity, although Gelfand and Ghosh (1998) illustrated that for increasing
model complexity MSPE increases.

The data sources for this study are: LBW data acquired from the South Caro-
lina Department of Health and Environmental Control (http://www.scdhec.gov/), and
population, income, poverty and unemployment data are from the US Census Bureau
(http://www.census.gov). The county and year specific expected LBW incidences,
Eit , is calculated by nit D, where nit is the total birth in county i and year t , and D is
the South Carolina overall LBW rate calculated by the ratio of total LBW to total birth
over the entire spatial-temporal domain (Banerjee et al. 2004). The county specific
standardized incidence ratios (SIRs) for the years 1997, 2001, 2004, and 2007 are
given in Fig. 4 (top row). The observed SIRs are showing a presence of a small cluster
of excess risks in the east in the year 2001. This cluster appears again in the year 2004.
Although there is no spatial cluster that is persistent over the study period, there are
some sporadic regions of excess risks.

6.1 Results

The three models as specified in above are fitted in WinBUGS for a fixed number of
components. The number of components was set to 10 in order to balance between
computational time and model complexity. We preferred to choose the number of
components for the real data a little higher than the simulated data since the number
of counties for SC is much smaller than the state of Ohio. The posterior inference is
based on 10,000 samples from two parallel chains, after a burn-in period of 10,000
samples for each chain. The initial values for each chain were set to widely different
values. We ensured the convergence of each estimate by checking the Gelman–Rubin
statistic, kernel density plot and the trace plot. The DIC and the MSPE values for these
models are reported in Table 2. We have observed similar trends in DIC and MSPE
values for the three models specified in above. The smallest values are obtained for
Model 1 which included only the structured spatial and structured temporal compo-
nents. The second smallest values are obtained for Model 3. This model considered a
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Fig. 3 County specific histogram plot of group membership labels over the 11 year study period (1997–
2007) of South Carolina low birth weight (LBW) incidences from SBPST Model 1

MCAR model as a prior distribution for the spatially varying regression parameters,
and also includes a space-time nonseparable effect. The DIC and MSPE values for
Model 3 are lower comparing to Model 2 indicates the presence of spatial correlation
within the covariates, although this evidence is not substantial since Model 1 has the
smallest DIC and MSPE values. In the following we report the results for Model 1.

In cluster analysis, we intend to find the group in which observations are similar
to each other than observations in other groups. One way of assigning the appropri-
ate group label to each observation is by calculating the frequency distribution of the
latent variable Zit over all posterior samples, and then assigns the label for which
the frequency is maximized. The frequency value for each l can be calculated by
n(l)

i t = ∑G
g=1 I (Z (g)

i t = l), where Z (g)
i t is the gth posterior latent variableZit which

indicate the group membership, l = 1, . . . , K and G is the posterior sample size.

The group label for the (i, t)th observation will be l ′ for which n(l ′)
i t = maxl∈K (n(l)

i t ).
In Fig. 3, we report the histogram plot of group membership labels over 11 years
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1997 2001 2004 2007
[0.0-0.5]
(0.5-0.8]
(0.8-1.2]
(1.2-1.5]
>1.5

Fig. 4 Thematic maps of standardized incidence ratios (top row) and the group membership labels of South
Carolina low birth weight (LBW) incidences from SBPST Model 1 (bottom row), for the selected years
(1997, 2001, 2004, and 2007)

(1997–2007) for each county specific South Carolina LBW incidences. The member-
ship labels are in the range of 1–10, since the number of mixing components K in the
computation was set to 10. It appears that the number of grouping for each county was
varying over the 11 year study period and it was varying in the range of 3–6 levels. The
maximum number of grouping occurred for the counties Charleston and Greenwood.
The thematic maps of this membership label for the years 1997, 2001, 2004 and 2007
are presented in Fig. 4 (bottom). In both maps, top and bottom of Fig. 4, the darker
colors may not bear the same meaning. In the top, darker the colors indicate high risk
counties and in the bottom, it distinguishes the group membership.

7 Conclusions

In this paper, we propose a space-time stick-breaking process for the modeling of inci-
dence count data that are observed at spatially varying locations and for successive time
points, and illustrated how this model can be used for finding clusters of high risk areas.
We have used the Poisson distribution as an obvious choice of modeling the count data
at the first level of hierarchy. The dependencies for spatial and temporal effects are
introduced by using space-time covariate dependent kernel stick-breaking processes
for the weight component. The space-time dependent kernel can include component
specific spatially varying regression coefficients and non-separable space-time effects.
The spatially varying regression coefficients are modeled by a MCAR type model.

The proposed model has been extensively validated by using the simulated data
and compared with the SREST model by checking each model’s ability in terms of
detecting clusters of various shapes and sizes. In generating artificial geo-referenced
lung cancer incidences, we have used Ohio geographies and 21 years of county specific
expected lung cancer incidences for the years 1968–1988. Clusters of various shapes
and sizes are then embedded to the simulated data. The finding is mixed; neither of
these two models can be singled out as the best performing model to be recommended
for all levels of cluster detection. We have observed that SBPST model performs better
than SREST model in detecting medium- and high-risks clusters. The SREST model
performs better in detecting low risk clusters. After the validation, we applied the
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SBPST model to a real dataset, county specific low birth weight incidences for the
state of South Carolina for the years 1997–2007. By using the latent variable labels in
posterior samples, we reported the county specific group membership labels over the
11 year study period by histogram plot (Fig. 3). We have observed some similarities
of these group membership labels with observed SMR (Fig. 4).

In our current implementation of the SBPST model, we fixed the number of com-
ponents to a finite number. In our future work we will consider setting this number
as an unknown constant and estimate this number by using reversible jump MCMC
(RJMCMC) method.

Acknowledgments The support of NIH grants UL1 RR024148 (CTSA) and R21 HL088654-01A2 are
gratefully acknowledged. Our sincere thanks go to the editor for many constructive comments which con-
tributed to the further improvement of this manuscript.

References

Assunção RM (2003) Space varying coefficient models for small area data. Environmetrics 14:453–473
Banerjee S, Carlin B, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman

and Hall, New York
Bernardinelli L, Clayton D, Montomoli C (1995) Bayesian estimates of disease maps: how important are

priors?. Stat Med 14:2411–2431
Best N, Richardson S, Thomas A (2005) A comparison of Bayesian spatial models for disease mapping.

Stat Methods Med Res 14:35–59
Duan JA, Guindani M, Gelfand AE (2007) Generalized spatial Dirichlet process models. Biomerika 94:

809–825
Dunson DB, Park JH (2008) Kernel stick-breaking processes. Biomerika 95:307–323
Fang J, Madhavan S, Alderman MH (1999) Low birthweight: race and maternal nativity-impact of com-

munity income. Pediatrics 103:E5
Ferguson TS (1983) Bayesian density estimation by mixtures of normal distributions. In: Rizvi MH, Ru-

stagi JS, Siegmund D (eds) Recent advances in statistics. Academic Press, New York pp 287–302
Fernandez C, Green PJ (2002) Modelling spatially correlated data via mixtures: a Bayesian approach. J R

Stat Soc Ser B 64:805–826
Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss. Biometrika 85:1–11
Gelfand AE, Kottas A, MacEachern SN (2005) Bayesian nonparametric spatial modeling with Dirichlet

process mixing. J Am Stat Assoc 100:1021–1035
Gelfand AE, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data

analysis. Biostatistics 4:11–25
Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapmann & Hall, Boca Raton
Goldenberg RL, Culhane JF (2007) Low birth weight in the United States. Am J Clin Nutr 85:584S–590S
Grady S (2006) Racial disparities in low birthweight and the contribution of residential segregation: a

multilevel analysis. Soc Sci Med 63:3013–3029
Green J, Richardson S (2002) Hidden Markov models and disease mapping. J Am Stat Assoc 97:1055–1070
Green PJ, Richardson S (2001) Modelling heterogeneity with and without the Dirichlet process. Scand J

Stat 28:355–375
Griffin JE, Steel MF (2006) Order-based dependent Dirichlet processes. J Am Stat Assoc 101:179–194
Hennig C (2000) Identifiability of models for clusterwise linear regression. J Classif 17:273–296
Hossain MM, Lawson AB (2010) Space-time Bayesian small area disease risk models: development and

evaluation with a focus on cluster detection. Environ Ecol Stat 17:73–95
Ishwaran H, James LF (2001) Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc 96:

161–173
Ishwaran H, Zarepour M (2002) Exact and approximate sum representations for the Dirichlet process. Can

J Stat 30:269–283
Janevic T, Stein CR, Savitz DA, Kaufman JS, Mason SM, Herring AH (2010) Neighborhood deprivation

and adverse birth outcomes among diverse ethnic groups. Ann Epidemiol 20:445–451

123



Environ Ecol Stat (2013) 20:91–107 107

Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med
19:2555–2567

Knorr-Held L, Besag J (1998) Modelling risk from a disease in time and space. Stat Med 17:2045–2060
Kottas A, Duan JA, Gelfand AE (2007) Modeling disease incidence data with spatial and spatial-temporal

Dirichlet process mixtures. Biom J 49:1–14
Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR (2005) How vague is vague? A simulation

impact of the use of vague prior distributions in MCMC using winbugs. Stat Med 24:2401–2428
Lawson AB, Song HR, Cai B, Hossain MM, Huang K (2010) Space-time latent component modeling of

geo-referenced health data. Stat Med 29:2012–2027
Lo AY (1984) On a class of Bayesian nonparametric estimates: I. Density estimates. Ann Stat 12:351–357
Ohlssen DI, Sharples LD, Spiegelhalter DJ (2007) Flexible random-effects models using Bayesian semi-

parametric models: application to institutional comparisons. Stat Med 26:2088–2112
Pearl M, Braveman P, Abrams B (2001) The ralationship of neighborhood socioeconomic characteristics

to birthweight among 5 ethnic groups in California. Am J Public Health 91:1808–1814
Reich BJ, Fuentes M (2007) A multivariate semiparametric Bayesian spatial modeling framework for hur-

ricane surface wind fields. Ann Appl Stat 1:249–264
Richardson S, Thomas A, Best N, Elliott P (2004) Interpreting posterior relative risk estimates in disease-

mapping studies. Environ Health Perspect 112:1016–1025
Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sin 4:639–650
Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user manual [1.4.]. MRC Biostatistics Unit,

Institute of Public Health, Cambridge
Waller LA, Carlin BP, Xia H, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J

Am Stat Assoc 92:S.607–S.617
Xia H, Carlin BP (1998) Spatio-temporal models with errors in covariates: mapping Ohio lung cancer

mortality. Stat Med 17:2025–2043

Author Biographies

Md. Monir Hossain is an Assistant Professor of Biostatistics in the Center for Clinical and Translational
Sciences, University of Texas Health Science Center at Houston, USA. His research interests include devel-
oping models for spatial and spatial-temporal data, and developing method for cluster diagnostics.

Andrew B. Lawson is a Professor of Biostatistics in the Division of Biostatistics, Bioinformatics and Epi-
demiology, Medical University of South Carolina at Charleston, USA. He has a research specialization in
statistical methods in spatial epidemiology. He has published extensively, including 6 books in the area of
spatial epidemiology.

Bo Cai is an Assistant Professor of Biostatistics in the Department of Epidemiology and Biostatistics, Uni-
versity of South Carolina at Columbia, USA. He has research interests in Semiparametric modeling, latent
variable modeling and spatial modeling. He has published extensively in statistical methodological journals.

Jungsoon Choi is a Post-Doctoral Scholar in Biostatistics in the Division of Biostatistics, Bioinformatics
and Epidemiology, Medical University of South Carolina at Charleston, USA. Her postdoctoral training is
in the area of spatial statistics and latent structure modeling.

Jihong Liu is an Associate Professor of Epidemiology in the Department of Epidemiology and Biostatistics,
University of South Carolina at Columbia, USA. Her research interests include perinatal epidemiology and
reproductive health.

Russell S. Kirby is a Professor of Epidemiology in the Department of Community and Family Health,
University of South Florida at Tampa, USA. His research specializations include perinatal epidemiology,
birth defects and developmental disabilities epidemiology and prevention, GIS and spatial analysis.

123


	Space-time stick-breaking processes for small area disease cluster estimation
	Abstract
	1 Introduction
	1.1 Dirichlet process mixture background

	2 Stick-breaking process space-time (SBPST) model
	3 Standard random effect space-time (SREST) model
	4 Posterior sampling and the prior distribution specification
	4.1 Prior distribution specification and the identifiability condition for the SBPST model
	4.2 Prior distribution specification for the SREST model

	5 Simulation design: Ohio County geographies
	5.1 SBPST model
	5.2 Results

	6 South Carolina low birth weight data and results
	6.1 Results

	7 Conclusions
	Acknowledgments
	References


